#include "Config.hpp" #include "Utils.hpp" #include #include #include #include // std::runtime_error #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Slic3r { // Escape \n, \r and backslash std::string escape_string_cstyle(const std::string &str) { // Allocate a buffer twice the input string length, // so the output will fit even if all input characters get escaped. std::vector out(str.size() * 2, 0); char *outptr = out.data(); for (size_t i = 0; i < str.size(); ++ i) { char c = str[i]; if (c == '\r') { (*outptr ++) = '\\'; (*outptr ++) = 'r'; } else if (c == '\n') { (*outptr ++) = '\\'; (*outptr ++) = 'n'; } else if (c == '\\') { (*outptr ++) = '\\'; (*outptr ++) = '\\'; } else (*outptr ++) = c; } return std::string(out.data(), outptr - out.data()); } std::string escape_strings_cstyle(const std::vector &strs) { // 1) Estimate the output buffer size to avoid buffer reallocation. size_t outbuflen = 0; for (size_t i = 0; i < strs.size(); ++ i) // Reserve space for every character escaped + quotes + semicolon. outbuflen += strs[i].size() * 2 + 3; // 2) Fill in the buffer. std::vector out(outbuflen, 0); char *outptr = out.data(); for (size_t j = 0; j < strs.size(); ++ j) { if (j > 0) // Separate the strings. (*outptr ++) = ';'; const std::string &str = strs[j]; // Is the string simple or complex? Complex string contains spaces, tabs, new lines and other // escapable characters. Empty string shall be quoted as well, if it is the only string in strs. bool should_quote = strs.size() == 1 && str.empty(); for (size_t i = 0; i < str.size(); ++ i) { char c = str[i]; if (c == ' ' || c == '\t' || c == '\\' || c == '"' || c == '\r' || c == '\n') { should_quote = true; break; } } if (should_quote) { (*outptr ++) = '"'; for (size_t i = 0; i < str.size(); ++ i) { char c = str[i]; if (c == '\\' || c == '"') { (*outptr ++) = '\\'; (*outptr ++) = c; } else if (c == '\r') { (*outptr ++) = '\\'; (*outptr ++) = 'r'; } else if (c == '\n') { (*outptr ++) = '\\'; (*outptr ++) = 'n'; } else (*outptr ++) = c; } (*outptr ++) = '"'; } else { memcpy(outptr, str.data(), str.size()); outptr += str.size(); } } return std::string(out.data(), outptr - out.data()); } // Unescape \n, \r and backslash bool unescape_string_cstyle(const std::string &str, std::string &str_out) { std::vector out(str.size(), 0); char *outptr = out.data(); for (size_t i = 0; i < str.size(); ++ i) { char c = str[i]; if (c == '\\') { if (++ i == str.size()) return false; c = str[i]; if (c == 'r') (*outptr ++) = '\r'; else if (c == 'n') (*outptr ++) = '\n'; else (*outptr ++) = c; } else (*outptr ++) = c; } str_out.assign(out.data(), outptr - out.data()); return true; } bool unescape_strings_cstyle(const std::string &str, std::vector &out) { if (str.empty()) return true; size_t i = 0; for (;;) { // Skip white spaces. char c = str[i]; while (c == ' ' || c == '\t') { if (++ i == str.size()) return true; c = str[i]; } // Start of a word. std::vector buf; buf.reserve(16); // Is it enclosed in quotes? c = str[i]; if (c == '"') { // Complex case, string is enclosed in quotes. for (++ i; i < str.size(); ++ i) { c = str[i]; if (c == '"') { // End of string. break; } if (c == '\\') { if (++ i == str.size()) return false; c = str[i]; if (c == 'r') c = '\r'; else if (c == 'n') c = '\n'; } buf.push_back(c); } if (i == str.size()) return false; ++ i; } else { for (; i < str.size(); ++ i) { c = str[i]; if (c == ';') break; buf.push_back(c); } } // Store the string into the output vector. out.push_back(std::string(buf.data(), buf.size())); if (i == str.size()) return true; // Skip white spaces. c = str[i]; while (c == ' ' || c == '\t') { if (++ i == str.size()) // End of string. This is correct. return true; c = str[i]; } if (c != ';') return false; if (++ i == str.size()) { // Emit one additional empty string. out.push_back(std::string()); return