#include "libslic3r/libslic3r.h" #include "Measure.hpp" #include "libslic3r/Geometry/Circle.hpp" #include "libslic3r/SurfaceMesh.hpp" namespace Slic3r { namespace Measure { constexpr double feature_hover_limit = 0.5; // how close to a feature the mouse must be to highlight it constexpr double edge_endpoint_limit = 0.5; // how close to an edge endpoint the mouse ... static std::pair get_center_and_radius(const std::vector& border, int start_idx, int end_idx, const Transform3d& trafo) { Vec2ds pts; double z = 0.; for (int i=start_idx; i<=end_idx; ++i) { Vec3d pt_transformed = trafo * border[i]; z = pt_transformed.z(); pts.emplace_back(pt_transformed.x(), pt_transformed.y()); } auto circle = Geometry::circle_ransac(pts, 20); // FIXME: iterations? return std::make_pair(trafo.inverse() * Vec3d(circle.center.x(), circle.center.y(), z), circle.radius); } class MeasuringImpl { public: explicit MeasuringImpl(const indexed_triangle_set& its); struct PlaneData { std::vector facets; std::vector> borders; // FIXME: should be in fact local in update_planes() std::vector surface_features; Vec3d normal; float area; }; std::vector get_all_features() const; std::optional get_feature(size_t face_idx, const Vec3d& point) const; std::vector> get_planes_triangle_indices() const; private: void update_planes(); void extract_features(); std::vector m_planes; std::vector m_face_to_plane; const indexed_triangle_set& m_its; }; MeasuringImpl::MeasuringImpl(const indexed_triangle_set& its) : m_its{its} { update_planes(); extract_features(); } void MeasuringImpl::update_planes() { m_planes.clear(); // Now we'll go through all the facets and append Points of facets sharing the same normal. // This part is still performed in mesh coordinate system. const size_t num_of_facets = m_its.indices.size(); m_face_to_plane.resize(num_of_facets, size_t(-1)); const std::vector face_normals = its_face_normals(m_its); const std::vector face_neighbors = its_face_neighbors(m_its); std::vector facet_queue(num_of_facets, 0); int facet_queue_cnt = 0; const stl_normal* normal_ptr = nullptr; size_t seed_facet_idx = 0; auto is_same_normal = [](const stl_normal& a, const stl_normal& b) -> bool { return (std::abs(a(0) - b(0)) < 0.001 && std::abs(a(1) - b(1)) < 0.001 && std::abs(a(2) - b(2)) < 0.001); }; while (1) { // Find next unvisited triangle: for (; seed_facet_idx < num_of_facets; ++ seed_facet_idx) if (m_face_to_plane[seed_facet_idx] == size_t(-1)) { facet_queue[facet_queue_cnt ++] = seed_facet_idx; normal_ptr = &face_normals[seed_facet_idx]; m_face_to_plane[seed_facet_idx] = m_planes.size(); m_planes.emplace_back(); break; } if (seed_facet_idx == num_of_facets) break; // Everything was visited already while (facet_queue_cnt > 0) { int facet_idx = facet_queue[-- facet_queue_cnt]; const stl_normal& this_normal = face_normals[facet_idx]; if (is_same_normal(this_normal, *normal_ptr)) { // const Vec3i& face = m_its.indices[facet_idx]; m_face_to_plane[facet_idx] = m_planes.size() - 1; m_planes.back().facets.emplace_back(facet_idx); for (int j = 0; j < 3; ++ j) if (int neighbor_idx = face_neighbors[facet_idx][j]; neighbor_idx >= 0 && m_face_to_plane[neighbor_idx] == size_t(-1)) facet_queue[facet_queue_cnt ++] = neighbor_idx; } } m_planes.back().normal = normal_ptr->cast(); std::sort(m_planes.back().facets.begin(), m_planes.back().facets.end()); } assert(std::none_of(m_face_to_plane.begin(), m_face_to_plane.end(), [](size_t