#include "libslic3r/libslic3r.h" #include "libslic3r/AppConfig.hpp" #include "Camera.hpp" #include "GUI_App.hpp" #if ENABLE_CAMERA_STATISTICS #include "Mouse3DController.hpp" #include "Plater.hpp" #endif // ENABLE_CAMERA_STATISTICS #include // phi / theta angles to orient the camera. static const float VIEW_DEFAULT[2] = { 45.0f, 45.0f }; static const float VIEW_LEFT[2] = { 90.0f, 90.0f }; static const float VIEW_RIGHT[2] = { -90.0f, 90.0f }; static const float VIEW_TOP[2] = { 0.0f, 0.0f }; static const float VIEW_BOTTOM[2] = { 0.0f, 180.0f }; static const float VIEW_FRONT[2] = { 0.0f, 90.0f }; static const float VIEW_REAR[2] = { 180.0f, 90.0f }; namespace Slic3r { namespace GUI { const double Camera::DefaultDistance = 1000.0; const double Camera::DefaultZoomToBoxMarginFactor = 1.025; const double Camera::DefaultZoomToVolumesMarginFactor = 1.025; double Camera::FrustrumMinZRange = 50.0; double Camera::FrustrumMinNearZ = 100.0; double Camera::FrustrumZMargin = 10.0; double Camera::MaxFovDeg = 60.0; Camera::Camera() : requires_zoom_to_bed(false) { set_default_orientation(); } std::string Camera::get_type_as_string() const { switch (m_type) { case Unknown: return "unknown"; case Perspective: return "perspective"; default: case Ortho: return "orthographic"; }; } void Camera::set_type(EType type) { if (m_type != type) { m_type = type; if (m_update_config_on_type_change_enabled) { wxGetApp().app_config->set("use_perspective_camera", (m_type == Perspective) ? "1" : "0"); wxGetApp().app_config->save(); } } } void Camera::set_type(const std::string& type) { set_type((type == "1") ? Perspective : Ortho); } void Camera::select_next_type() { unsigned char next = (unsigned char)m_type + 1; if (next == (unsigned char)Num_types) next = 1; set_type((EType)next); } void Camera::set_target(const Vec3d& target) { Vec3d new_target = validate_target(target); Vec3d new_displacement = new_target - m_target; if (!new_displacement.isApprox(Vec3d::Zero())) { m_target = new_target; m_view_matrix.translate(-new_displacement); } } void Camera::update_zoom(double delta_zoom) { set_zoom(m_zoom / (1.0 - std::max(std::min(delta_zoom, 4.0), -4.0) * 0.1)); } void Camera::set_zoom(double zoom) { // Don't allow to zoom too far outside the scene. double zoom_min = min_zoom(); if (zoom_min > 0.0) zoom = std::max(zoom, zoom_min); // Don't allow to zoom too close to the scene. m_zoom = std::min(zoom, max_zoom()); } void Camera::select_view(const std::string& direction) { if (direction == "iso") set_default_orientation(); else if (direction == "left") look_at(m_target - m_distance * Vec3d::UnitX(), m_target, Vec3d::UnitZ()); else if (direction == "right") look_at(m_target + m_distance * Vec3d::UnitX(), m_target, Vec3d::UnitZ()); else if (direction == "top") look_at(m_target + m_distance * Vec3d::UnitZ(), m_target, Vec3d::UnitY()); else if (direction == "bottom") look_at(m_target - m_distance * Vec3d::UnitZ(), m_target, -Vec3d::UnitY()); else if (direction == "front") look_at(m_target - m_distance * Vec3d::UnitY(), m_target, Vec3d::UnitZ()); else if (direction == "rear") look_at(m_target + m_distance * Vec3d::UnitY(), m_target, Vec3d::UnitZ()); } double Camera::get_fov() const { switch (m_type) { case Perspective: return 2.0 * Geometry::rad2deg(std::atan(1.0 / m_projection_matrix.matrix()(1, 1))); default: case Ortho: return 0.0; }; } void Camera::apply_viewport(int x, int y, unsigned int w, unsigned int h) const { glsafe(::glViewport(0, 0, w, h)); glsafe(::glGetIntegerv(GL_VIEWPORT, m_viewport.data())); } void Camera::apply_view_matrix() const { glsafe(::glMatrixMode(GL_MODELVIEW)); glsafe(::glLoadIdentity()); glsafe(::glMultMatrixd(m_view_matrix.data())); } void Camera::apply_projection(const BoundingBoxf3& box, double near_z, double far_z) const { double w = 0.0; double h = 0.0; double old_distance = m_distance; m_frustrum_zs = calc_tight_frustrum_zs_around(box); if (m_distance != old_distance) // the camera has been moved re-apply view matrix apply_view_matrix(); if (near_z > 0.0) m_frustrum_zs.first = std::max(std::min(m_frustrum_zs.first, near_z), FrustrumMinNearZ); if (far_z > 0.0) m_frustrum_zs.second = std::max(m_frustrum_zs.second, far_z); w = 0.5 * (double)m_viewport[2]; h = 0.5 * (double)m_viewport[3]; double inv_zoom = get_inv_zoom(); w *= inv_zoom; h *= inv_zoom; switch (m_type) { default: case Ortho: { m_gui_scale = 1.0; break; } case Perspective: { // scale near plane to keep w and h constant on the plane at z = m_distance double scale = m_frustrum_zs.first / m_distance; w *= scale; h *= scale; m_gui_scale = scale; break; } } glsafe(::glMatrixMode(GL_PROJECTION)); glsafe(::glLoadIdentity()); switch (m_type) { default: case Ortho: { glsafe(::glOrtho(-w, w, -h, h, m_frustrum_zs.first, m_frustrum_zs.second)); break; } case Perspective: { glsafe(::glFrustum(-w, w, -h, h, m_frustrum_zs.first, m_frustrum_zs.second)); break; } } glsafe(::glGetDoublev(GL_PROJECTION_MATRIX, m_projection_matrix.data())); glsafe(::glMatrixMode(GL_MODELVIEW)); } void Camera::zoom_to_box(const BoundingBoxf3& box, double margin_factor) { // Calculate the zoom factor needed to adjust the view around the given box. double zoom = calc_zoom_to_bounding_box_factor(box, margin_factor); if (zoom > 0.0) { m_zoom = zoom; // center view around box center set_target(box.center()); } } void Camera::zoom_to_volumes(const GLVolumePtrs& volumes, double margin_factor) { Vec3d center; double zoom = calc_zoom_to_volumes_factor(volumes, center, margin_factor); if (zoom > 0.0) { m_zoom = zoom; // center view around the calculated center set_target(center); } } #if ENABLE_CAMERA_STATISTICS void Camera::debug_render() const { ImGuiWrapper& imgui = *wxGetApp().imgui(); imgui.begin(std::string("Camera statistics"), ImGuiWindowFlags_AlwaysAutoResize | ImGuiWindowFlags_NoResize | ImGuiWindowFlags_NoCollapse); std::string type = get_type_as_string(); if (wxGetApp().plater()->get_mouse3d_controller().connected() || (wxGetApp().app_config->get("use_free_camera") == "1")) type += "/free"; else type += "/constrained"; Vec3f position = get_position().cast(); Vec3f target = m_target.cast(); float distance = (float)get_distance(); float zenit = (float)m_zenit; Vec3f forward = get_dir_forward().cast(); Vec3f right = get_dir_right().cast(); Vec3f up = get_dir_up().cast(); float nearZ = (float)m_frustrum_zs.first; float farZ = (float)m_frustrum_zs.second; float deltaZ = farZ - nearZ; float zoom = (float)m_zoom; float fov = (float)get_fov(); std::arrayviewport = get_viewport(); float gui_scale = (float)get_gui_scale(); ImGui::InputText("Type", type.data(), type.length(), ImGuiInputTextFlags_ReadOnly); ImGui::Separator(); ImGui::InputFloat3("Position", position.data(), "%.6f", ImGuiInputTextFlags_ReadOnly); ImGui::InputFloat3("Target", target.data(), "%.6f", ImGuiInputTextFlags_ReadOnly); ImGui::InputFloat("Distance", &distance, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly); ImGui::Separator(); ImGui::InputFloat("Zenit", &zenit, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly); ImGui::Separator(); ImGui::InputFloat3("Forward", forward.data(), "%.6f", ImGuiInputTextFlags_ReadOnly); ImGui::InputFloat3("Right", right.data(), "%.6f", ImGuiInputTextFlags_ReadOnly); ImGui::InputFloat3("Up", up.data(), "%.6f", ImGuiInputTextFlags_ReadOnly); ImGui::Separator(); ImGui::InputFloat("Near Z", &nearZ, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly); ImGui::InputFloat("Far Z", &farZ, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly); ImGui::InputFloat("Delta Z", &deltaZ, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly); ImGui::Separator(); ImGui::InputFloat("Zoom", &zoom, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly); ImGui::InputFloat("Fov", &fov, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly); ImGui::Separator(); ImGui::InputInt4("Viewport", viewport.data(), ImGuiInputTextFlags_ReadOnly); ImGui::Separator(); ImGui::InputFloat("GUI scale", &gui_scale, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly); imgui.end(); } #endif // ENABLE_CAMERA_STATISTICS void Camera::rotate_on_sphere(double delta_azimut_rad, double delta_zenit_rad, bool apply_limits) { m_zenit += Geometry::rad2deg(delta_zenit_rad); if (apply_limits) { if (m_zenit > 90.0f) { delta_zenit_rad -= Geometry::deg2rad(m_zenit - 90.0f); m_zenit = 90.0f; } else if (m_zenit < -90.0f) { delta_zenit_rad -= Geometry::deg2rad(m_zenit + 90.0f); m_zenit = -90.0f; } } Vec3d translation = m_view_matrix.translation() + m_view_rotation * m_target; auto rot_z = Eigen::AngleAxisd(delta_azimut_rad, Vec3d::UnitZ()); m_view_rotation *= rot_z * Eigen::AngleAxisd(delta_zenit_rad, rot_z.inverse() * get_dir_right()); m_view_rotation.normalize(); m_view_matrix.fromPositionOrientationScale(m_view_rotation * (- m_target) + translation, m_view_rotation, Vec3d(1., 1., 1.)); } // Virtual trackball, rotate around an axis, where the eucledian norm of the axis gives the rotation angle in radians. void Camera::rotate_local_around_target(const Vec3d& rotation_rad) { double angle = rotation_rad.norm(); if (std::abs(angle) > EPSILON) { Vec3d translation = m_view_matrix.translation() + m_view_rotation * m_target; Vec3d axis = m_view_rotation.conjugate() * rotation_rad.normalized(); m_view_rotation *= Eigen::Quaterniond(Eigen::AngleAxisd(angle, axis)); m_view_rotation.normalize(); m_view_matrix.fromPositionOrientationScale(m_view_rotation * (-m_target) + translation, m_view_rotation, Vec3d(1., 1., 1.)); update_zenit(); } } double Camera::min_zoom() const { return 0.7 * calc_zoom_to_bounding_box_factor(m_scene_box); } std::pair Camera::calc_tight_frustrum_zs_around(const BoundingBoxf3& box) const { std::pair ret; auto& [near_z, far_z] = ret; // box in eye space BoundingBoxf3 eye_box = box.transformed(m_view_matrix); near_z = -eye_box.max(2); far_z = -eye_box.min(2); // apply margin near_z -= FrustrumZMargin; far_z += FrustrumZMargin; // ensure min size if (far_z - near_z < FrustrumMinZRange) { double mid_z = 0.5 * (near_z + far_z); double half_size = 0.5 * FrustrumMinZRange; near_z = mid_z - half_size; far_z = mid_z + half_size; } if (near_z < FrustrumMinNearZ) { float delta = FrustrumMinNearZ - near_z; set_distance(m_distance + delta); near_z += delta; far_z += delta; } else if ((near_z > 2.0 * FrustrumMinNearZ) && (m_distance > DefaultDistance)) { float delta = m_distance - DefaultDistance; set_distance(DefaultDistance); near_z -= delta; far_z -= delta; } return ret; } double Camera::calc_zoom_to_bounding_box_factor(const BoundingBoxf3& box, double margin_factor) const { double max_bb_size = box.max_size(); if (max_bb_size == 0.0) return -1.0; // project the box vertices on a plane perpendicular to the camera forward axis // then calculates the vertices coordinate on this plane along the camera xy axes Vec3d right = get_dir_right(); Vec3d up = get_dir_up(); Vec3d forward = get_dir_forward(); Vec3d bb_center = box.center(); // box vertices in world space std::vector vertices; vertices.reserve(8); vertices.push_back(box.min); vertices.emplace_back(box.max(0), box.min(1), box.min(2)); vertices.emplace_back(box.max(0), box.max(1), box.min(2)); vertices.emplace_back(box.min(0), box.max(1), box.min(2)); vertices.emplace_back(box.min(0), box.min(1), box.max(2)); vertices.emplace_back(box.max(0), box.min(1), box.max(2)); vertices.push_back(box.max); vertices.emplace_back(box.min(0), box.max(1), box.max(2)); double min_x = DBL_MAX; double min_y = DBL_MAX; double max_x = -DBL_MAX; double max_y = -DBL_MAX; for (const Vec3d& v : vertices) { // project vertex on the plane perpendicular to camera forward axis Vec3d pos = v - bb_center; Vec3d proj_on_plane = pos - pos.dot(forward) * forward; // calculates vertex coordinate along camera xy axes double x_on_plane = proj_on_plane.dot(right); double y_on_plane = proj_on_plane.dot(up); min_x = std::min(min_x, x_on_plane); min_y = std::min(min_y, y_on_plane); max_x = std::max(max_x, x_on_plane); max_y = std::max(max_y, y_on_plane); } double dx = max_x - min_x; double dy = max_y - min_y; if ((dx <= 0.0) || (dy <= 0.0)) return -1.0f; dx *= margin_factor; dy *= margin_factor; return std::min((double)m_viewport[2] / dx, (double)m_viewport[3] / dy); } double Camera::calc_zoom_to_volumes_factor(const GLVolumePtrs& volumes, Vec3d& center, double margin_factor) const { if (volumes.empty()) return -1.0; // project the volumes vertices on a plane perpendicular to the camera forward axis // then calculates the vertices coordinate on this plane along the camera xy axes Vec3d right = get_dir_right(); Vec3d up = get_dir_up(); Vec3d forward = get_dir_forward(); BoundingBoxf3 box; for (const GLVolume* volume : volumes) { box.merge(volume->transformed_bounding_box()); } center = box.center(); double min_x = DBL_MAX; double min_y = DBL_MAX; double max_x = -DBL_MAX; double max_y = -DBL_MAX; for (const GLVolume* volume : volumes) { const Transform3d& transform = volume->world_matrix(); const TriangleMesh* hull = volume->convex_hull(); if (hull == nullptr) continue; for (const Vec3f& vertex : hull->its.vertices) { Vec3d v = transform * vertex.cast(); // project vertex on the plane perpendicular to camera forward axis Vec3d pos = v - center; Vec3d proj_on_plane = pos - pos.dot(forward) * forward; // calculates vertex coordinate along camera xy axes double x_on_plane = proj_on_plane.dot(right); double y_on_plane = proj_on_plane.dot(up); min_x = std::min(min_x, x_on_plane); min_y = std::min(min_y, y_on_plane); max_x = std::max(max_x, x_on_plane); max_y = std::max(max_y, y_on_plane); } } center += 0.5 * (max_x + min_x) * right + 0.5 * (max_y + min_y) * up; double dx = margin_factor * (max_x - min_x); double dy = margin_factor * (max_y - min_y); if ((dx <= 0.0) || (dy <= 0.0)) return -1.0f; return std::min((double)m_viewport[2] / dx, (double)m_viewport[3] / dy); } void Camera::set_distance(double distance) const { if (m_distance != distance) { m_view_matrix.translate((distance - m_distance) * get_dir_forward()); m_distance = distance; } } void Camera::look_at(const Vec3d& position, const Vec3d& target, const Vec3d& up) { Vec3d unit_z = (position - target).normalized(); Vec3d unit_x = up.cross(unit_z).normalized(); Vec3d unit_y = unit_z.cross(unit_x).normalized(); m_target = target; m_distance = (position - target).norm(); Vec3d new_position = m_target + m_distance * unit_z; m_view_matrix(0, 0) = unit_x(0); m_view_matrix(0, 1) = unit_x(1); m_view_matrix(0, 2) = unit_x(2); m_view_matrix(0, 3) = -unit_x.dot(new_position); m_view_matrix(1, 0) = unit_y(0); m_view_matrix(1, 1) = unit_y(1); m_view_matrix(1, 2) = unit_y(2); m_view_matrix(1, 3) = -unit_y.dot(new_position); m_view_matrix(2, 0) = unit_z(0); m_view_matrix(2, 1) = unit_z(1); m_view_matrix(2, 2) = unit_z(2); m_view_matrix(2, 3) = -unit_z.dot(new_position); m_view_matrix(3, 0) = 0.0; m_view_matrix(3, 1) = 0.0; m_view_matrix(3, 2) = 0.0; m_view_matrix(3, 3) = 1.0; // Initialize the rotation quaternion from the rotation submatrix of of m_view_matrix. m_view_rotation = Eigen::Quaterniond(m_view_matrix.matrix().template block<3, 3>(0, 0)); m_view_rotation.normalize(); update_zenit(); } void Camera::set_default_orientation() { m_zenit = 45.0f; double theta_rad = Geometry::deg2rad(-(double)m_zenit); double phi_rad = Geometry::deg2rad(45.0); double sin_theta = ::sin(theta_rad); Vec3d camera_pos = m_target + m_distance * Vec3d(sin_theta * ::sin(phi_rad), sin_theta * ::cos(phi_rad), ::cos(theta_rad)); m_view_rotation = Eigen::AngleAxisd(theta_rad, Vec3d::UnitX()) * Eigen::AngleAxisd(phi_rad, Vec3d::UnitZ()); m_view_rotation.normalize(); m_view_matrix.fromPositionOrientationScale(m_view_rotation * (- camera_pos), m_view_rotation, Vec3d(1., 1., 1.)); } Vec3d Camera::validate_target(const Vec3d& target) const { BoundingBoxf3 test_box = m_scene_box; test_box.translate(-m_scene_box.center()); // We may let this factor be customizable static const double ScaleFactor = 1.5; test_box.scale(ScaleFactor); test_box.translate(m_scene_box.center()); return Vec3d(std::clamp(target(0), test_box.min(0), test_box.max(0)), std::clamp(target(1), test_box.min(1), test_box.max(1)), std::clamp(target(2), test_box.min(2), test_box.max(2))); } void Camera::update_zenit() { m_zenit = Geometry::rad2deg(0.5 * M_PI - std::acos(std::clamp(-get_dir_forward().dot(Vec3d::UnitZ()), -1.0, 1.0))); } } // GUI } // Slic3r