true; } } } void ConfigBase::apply_only(const ConfigBase &other, const t_config_option_keys &keys, bool ignore_nonexistent) { // loop through options and apply them for (const t_config_option_key &opt_key : keys) { // Create a new option with default value for the key. // If the key is not in the parameter definition, or this ConfigBase is a static type and it does not support the parameter, // an exception is thrown if not ignore_nonexistent. ConfigOption *my_opt = this->option(opt_key, true); if (my_opt == nullptr) { // opt_key does not exist in this ConfigBase and it cannot be created, because it is not defined by this->def(). // This is only possible if other is of DynamicConfig type. if (ignore_nonexistent) continue; throw UnknownOptionException(opt_key); } const ConfigOption *other_opt = other.option(opt_key); if (other_opt == nullptr) { // The key was not found in the source config, therefore it will not be initialized! // printf("Not found, therefore not initialized: %s\n", opt_key.c_str()); } else my_opt->set(other_opt); } } // this will *ignore* options not present in both configs t_config_option_keys ConfigBase::diff(const ConfigBase &other) const { t_config_option_keys diff; for (const t_config_option_key &opt_key : this->keys()) { const ConfigOption *this_opt = this->option(opt_key); const ConfigOption *other_opt = other.option(opt_key); if (this_opt != nullptr && other_opt != nullptr && *this_opt != *other_opt) diff.emplace_back(opt_key); } return diff; } t_config_option_keys ConfigBase::equal(const ConfigBase &other) const { t_config_option_keys equal; for (const t_config_option_key &opt_key : this->keys()) { const ConfigOption *this_opt = this->option(opt_key); const ConfigOption *other_opt = other.option(opt_key); if (this_opt != nullptr && other_opt != nullptr && *this_opt == *other_opt) equal.emplace_back(opt_key); } return equal; } std::string ConfigBase::serialize(const t_config_option_key &opt_key) const { const ConfigOption* opt = this->option(opt_key); assert(opt != nullptr); return opt->serialize(); } bool ConfigBase::set_deserialize(const t_config_option_key &opt_key_src, const std::string &value_src, bool append) { t_config_option_key opt_key = opt_key_src; std::string value = value_src; // Both opt_key and value may be modified by _handle_legacy(). // If the opt_key is no more valid in this version of Slic3r, opt_key is cleared by _handle_legacy(). this->handle_legacy(opt_key, value); if (opt_key.empty()) // Ignore the option. return true; return this->set_deserialize_raw(opt_key, value, append); } bool ConfigBase::set_deserialize_raw(const t_config_option_key &opt_key_src, const std::string &value, bool append) { t_config_option_key opt_key = opt_key_src; // Try to deserialize the option by its name. const ConfigDef *def = this->def(); if (def == nullptr) throw NoDefinitionException(opt_key); const ConfigOptionDef *optdef = def->get(opt_key); if (optdef == nullptr) { // If we didn't find an option, look for any other option having this as an alias. for (const auto &opt : def->options) { for (const t_config_option_key &opt_key2 : opt.second.aliases) { if (opt_key2 == opt_key) { opt_key = opt.first; optdef = &opt.second; break; } } if (optdef != nullptr) break; } if (optdef == nullptr) throw UnknownOptionException(opt_key); } if (! optdef->shortcut.empty()) { // Aliasing for example "solid_layers" to "top_solid_layers" and "bottom_solid_layers". for (const t_config_option_key &shortcut : optdef->shortcut) // Recursive call. if (! this->set_deserialize_raw(shortcut, value, append)) return false; return true; } ConfigOption *opt = this->option(opt_key, true); assert(opt != nullptr); return opt->deserialize(value, append); } // Return an absolute value of a possibly relative config variable. // For example, return