#ifndef slic3r_Print_hpp_ #define slic3r_Print_hpp_ #include "PrintBase.hpp" #include "BoundingBox.hpp" #include "Flow.hpp" #include "Point.hpp" #include "Layer.hpp" #include "Model.hpp" #include "Slicing.hpp" #include "GCode/ToolOrdering.hpp" #include "GCode/WipeTower.hpp" #if ENABLE_THUMBNAIL_GENERATOR #include "GCode/ThumbnailData.hpp" #endif // ENABLE_THUMBNAIL_GENERATOR #include "libslic3r.h" namespace Slic3r { class Print; class PrintObject; class ModelObject; class GCode; class GCodePreviewData; enum class SlicingMode : uint32_t; // Print step IDs for keeping track of the print state. enum PrintStep { psSkirt, psBrim, // Synonym for the last step before the Wipe Tower / Tool Ordering, for the G-code preview slider to understand that // all the extrusions are there for the layer slider to add color changes etc. psExtrusionPaths = psBrim, psWipeTower, // psToolOrdering is a synonym to psWipeTower, as the Wipe Tower calculates and modifies the ToolOrdering, // while if printing without the Wipe Tower, the ToolOrdering is calculated as well. psToolOrdering = psWipeTower, psGCodeExport, psCount, }; enum PrintObjectStep { posSlice, posPerimeters, posPrepareInfill, posInfill, posSupportMaterial, posCount, }; // A PrintRegion object represents a group of volumes to print // sharing the same config (including the same assigned extruder(s)) class PrintRegion { friend class Print; // Methods NOT modifying the PrintRegion's state: public: const Print* print() const { return m_print; } const PrintRegionConfig& config() const { return m_config; } // 1-based extruder identifier for this region and role. unsigned int extruder(FlowRole role) const; Flow flow(FlowRole role, double layer_height, bool bridge, bool first_layer, double width, const PrintObject &object) const; // Average diameter of nozzles participating on extruding this region. coordf_t nozzle_dmr_avg(const PrintConfig &print_config) const; // Average diameter of nozzles participating on extruding this region. coordf_t bridging_height_avg(const PrintConfig &print_config) const; // Collect 0-based extruder indices used to print this region's object. void collect_object_printing_extruders(std::vector &object_extruders) const; static void collect_object_printing_extruders(const PrintConfig &print_config, const PrintRegionConfig ®ion_config, std::vector &object_extruders); // Methods modifying the PrintRegion's state: public: Print* print() { return m_print; } void set_config(const PrintRegionConfig &config) { m_config = config; } void set_config(PrintRegionConfig &&config) { m_config = std::move(config); } void config_apply_only(const ConfigBase &other, const t_config_option_keys &keys, bool ignore_nonexistent = false) { this->m_config.apply_only(other, keys, ignore_nonexistent); } protected: size_t m_refcnt; private: Print *m_print; PrintRegionConfig m_config; PrintRegion(Print* print) : m_refcnt(0), m_print(print) {} PrintRegion(Print* print, const PrintRegionConfig &config) : m_refcnt(0), m_print(print), m_config(config) {} ~PrintRegion() = default; }; typedef std::vector LayerPtrs; typedef std::vector SupportLayerPtrs; class BoundingBoxf3; // TODO: for temporary constructor parameter // Single instance of a PrintObject. // As multiple PrintObjects may be generated for a single ModelObject (their instances differ in rotation around Z), // ModelObject's instancess will be distributed among these multiple PrintObjects. struct PrintInstance { // Parent PrintObject PrintObject *print_object; // Source ModelInstance of a ModelObject, for which this print_object was created. const ModelInstance *model_instance; // Shift of this instance's center into the world coordinates. Point shift; }; typedef std::vector PrintInstances; class PrintObject : public PrintObjectBaseWithState { private: // Prevents erroneous use by other classes. typedef PrintObjectBaseWithState Inherited; public: // vector of (layer height ranges and vectors of volume ids), indexed by region_id std::vector>> region_volumes; // Size of an object: XYZ in scaled coordinates. The size might not be quite snug in XY plane. const Vec3crd& size() const { return m_size; } const PrintObjectConfig& config() const { return m_config; } const LayerPtrs& layers() const { return m_layers; } const SupportLayerPtrs& support_layers() const { return m_support_layers; } const Transform3d& trafo() const { return m_trafo; } const PrintInstances& instances() const { return m_instances; } // Bounding box is used to align the object infill patterns, and to calculate attractor for the rear seam. // The bounding box may not be quite snug. BoundingBox bounding_box() const { return BoundingBox(Point(- m_size.x() / 2, - m_size.y() / 2), Point(m_size.x() / 2, m_size.y() / 2)); } // Height is used for slicing, for sorting the objects by height for sequential printing and for checking vertical clearence in sequential print mode. // The height is snug. coord_t height() const { return m_size.z(); } // Centering offset of the sliced mesh from