#version 110 #define INTENSITY_AMBIENT 0.3 #define INTENSITY_CORRECTION 0.6 // normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31) const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929); #define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION) #define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION) #define LIGHT_TOP_SHININESS 20.0 // normalized values for (1./1.43, 0.2/1.43, 1./1.43) const vec3 LIGHT_FRONT_DIR = vec3(0.0, 0.0, 1.0); #define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION) uniform vec4 uniform_color; varying vec3 eye_position; varying vec3 eye_normal; //varying float world_normal_z; // x = tainted, y = specular; vec2 intensity; void main() { vec3 normal = normalize(eye_normal); // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex. // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range. float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0); intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE; intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(eye_position), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS); // Perform the same lighting calculation for the 2nd light source (no specular applied). NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0); intensity.x += NdotL * LIGHT_FRONT_DIFFUSE; // // darkens fragments whose normal points downward // if (world_normal_z < 0.0) // intensity.x *= (1.0 + world_normal_z * (1.0 - INTENSITY_AMBIENT)); gl_FragColor = vec4(vec3(intensity.y, intensity.y, intensity.y) + uniform_color.rgb * intensity.x, uniform_color.a); }