val) { return val == size_t(-1); })); SurfaceMesh sm(m_its); for (int plane_id=0; plane_id < int(m_planes.size()); ++plane_id) { //int plane_id = 5; { const auto& facets = m_planes[plane_id].facets; m_planes[plane_id].borders.clear(); std::vector> visited(facets.size(), {false, false, false}); for (int face_id=0; face_id& last_border = m_planes[plane_id].borders.back(); last_border.emplace_back(sm.point(sm.source(he)).cast()); //Vertex_index target = sm.target(he); const Halfedge_index he_start = he; Face_index fi = he.face(); auto face_it = std::lower_bound(facets.begin(), facets.end(), int(fi)); assert(face_it != facets.end()); assert(*face_it == int(fi)); visited[face_it - facets.begin()][he.side()] = true; do { const Halfedge_index he_orig = he; he = sm.next_around_target(he); while ( (int)m_face_to_plane[sm.face(he)] == plane_id && he != he_orig) he = sm.next_around_target(he); he = sm.opposite(he); Face_index fi = he.face(); auto face_it = std::lower_bound(facets.begin(), facets.end(), int(fi)); assert(face_it != facets.end()); assert(*face_it == int(fi)); if (visited[face_it - facets.begin()][he.side()] && he != he_start) { last_border.resize(1); break; } visited[face_it - facets.begin()][he.side()] = true; last_border.emplace_back(sm.point(sm.source(he)).cast()); } while (he != he_start); if (last_border.size() == 1) m_planes[plane_id].borders.pop_back(); } } } m_planes.erase(std::remove_if(m_planes.begin(), m_planes.end(), [](const PlaneData& p) { return p.borders.empty(); }), m_planes.end()); } void MeasuringImpl::extract_features() { auto N_to_angle = [](double N) -> double { return 2.*M_PI / N; }; constexpr double polygon_upper_threshold = N_to_angle(4.5); constexpr double polygon_lower_threshold = N_to_angle(8.5); std::vector angles; std::vector lengths; for (int i=0; i<(int)m_planes.size(); ++i) { PlaneData& plane = m_planes[i]; plane.surface_features.clear(); const Vec3d& normal = plane.normal; Eigen::Quaterniond q; q.setFromTwoVectors(plane.normal, Vec3d::UnitZ()); Transform3d trafo = Transform3d::Identity(); trafo.rotate(q); for (const std::vector& border : plane.borders) { assert(border.size() > 1); int start_idx = -1; // First calculate angles at all the vertices. angles.clear(); lengths.clear(); for (int i=0; i M_PI) angle = 2*M_PI - angle; angles.push_back(angle); lengths.push_back(v2.squaredNorm()); } assert(border.size() == angles.size()); assert(border.size() == lengths.size()); bool circle = false; std::vector circles; std::vector> circles_idxs; for (int i=1; i<(int)angles.size(); ++i) { if (Slic3r::is_approx(lengths[i], lengths[i-1]) && Slic3r::is_approx(angles[i], angles[i-1]) && i != (int)angles.size()-1 ) { // circle if (! circle) { circle = true; start_idx = std::max(0, i-2); } } else { if (circle) { // Add the circle and remember indices into borders. const auto& [center, radius] = get_center_and_radius(border, start_idx, i, trafo); circles_idxs.emplace_back(start_idx, i); circles.emplace_back(SurfaceFeature(SurfaceFeatureType::Circle, center, plane.normal, std::nullopt, radius)); circle = false; } } } // Some of the "circles" may actually be polygons. We want them detected as // edges, but also to remember the center and save it into those edges. // We will add all such edges manually and delete the detected circles, // leaving it in circles_idxs so they are not picked again: assert(circles.size() == circles_idxs.size()); for (int i=circles.size()-1; i>=0; --i) { assert(circles_idxs[i].first + 1 < angles.size() - 1); // Check that this is internal point of the circle, not the first, not the last. double angle = angles[circles_idxs[i].first + 1]; if (angle > polygon_lower_threshold) { if (angle < polygon_upper_threshold) { const Vec3d center = std::get<0>(circles[i].get_circle()); for (int j=(int)circles_idxs[i].first + 1; j<=(int)circles_idxs[i].second; ++j) plane.surface_features.emplace_back(SurfaceFeature(SurfaceFeatureType::Edge, border[j - 1], border[j], std::make_optional(center))); } else { // This will be handled just like a regular edge. circles_idxs.erase(circles_idxs.begin() + i); } circles.erase(circles.begin() + i); } } // We have the circles. Now go around again and pick edges. int cidx = 0; // index of next circle in the way for (int i=1; i (int)circles_idxs[cidx].first) i = circles_idxs[cidx++].second; else plane.surface_features.emplace_back(SurfaceFeature(SurfaceFeatureType::Edge, border[i - 1], border[i])); } // FIXME Throw away / do not create edges which are parts of circles or // which lead to circle points (unless they belong to the same plane.) // FIXME Check and merge first and last circle if needed. // Now move the circles into the feature list. assert(std::all_of(circles.begin(), circles.end(), [](const SurfaceFeature& f) { return f.get_type() == SurfaceFeatureType::Circle; })); plane.surface_features.insert(plane.surface_features.end(), std::make_move_iterator(circles.begin()), std::make_move_iterator(circles.end())); } // The last surface feature is the plane itself. Vec3d cog = Vec3d::Zero(); size_t counter = 0; for (const std::vector& b : plane.borders) { for (size_t i = 1; i < b.size(); ++i) { cog += b[i]; ++counter; } } cog /= double(counter); plane.surface_features.emplace_back(SurfaceFeature(SurfaceFeatureType::Plane, plane.normal, cog, std::optional(), i + 0.0001)); plane.borders.clear(); plane.borders.shrink_to_fit(); } } std::vector MeasuringImpl::get_all_features() const { std::vector features; //PlaneData& plane = m_planes[0]; for (const PlaneData& plane : m_planes) for (const SurfaceFeature& feature : plane.surface_features) features.emplace_back(feature); return features; } std::optional MeasuringImpl::get_feature(size_t face_idx, const Vec3d& point) const { if (face_idx >= m_face_to_plane.size()) return std::optional(); const PlaneData& plane = m_planes[m_face_to_plane[face_idx]]; size_t closest_feature_idx = size_t(-1); double min_dist = std::numeric_limits::max(); MeasurementResult res; SurfaceFeature point_sf(point); for (size_t i=0; idist; if (dist < feature_hover_limit && dist < min_dist) { min_dist = std::min(dist, min_dist); closest_feature_idx = i; } } } if (closest_feature_idx != size_t(-1)) { const SurfaceFeature& f = plane.surface_features[closest_feature_idx]; if (f.get_type() == SurfaceFeatureType::Edge) { // If this is an edge, check if we are not close to the endpoint. If so, // we will include the endpoint as well. constexpr double limit_sq = edge_endpoint_limit * edge_endpoint_limit; const auto& [sp, ep] = f.get_edge(); if ((point-sp).squaredNorm() < limit_sq) return std::make_optional(SurfaceFeature(sp)); if ((point-ep).squaredNorm() < limit_sq) return std::make_optional(SurfaceFeature(ep)); } return std::make_optional(f); } // Nothing detected, return the plane as a