the scaled and rotated mesh of the model. const Point& center_offset() const { return m_center_offset; } // adds region_id, too, if necessary void add_region_volume(unsigned int region_id, int volume_id, const t_layer_height_range &layer_range) { if (region_id >= region_volumes.size()) region_volumes.resize(region_id + 1); region_volumes[region_id].emplace_back(layer_range, volume_id); } // This is the *total* layer count (including support layers) // this value is not supposed to be compared with Layer::id // since they have different semantics. size_t total_layer_count() const { return this->layer_count() + this->support_layer_count(); } size_t layer_count() const { return m_layers.size(); } void clear_layers(); const Layer* get_layer(int idx) const { return m_layers[idx]; } Layer* get_layer(int idx) { return m_layers[idx]; } // Get a layer exactly at print_z. const Layer* get_layer_at_printz(coordf_t print_z) const { auto it = Slic3r::lower_bound_by_predicate(m_layers.begin(), m_layers.end(), [print_z](const Layer *layer) { return layer->print_z < print_z; }); return (it == m_layers.end() || (*it)->print_z != print_z) ? nullptr : *it; } Layer* get_layer_at_printz(coordf_t print_z) { return const_cast(std::as_const(*this).get_layer_at_printz(print_z)); } // Get a layer approximately at print_z. const Layer* get_layer_at_printz(coordf_t print_z, coordf_t epsilon) const { coordf_t limit = print_z - epsilon; auto it = Slic3r::lower_bound_by_predicate(m_layers.begin(), m_layers.end(), [limit](const Layer *layer) { return layer->print_z < limit; }); return (it == m_layers.end() || (*it)->print_z > print_z + epsilon) ? nullptr : *it; } Layer* get_layer_at_printz(coordf_t print_z, coordf_t epsilon) { return const_cast(std::as_const(*this).get_layer_at_printz(print_z, epsilon)); } // print_z: top of the layer; slice_z: center of the layer. Layer* add_layer(int id, coordf_t height, coordf_t print_z, coordf_t slice_z); size_t support_layer_count() const { return m_support_layers.size(); } void clear_support_layers(); SupportLayer* get_support_layer(int idx) { return m_support_layers[idx]; } SupportLayer* add_support_layer(int id, coordf_t height, coordf_t print_z); SupportLayerPtrs::const_iterator insert_support_layer(SupportLayerPtrs::const_iterator pos, size_t id, coordf_t height, coordf_t print_z, coordf_t slice_z); void delete_support_layer(int idx); // Initialize the layer_height_profile from the model_object's layer_height_profile, from model_object's layer height table, or from slicing parameters. // Returns true, if the layer_height_profile was changed. static bool update_layer_height_profile(const ModelObject &model_object, const SlicingParameters &slicing_parameters, std::vector &layer_height_profile); // Collect the slicing parameters, to be used by variable layer thickness algorithm, // by the interactive layer height editor and by the printing process itself. // The slicing parameters are dependent on various configuration values // (layer height, first layer height, raft settings, print nozzle diameter etc). const SlicingParameters& slicing_parameters() const { return m_slicing_params; } static SlicingParameters slicing_parameters(const DynamicPrintConfig &full_config, const ModelObject &model_object, float object_max_z); // returns 0-based indices of extruders used to print the object (without brim, support and other helper extrusions) std::vector object_extruders() const; // Called when slicing to SVG (see Print.pm sub export_svg), and used by perimeters.t void slice(); // Helpers to slice support enforcer / blocker meshes by the support generator. std::vector slice_support_volumes(const ModelVolumeType &model_volume_type) const; std::vector slice_support_blockers() const { return this->slice_support_volumes(ModelVolumeType::SUPPORT_BLOCKER); } std::vector slice_support_enforcers() const { return this->slice_support_volumes(ModelVolumeType::SUPPORT_ENFORCER); } private: // to be called from Print only. friend class Print; PrintObject(Print* print, ModelObject* model_object, const Transform3d& trafo, PrintInstances&& instances); ~PrintObject() = default; void config_apply(const ConfigBase &other, bool ignore_nonexistent = false) { this->m_config.apply(other, ignore_nonexistent); } void config_apply_only(const ConfigBase &other, const t_config_option_keys &keys, bool ignore_nonexistent = false) { this->m_config.apply_only(other, keys, ignore_nonexistent); } PrintBase::ApplyStatus set_instances(PrintInstances &&instances); // Invalidates the step, and its depending steps in PrintObject and Print. bool invalidate_step(PrintObjectStep step); // Invalidates all PrintObject and Print steps. bool invalidate_all_steps(); // Invalidate steps based on a set of parameters changed. bool invalidate_state_by_config_options(const std::vector &opt_keys); // If ! m_slicing_params.valid, recalculate. void update_slicing_parameters(); static PrintObjectConfig object_config_from_model_object(const PrintObjectConfig &default_object_config, const