absolute infill extrusion width, either from an absolute value, or relative to the layer height. double ConfigBase::get_abs_value(const t_config_option_key &opt_key) const { // Get stored option value. const ConfigOption *raw_opt = this->option(opt_key); assert(raw_opt != nullptr); if (raw_opt->type() == coFloat) return static_cast(raw_opt)->value; if (raw_opt->type() == coFloatOrPercent) { // Get option definition. const ConfigDef *def = this->def(); if (def == nullptr) throw NoDefinitionException(opt_key); const ConfigOptionDef *opt_def = def->get(opt_key); assert(opt_def != nullptr); // Compute absolute value over the absolute value of the base option. //FIXME there are some ratio_over chains, which end with empty ratio_with. // For example, XXX_extrusion_width parameters are not handled by get_abs_value correctly. return opt_def->ratio_over.empty() ? 0. : static_cast(raw_opt)->get_abs_value(this->get_abs_value(opt_def->ratio_over)); } throw std::runtime_error("ConfigBase::get_abs_value(): Not a valid option type for get_abs_value()"); } // Return an absolute value of a possibly relative config variable. // For example, return absolute infill extrusion width, either from an absolute value, or relative to a provided value. double ConfigBase::get_abs_value(const t_config_option_key &opt_key, double ratio_over) const { // Get stored option value. const ConfigOption *raw_opt = this->option(opt_key); assert(raw_opt != nullptr); if (raw_opt->type() != coFloatOrPercent) throw std::runtime_error("ConfigBase::get_abs_value(): opt_key is not of coFloatOrPercent"); // Compute absolute value. return static_cast(raw_opt)->get_abs_value(ratio_over); } void ConfigBase::setenv_() const { t_config_option_keys opt_keys = this->keys(); for (t_config_option_keys::const_iterator it = opt_keys.begin(); it != opt_keys.end(); ++it) { // prepend the SLIC3R_ prefix std::ostringstream ss; ss << "SLIC3R_"; ss << *it; std::string envname = ss.str(); // capitalize environment variable name for (size_t i = 0; i < envname.size(); ++i) envname[i] = (envname[i] <= 'z' && envname[i] >= 'a') ? envname[i]-('a'-'A') : envname[i]; boost::nowide::setenv(envname.c_str(), this->serialize(*it).c_str(), 1); } } void ConfigBase::load(const std::string &file) { if (boost::iends_with(file, ".gcode") || boost::iends_with(file, ".g")) this->load_from_gcode_file(file); else this->load_from_ini(file); } void ConfigBase::load_from_ini(const std::string &file) { boost::property_tree::ptree tree; boost::nowide::ifstream ifs(file); boost::property_tree::read_ini(ifs, tree); this->load(tree); } void ConfigBase::load(const boost::property_tree::ptree &tree) { for (const boost::property_tree::ptree::value_type &v : tree) { try { t_config_option_key opt_key = v.first; this->set_deserialize(opt_key, v.second.get_value()); } catch (UnknownOptionException & /* e */) { // ignore } } } // Load the config keys from the tail of a G-code file. void ConfigBase::load_from_gcode_file(const std::string &file) { // Read a 64k block from the end of the G-code. boost::nowide::ifstream ifs(file); { const char slic3r_gcode_header[] = "; generated by Slic3r "; std::string firstline; std::getline(ifs, firstline); if (strncmp(slic3r_gcode_header, firstline.c_str(), strlen(slic3r_gcode_header)) != 0) throw std::runtime_error("Not a Slic3r generated g-code."); } ifs.seekg(0, ifs.end); auto file_length = ifs.tellg(); auto data_length = std::min(65535, file_length); ifs.seekg(file_length - data_length, ifs.beg); std::vector data(size_t(data_length) + 1, 0); ifs.read(data.data(), data_length); ifs.close(); size_t key_value_pairs = load_from_gcode_string(data.data()); if (key_value_pairs < 80) throw std::runtime_error((boost::format("Suspiciously low number of configuration values extracted from %1: %2") % file % key_value_pairs).str()); } // Load