package Slic3r::Layer; use Moo; use List::Util qw(first); use Slic3r::Geometry qw(scale); use Slic3r::Geometry::Clipper qw(union_ex); has 'id' => (is => 'rw', required => 1, trigger => 1); # sequential number of layer, 0-based has 'object' => (is => 'ro', weak_ref => 1, required => 1); has 'regions' => (is => 'ro', default => sub { [] }); has 'slicing_errors' => (is => 'rw'); has 'slice_z' => (is => 'lazy'); has 'print_z' => (is => 'lazy'); has 'height' => (is => 'lazy'); has 'flow' => (is => 'lazy'); # collection of expolygons generated by slicing the original geometry; # also known as 'islands' (all regions are merged here) has 'slices' => (is => 'rw'); # ordered collection of extrusion paths to fill surfaces for support material has 'support_islands' => (is => 'rw'); has 'support_fills' => (is => 'rw'); has 'support_interface_fills' => (is => 'rw'); sub _trigger_id { my $self = shift; $_->_trigger_layer for @{$self->regions || []}; } # Z used for slicing in scaled coordinates sub _build_slice_z { my $self = shift; if ($Slic3r::Config->raft_layers == 0) { if ($self->id == 0) { return scale $Slic3r::Config->get_value('first_layer_height') / 2; } return scale($Slic3r::Config->get_value('first_layer_height') + ($self->id-1 + 0.5) * $Slic3r::Config->layer_height); } else { return -1 if $self->id < $Slic3r::Config->raft_layers; my $object_layer_id = $self->id - $Slic3r::Config->raft_layers; return scale ($object_layer_id + 0.5) * $Slic3r::Config->layer_height; } } # Z used for printing in scaled coordinates sub _build_print_z { my $self = shift; return ($Slic3r::Config->get_value('first_layer_height') + ($self->id * $Slic3r::Config->layer_height)) / &Slic3r::SCALING_FACTOR; } # layer height in unscaled coordinates sub _build_height { my $self = shift; return $self->id == 0 ? $Slic3r::Config->get_value('first_layer_height') : $Slic3r::Config->layer_height; } sub _build_flow { $Slic3r::flow } # layer height of interface paths in unscaled coordinates sub support_material_interface_height { my $self = shift; return $self->height if $self->id == 0; # this is not very correct because: # - we should sum our height with the actual upper layers height (which might be different) # - we should use the actual flow of the upper layer bridges, not the default one # ...but we're close enough for now return 2*$self->height - $self->flow->nozzle_diameter; } # Z used for printing support material interface in scaled coordinates sub support_material_interface_z { my $self = shift; return $self->print_z - ($self->height - $self->support_material_interface_height) / &Slic3r::SCALING_FACTOR; } sub region { my $self = shift; my ($region_id) = @_; for (my $i = @{$self->regions}; $i <= $region_id; $i++) { $self->regions->[$i] //= Slic3r::Layer::Region->new( layer => $self, region => $self->object->print->regions->[$i], ); } return $self->regions->[$region_id]; } # merge all regions' slices to get islands sub make_slices { my $self = shift; # optimization for single-region layers my @regions_with_slices = grep { @{$_->slices} } @{$self->regions}; if (@regions_with_slices == 1) { $self->slices([ map $_->expolygon, @{$regions_with_slices[0]->slices} ]); return; } $self->slices(union_ex([ map $_->p, map @{$_->slices}, @{$self->regions} ])); } sub make_perimeters { my $self = shift; Slic3r::debugf "Making perimeters for layer %d\n", $self->id; $_->make_perimeters for @{$self->regions}; } sub support_islands_enclose_line { my $self = shift; my ($line) = @_; return (first { $_->encloses_line($line) } @{$self->support_islands}) ? 1 : 0; } 1;