whole. assert(plane.surface_features.back().get_type() == SurfaceFeatureType::Plane); return std::make_optional(plane.surface_features.back()); } std::vector> MeasuringImpl::get_planes_triangle_indices() const { std::vector> out; for (const PlaneData& plane : m_planes) out.emplace_back(plane.facets); return out; } Measuring::Measuring(const indexed_triangle_set& its) : priv{std::make_unique(its)} {} Measuring::~Measuring() {} std::vector Measuring::get_all_features() const { return priv->get_all_features(); } std::optional Measuring::get_feature(size_t face_idx, const Vec3d& point) const { return priv->get_feature(face_idx, point); } std::vector> Measuring::get_planes_triangle_indices() const { return priv->get_planes_triangle_indices(); } const AngleAndEdges AngleAndEdges::Dummy = { 0.0, Vec3d::Zero(), { Vec3d::Zero(), Vec3d::Zero() }, { Vec3d::Zero(), Vec3d::Zero() }, 0.0, true }; static AngleAndEdges angle_edge_edge(const std::pair& e1, const std::pair& e2) { if (are_parallel(e1, e2)) return AngleAndEdges::Dummy; Vec3d e1_unit = edge_direction(e1.first, e1.second); Vec3d e2_unit = edge_direction(e2.first, e2.second); // project edges on the plane defined by them Vec3d normal = e1_unit.cross(e2_unit).normalized(); const Eigen::Hyperplane plane(normal, e1.first); Vec3d e11_proj = plane.projection(e1.first); Vec3d e12_proj = plane.projection(e1.second); Vec3d e21_proj = plane.projection(e2.first); Vec3d e22_proj = plane.projection(e2.second); const bool coplanar = (e2.first - e21_proj).norm() < EPSILON && (e2.second - e22_proj).norm() < EPSILON; // rotate the plane to become the XY plane auto qp = Eigen::Quaternion::FromTwoVectors(normal, Vec3d::UnitZ()); auto qp_inverse = qp.inverse(); const Vec3d e11_rot = qp * e11_proj; const Vec3d e12_rot = qp * e12_proj; const Vec3d e21_rot = qp * e21_proj; const Vec3d e22_rot = qp * e22_proj; // discard Z const Vec2d e11_rot_2d = Vec2d(e11_rot.x(), e11_rot.y()); const Vec2d e12_rot_2d = Vec2d(e12_rot.x(), e12_rot.y()); const Vec2d e21_rot_2d = Vec2d(e21_rot.x(), e21_rot.y()); const Vec2d e22_rot_2d = Vec2d(e22_rot.x(), e22_rot.y()); // find intersection (arc center) of edges in XY plane const Eigen::Hyperplane e1_rot_2d_line = Eigen::Hyperplane::Through(e11_rot_2d, e12_rot_2d); const Eigen::Hyperplane e2_rot_2d_line = Eigen::Hyperplane::Through(e21_rot_2d, e22_rot_2d); const Vec2d center_rot_2d = e1_rot_2d_line.intersection(e2_rot_2d_line); // arc center in original coordinate const Vec3d center = qp_inverse * Vec3d(center_rot_2d.x(), center_rot_2d.y(), e11_rot.z()); // ensure the edges are pointing away from the center std::pair out_e1 = e1; std::pair out_e2 = e2; if ((center_rot_2d - e11_rot_2d).squaredNorm() > (center_rot_2d - e12_rot_2d).squaredNorm()) { std::swap(e11_proj, e12_proj); std::swap(out_e1.first, out_e1.second); e1_unit = -e1_unit; } if ((center_rot_2d - e21_rot_2d).squaredNorm() > (center_rot_2d - e22_rot_2d).squaredNorm()) { std::swap(e21_proj, e22_proj); std::swap(out_e2.first, out_e2.second); e2_unit = -e2_unit; } // arc angle const double angle = std::acos(std::clamp(e1_unit.dot(e2_unit), -1.0, 1.0)); // arc radius const Vec3d e1_proj_mid = 0.5 * (e11_proj + e12_proj); const Vec3d e2_proj_mid = 0.5 * (e21_proj + e22_proj); const double radius = std::min((center - e1_proj_mid).norm(), (center - e2_proj_mid).norm()); return { angle, center, out_e1, out_e2, radius, coplanar }; } static AngleAndEdges angle_edge_plane(const