ModelObject &object, size_t num_extruders); static PrintRegionConfig region_config_from_model_volume(const PrintRegionConfig &default_region_config, const DynamicPrintConfig *layer_range_config, const ModelVolume &volume, size_t num_extruders); private: void make_perimeters(); void prepare_infill(); void infill(); void generate_support_material(); void _slice(const std::vector &layer_height_profile); std::string _fix_slicing_errors(); void simplify_slices(double distance); bool has_support_material() const; void detect_surfaces_type(); void process_external_surfaces(); void discover_vertical_shells(); void bridge_over_infill(); void clip_fill_surfaces(); void discover_horizontal_shells(); void combine_infill(); void _generate_support_material(); // XYZ in scaled coordinates Vec3crd m_size; PrintObjectConfig m_config; // Translation in Z + Rotation + Scaling / Mirroring. Transform3d m_trafo = Transform3d::Identity(); // Slic3r::Point objects in scaled G-code coordinates std::vector m_instances; // The mesh is being centered before thrown to Clipper, so that the Clipper's fixed coordinates require less bits. // This is the adjustment of the the Object's coordinate system towards PrintObject's coordinate system. Point m_center_offset; SlicingParameters m_slicing_params; LayerPtrs m_layers; SupportLayerPtrs m_support_layers; // this is set to true when LayerRegion->slices is split in top/internal/bottom // so that next call to make_perimeters() performs a union() before computing loops bool m_typed_slices = false; std::vector slice_region(size_t region_id, const std::vector &z, SlicingMode mode) const; std::vector slice_modifiers(size_t region_id, const std::vector &z) const; std::vector slice_volumes(const std::vector &z, SlicingMode mode, const std::vector &volumes) const; std::vector slice_volume(const std::vector &z, SlicingMode mode, const ModelVolume &volume) const; std::vector slice_volume(const std::vector &z, const std::vector &ranges, SlicingMode mode, const ModelVolume &volume) const; }; struct WipeTowerData { // Following section will be consumed by the GCodeGenerator. // Tool ordering of a non-sequential print has to be known to calculate the wipe tower. // Cache it here, so it does not need to be recalculated during the G-code generation. ToolOrdering &tool_ordering; // Cache of tool changes per print layer. std::unique_ptr> priming; std::vector> tool_changes; std::unique_ptr final_purge; std::vector used_filament; int number_of_toolchanges; // Depth of the wipe tower to pass to GLCanvas3D for exact bounding box: float depth; float brim_width; void clear() { priming.reset(nullptr); tool_changes.clear(); final_purge.reset(nullptr); used_filament.clear(); number_of_toolchanges = -1; depth = 0.f; brim_width = 0.f; } private: // Only allow the WipeTowerData to be instantiated internally by Print, // as this WipeTowerData shares reference to Print::m_tool_ordering. friend class Print; WipeTowerData(ToolOrdering &tool_ordering) : tool_ordering(tool_ordering) { clear(); } WipeTowerData(const WipeTowerData & /* rhs */) = delete; WipeTowerData &operator=(const WipeTowerData & /* rhs */) = delete; }; struct PrintStatistics { PrintStatistics() { clear(); } std::string estimated_normal_print_time; std::string estimated_silent_print_time; std::vector> estimated_normal_custom_gcode_print_times; std::vector> estimated_silent_custom_gcode_print_times; double total_used_filament; double total_extruded_volume; double total_cost; int total_toolchanges; double total_weight; double total_wipe_tower_cost; double total_wipe_tower_filament; std::map filament_stats; // Config with the filled in print statistics. DynamicConfig config() const; // Config with the statistics keys populated with placeholder strings. static DynamicConfig placeholders(); // Replace the print statistics placeholders in the path. std::string finalize_output_path(const std::string &path_in) const; void clear() { estimated_normal_print_time.clear(); estimated_silent_print_time.clear(); estimated_normal_custom_gcode_print_times.clear(); estimated_silent_custom_gcode_print_times.clear(); total_used_filament = 0.; total_extruded_volume = 0.; total_cost = 0.; total_toolchanges = 0; total_weight = 0.; total_wipe_tower_cost = 0.; total_wipe_tower_filament = 0.; filament_stats.clear(); } }; typedef std::vector PrintObjectPtrs; typedef std::vector PrintRegionPtrs; // The complete print tray with possibly multiple objects. class Print : public PrintBaseWithState { private: // Prevents erroneous use by other classes. typedef PrintBaseWithState Inherited; public: Print() = default; virtual ~Print() { this->clear(); } PrinterTechnology technology() const noexcept { return ptFFF; } // Methods, which change the state of Print / PrintObject / PrintRegion. // The following methods are synchronized with process() and export_gcode(), // so that process() and export_gcode() may be called from a background thread. // In case the following methods need to modify data processed