std::pair& e, const std::tuple& p) { const auto& [idx, normal, origin] = p; const Vec3d e1e2_unit = edge_direction(e); if (are_parallel(e1e2_unit, normal) || are_perpendicular(e1e2_unit, normal)) return AngleAndEdges::Dummy; // ensure the edge is pointing away from the intersection // 1st calculate instersection between edge and plane const Eigen::Hyperplane plane(normal, origin); const Eigen::ParametrizedLine line = Eigen::ParametrizedLine::Through(e.first, e.second); const Vec3d inters = line.intersectionPoint(plane); // then verify edge direction and revert it, if needed Vec3d e1 = e.first; Vec3d e2 = e.second; if ((e1 - inters).squaredNorm() > (e2 - inters).squaredNorm()) std::swap(e1, e2); const Vec3d e1e2 = e2 - e1; const double e1e2_len = e1e2.norm(); // calculate 2nd edge (on the plane) const Vec3d temp = normal.cross(e1e2); const Vec3d edge_on_plane_unit = normal.cross(temp).normalized(); std::pair edge_on_plane = { origin, origin + e1e2_len * edge_on_plane_unit }; // ensure the 2nd edge is pointing in the correct direction const Vec3d test_edge = (edge_on_plane.second - edge_on_plane.first).cross(e1e2); if (test_edge.dot(temp) < 0.0) edge_on_plane = { origin, origin - e1e2_len * edge_on_plane_unit }; AngleAndEdges ret = angle_edge_edge({ e1, e2 }, edge_on_plane); ret.radius = (inters - 0.5 * (e1 + e2)).norm(); return ret; } static AngleAndEdges angle_plane_plane(const std::tuple& p1, const std::tuple& p2) { const auto& [idx1, normal1, origin1] = p1; const auto& [idx2, normal2, origin2] = p2; // are planes parallel ? if (are_parallel(normal1, normal2)) return AngleAndEdges::Dummy; auto intersection_plane_plane = [](const Vec3d& n1, const Vec3d& o1, const Vec3d& n2, const Vec3d& o2) { Eigen::MatrixXd m(2, 3); m << n1.x(), n1.y(), n1.z(), n2.x(), n2.y(), n2.z(); Eigen::VectorXd b(2); b << o1.dot(n1), o2.dot(n2); Eigen::VectorXd x = m.colPivHouseholderQr().solve(b); return std::make_pair(n1.cross(n2).normalized(), Vec3d(x(0), x(1), x(2))); }; // Calculate intersection line between planes const auto [intersection_line_direction, intersection_line_origin] = intersection_plane_plane(normal1, origin1, normal2, origin2); // Project planes' origin on intersection line const Eigen::ParametrizedLine intersection_line = Eigen::ParametrizedLine(intersection_line_origin, intersection_line_direction); const Vec3d origin1_proj = intersection_line.projection(origin1); const Vec3d origin2_proj = intersection_line.projection(origin2); // Calculate edges on planes const Vec3d edge_on_plane1_unit = (origin1 - origin1_proj).normalized(); const Vec3d edge_on_plane2_unit = (origin2 - origin2_proj).normalized(); const double radius = std::max(10.0, std::max((origin1 - origin1_proj).norm(), (origin2 - origin2_proj).norm())); const std::pair edge_on_plane1 = { origin1_proj + radius * edge_on_plane1_unit, origin1_proj + 2.0 * radius * edge_on_plane1_unit }; const std::pair edge_on_plane2 = { origin2_proj + radius * edge_on_plane2_unit, origin2_proj + 2.0 * radius * edge_on_plane2_unit }; AngleAndEdges ret = angle_edge_edge(edge_on_plane1, edge_on_plane2); ret.radius = radius; return ret; } MeasurementResult get_measurement(const SurfaceFeature& a, const SurfaceFeature& b) { assert(a.get_type() != SurfaceFeatureType::Undef && b.get_type() != SurfaceFeatureType::Undef); const bool swap = int(a.get_type()) > int(b.get_type()); const SurfaceFeature& f1 = swap ? b : a; const SurfaceFeature& f2 = swap ? a : b; MeasurementResult result; /////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////// if (f1.get_type() == SurfaceFeatureType::Point) { if (f2.get_type() == SurfaceFeatureType::Point) { Vec3d diff = (f2.get_point() - f1.get_point()); result.distance_strict = std::make_optional(DistAndPoints{diff.norm(), f1.get_point(), f2.get_point()}); result.distance_xyz = diff; /////////////////////////////////////////////////////////////////////////// } else if (f2.get_type() == SurfaceFeatureType::Edge) { const auto& [s,e] = f2.get_edge(); Eigen::ParametrizedLine line(s, (e-s).normalized()); double dist_inf = line.distance(f1.get_point()); Vec3d proj = line.projection(f1.get_point()); double len_sq = (e-s).squaredNorm(); double dist_start_sq = (proj-s).squaredNorm(); double dist_end_sq = (proj-e).squaredNorm(); if (dist_start_sq < len_sq && dist_end_sq < len_sq) { // projection falls on the line - the strict distance is the same as infinite result.distance_strict = std::make_optional(DistAndPoints{dist_inf, f1.get_point(), proj}); } else { // the result is the closer of the endpoints bool s_is_closer = dist_start_sq < dist_end_sq; result.distance_strict = std::make_optional(DistAndPoints{std::sqrt(std::min(dist_start_sq, dist_end_sq) + dist_inf), f1.get_point(), s_is_closer ? s : e}); } result.distance_infinite = std::make_optional(DistAndPoints{dist_inf, f1.get_point(), proj}); /////////////////////////////////////////////////////////////////////////// } else if (f2.get_type() == SurfaceFeatureType::Circle) { // Find a plane containing normal, center and the point. const auto& [c, radius, n] = f2.get_circle(); Eigen::Hyperplane circle_plane(n, c); Vec3d proj = circle_plane.projection(f1.get_point()); double dist = std::sqrt(std::pow((proj - c).norm() - radius, 2.) + (f1.get_point() - proj).squaredNorm()); const Vec3d p_on_circle = c + radius * (circle_plane.projection(f1.get_point()) - c).normalized(); result.distance_strict = std::make_optional(DistAndPoints{dist, f1.get_point(), p_on_circle}); // TODO /////////////////////////////////////////////////////////////////////////// } else if (f2.get_type() == SurfaceFeatureType::Plane) { const auto& [idx, normal, pt] = f2.get_plane(); Eigen::Hyperplane plane(normal, pt); result.distance_infinite = std::make_optional(DistAndPoints{plane.absDistance(f1.get_point()), f1.get_point(), plane.projection(f1.get_point())}); // TODO // TODO: result.distance_strict = } /////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////// } else if (f1.get_type() == SurfaceFeatureType::Edge) { if (f2.get_type() == SurfaceFeatureType::Edge) { std::vector distances; // auto add_point_edge_distance = [&distances](const Vec3d& v, const std::pair& e) { // const MeasurementResult res = get_measurement(SurfaceFeature(v), SurfaceFeature(SurfaceFeatureType::Edge, e.first, e.second)); // double distance = res.distance_strict->dist; // Vec3d v2 = res.distance_strict->to; // // const Vec3d e1e2 = e.second - e.first; // const Vec3d e1v2 = v2 - e.first; // if (e1v2.dot(e1e2) >= 0.0 && e1v2.norm() < e1e2.norm()) // distances.emplace_back(distance, v, v2); // }; std::pair e1 = f1.get_edge(); std::pair e2 = f2.get_edge(); distances.emplace_back((e2.first - e1.first).norm(), e1.first, e2.first); distances.emplace_back((e2.second - e1.first).norm(), e1.first, e2.second); distances.emplace_back((e2.first - e1.second).norm(), e1.second, e2.first); distances.emplace_back((e2.second - e1.second).norm(), e1.second, e2.second); // add_point_edge_distance(e1.first, e2); // add_point_edge_distance(e1.second, e2); // add_point_edge_distance(e2.first, e1); // add_point_edge_distance(e2.second, e1); auto it = std::min_element(distances.begin(), distances.end(), [](const DistAndPoints& item1, const DistAndPoints& item2) { return item1.dist < item2.dist; }); result.distance_infinite = std::make_optional(*it); result.angle = angle_edge_edge(f1.get_edge(), f2.get_edge()); /////////////////////////////////////////////////////////////////////////// } else if (f2.get_type() == SurfaceFeatureType::Circle) { const std::pair e = f1.get_edge(); const auto& [center, radius, normal] = f2.get_circle(); const Vec3d e1e2 = (e.second - e.first); const Vec3d e1e2_unit = (e.second - e.first).normalized(); std::vector distances; distances.emplace_back(*get_measurement(SurfaceFeature(e.first), f2).distance_strict); distances.emplace_back(*get_measurement(SurfaceFeature(e.second), f2).distance_strict); const Eigen::Hyperplane plane(e1e2_unit, center); const Eigen::ParametrizedLine line = Eigen::ParametrizedLine::Through(e.first, e.second); const Vec3d inter = line.intersectionPoint(plane); const Vec3d e1inter = inter - e.first; if (e1inter.dot(e1e2) >= 0.0 && e1inter.norm() < e1e2.norm()) distances.emplace_back(*get_measurement(SurfaceFeature(inter), f2).distance_strict); auto it = std::min_element(distances.begin(), distances.end(), [](const DistAndPoints& item1, const DistAndPoints& item2) { return item1.dist < item2.dist; }); result.distance_infinite = std::make_optional(DistAndPoints{it->dist, it->from, it->to}); /////////////////////////////////////////////////////////////////////////// } else if (f2.get_type() == SurfaceFeatureType::Plane) { result.distance_infinite = std::make_optional(DistAndPoints{0., Vec3d::Zero(), Vec3d::Zero()}); // TODO result.angle = angle_edge_plane(f1.get_edge(), f2.get_plane()); } /////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////// } else if (f1.get_type() == SurfaceFeatureType::Circle) { if (f2.get_type() == SurfaceFeatureType::Circle) { result.distance_infinite = std::make_optional(DistAndPoints{0., Vec3d::Zero(), Vec3d::Zero()}); // TODO /////////////////////////////////////////////////////////////////////////// } else if (f2.get_type() == SurfaceFeatureType::Plane) { result.distance_infinite = std::make_optional(DistAndPoints{0., Vec3d::Zero(), Vec3d::Zero()}); // TODO } /////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////// } else if (f1.get_type() == SurfaceFeatureType::Plane) { assert(f2.get_type() == SurfaceFeatureType::Plane); const auto [idx1, normal1, pt1] = f1.get_plane(); const auto [idx2, normal2, pt2] = f2.get_plane(); double angle = 0.; if (are_parallel(normal1, normal2)) { // The planes are parallel, calculate distance. Eigen::Hyperplane plane(normal1, pt1); result.distance_infinite = std::make_optional(DistAndPoints{plane.absDistance(pt2), Vec3d::Zero(), Vec3d::Zero()}); } else { // Planes are not parallel, calculate angle. angle = std::acos(std::abs(normal1.dot(normal2))); } result.angle = angle_plane_plane(f1.get_plane(), f2.get_plane()); result.distance_infinite = std::make_optional(DistAndPoints{0., Vec3d::Zero(), Vec3d::Zero()}); // TODO } return result; } } // namespace Measure } // namespace Slic3r