by process() or export_gcode(), // a cancellation callback is executed to stop the background processing before the operation. void clear() override; bool empty() const override { return m_objects.empty(); } ApplyStatus apply(const Model &model, DynamicPrintConfig config) override; void process() override; // Exports G-code into a file name based on the path_template, returns the file path of the generated G-code file. // If preview_data is not null, the preview_data is filled in for the G-code visualization (not used by the command line Slic3r). #if ENABLE_THUMBNAIL_GENERATOR std::string export_gcode(const std::string& path_template, GCodePreviewData* preview_data, ThumbnailsGeneratorCallback thumbnail_cb = nullptr); #else std::string export_gcode(const std::string &path_template, GCodePreviewData *preview_data); #endif // ENABLE_THUMBNAIL_GENERATOR // methods for handling state bool is_step_done(PrintStep step) const { return Inherited::is_step_done(step); } // Returns true if an object step is done on all objects and there's at least one object. bool is_step_done(PrintObjectStep step) const; // Returns true if the last step was finished with success. bool finished() const override { return this->is_step_done(psGCodeExport); } bool has_infinite_skirt() const; bool has_skirt() const; // Returns an empty string if valid, otherwise returns an error message. std::string validate() const override; double skirt_first_layer_height() const; Flow brim_flow() const; Flow skirt_flow() const; std::vector object_extruders() const; std::vector support_material_extruders() const; std::vector extruders() const; double max_allowed_layer_height() const; bool has_support_material() const; // Make sure the background processing has no access to this model_object during this call! void auto_assign_extruders(ModelObject* model_object) const; const PrintConfig& config() const { return m_config; } const PrintObjectConfig& default_object_config() const { return m_default_object_config; } const PrintRegionConfig& default_region_config() const { return m_default_region_config; } //FIXME returning const vector to non-const PrintObject*, caller could modify PrintObjects! const PrintObjectPtrs& objects() const { return m_objects; } PrintObject* get_object(size_t idx) { return m_objects[idx]; } const PrintObject* get_object(size_t idx) const { return m_objects[idx]; } const PrintRegionPtrs& regions() const { return m_regions; } // How many of PrintObject::copies() over all print objects are there? // If zero, then the print is empty and the print shall not be executed. unsigned int num_object_instances() const; const ExtrusionEntityCollection& skirt() const { return m_skirt; } const ExtrusionEntityCollection& brim() const { return m_brim; } const PrintStatistics& print_statistics() const { return m_print_statistics; } // Wipe tower support. bool has_wipe_tower() const; const WipeTowerData& wipe_tower_data(size_t extruders_cnt = 0, double first_layer_height = 0., double nozzle_diameter = 0.) const; const ToolOrdering& tool_ordering() const { return m_tool_ordering; } std::string output_filename(const std::string &filename_base = std::string()) const override; // Accessed by SupportMaterial const PrintRegion* get_region(size_t idx) const { return m_regions[idx]; } const ToolOrdering& get_tool_ordering() const { return m_wipe_tower_data.tool_ordering; } // #ys_FIXME just for testing protected: // methods for handling regions PrintRegion* get_region(size_t idx) { return m_regions[idx]; } PrintRegion* add_region(); PrintRegion* add_region(const PrintRegionConfig &config); // Invalidates the step, and its depending steps in Print. bool invalidate_step(PrintStep step); private: void config_diffs( const DynamicPrintConfig &new_full_config, t_config_option_keys &print_diff, t_config_option_keys &object_diff, t_config_option_keys ®ion_diff, t_config_option_keys &full_config_diff, DynamicPrintConfig &filament_overrides) const; bool invalidate_state_by_config_options(const std::vector &opt_keys); void _make_skirt(); void _make_brim(); void _make_wipe_tower(); // Declared here to have access to Model / ModelObject / ModelInstance static void model_volume_list_update_supports(ModelObject &model_object_dst, const ModelObject &model_object_src); PrintConfig m_config; PrintObjectConfig m_default_object_config; PrintRegionConfig m_default_region_config; PrintObjectPtrs m_objects; PrintRegionPtrs m_regions; // Ordered collections of extrusion paths to build skirt loops and brim. ExtrusionEntityCollection m_skirt; ExtrusionEntityCollection m_brim; // Following section will be consumed by the GCodeGenerator. ToolOrdering m_tool_ordering; WipeTowerData m_wipe_tower_data {m_tool_ordering}; // Estimated print time, filament consumed. PrintStatistics m_print_statistics; // To allow GCode to set the Print's GCodeExport step status. friend class GCode; // Allow PrintObject to access m_mutex and m_cancel_callback. friend class PrintObject; }; } /* slic3r_Print_hpp_ */ #endif