the config keys from the given string. size_t ConfigBase::load_from_gcode_string(const char* str) { if (str == nullptr) return 0; // Walk line by line in reverse until a non-configuration key appears. char *data_start = const_cast(str); // boost::nowide::ifstream seems to cook the text data somehow, so less then the 64k of characters may be retrieved. char *end = data_start + strlen(str); size_t num_key_value_pairs = 0; for (;;) { // Extract next line. for (--end; end > data_start && (*end == '\r' || *end == '\n'); --end); if (end == data_start) break; char *start = end; *(++end) = 0; for (; start > data_start && *start != '\r' && *start != '\n'; --start); if (start == data_start) break; // Extracted a line from start to end. Extract the key = value pair. if (end - (++start) < 10 || start[0] != ';' || start[1] != ' ') break; char *key = start + 2; if (!(*key >= 'a' && *key <= 'z') || (*key >= 'A' && *key <= 'Z')) // A key must start with a letter. break; char *sep = strchr(key, '='); if (sep == nullptr || sep[-1] != ' ' || sep[1] != ' ') break; char *value = sep + 2; if (value > end) break; char *key_end = sep - 1; if (key_end - key < 3) break; *key_end = 0; // The key may contain letters, digits and underscores. for (char *c = key; c != key_end; ++c) if (!((*c >= 'a' && *c <= 'z') || (*c >= 'A' && *c <= 'Z') || (*c >= '0' && *c <= '9') || *c == '_')) { key = nullptr; break; } if (key == nullptr) break; try { this->set_deserialize(key, value); ++num_key_value_pairs; } catch (UnknownOptionException & /* e */) { // ignore } end = start; } return num_key_value_pairs; } void ConfigBase::save(const std::string &file) const { boost::nowide::ofstream c; c.open(file, std::ios::out | std::ios::trunc); c << "# " << Slic3r::header_slic3r_generated() << std::endl; for (const std::string &opt_key : this->keys()) c << opt_key << " = " << this->serialize(opt_key) << std::endl; c.close(); } bool DynamicConfig::operator==(const DynamicConfig &rhs) const { t_options_map::const_iterator it1 = this->options.begin(); t_options_map::const_iterator it1_end = this->options.end(); t_options_map::const_iterator it2 = rhs.options.begin(); t_options_map::const_iterator it2_end = rhs.options.end(); for (; it1 != it1_end && it2 != it2_end; ++ it1, ++ it2) if (it1->first != it2->first || *it1->second != *it2->second) // key or value differ return false; return it1 == it1_end && it2 == it2_end; } ConfigOption* DynamicConfig::optptr(const t_config_option_key &opt_key, bool create) { t_options_map::iterator it = options.find(opt_key); if (it != options.end()) // Option was found. return it->second; if (! create) // Option was not found and a new option shall not be created. return nullptr; // Try to create a new ConfigOption. const ConfigDef *def = this->def(); if (def == nullptr) throw NoDefinitionException(opt_key); const ConfigOptionDef *optdef = def->get(opt_key); if (optdef == nullptr) // throw std::runtime_error(std::string("Invalid option name: ") + opt_key); // Let the parent decide what to do if the opt_key is not defined by this->def(). return nullptr; ConfigOption *opt = nullptr; switch (optdef->type) { case coFloat: opt = new ConfigOptionFloat(); break; case coFloats: opt = new ConfigOptionFloats(); break; case coInt: opt = new ConfigOptionInt(); break; case coInts: opt = new ConfigOptionInts(); break; case coString: opt = new ConfigOptionString(); break; case coStrings: opt = new ConfigOptionStrings(); break; case coPercent: opt = new ConfigOptionPercent(); break; case coPercents: opt = new ConfigOptionPercents(); break; case coFloatOrPercent: opt = new ConfigOptionFloatOrPercent(); break; case coPoint: opt = new ConfigOptionPoint(); break; case coPoints: opt = new ConfigOptionPoints(); break; case coBool: opt = new ConfigOptionBool(); break; case coBools: opt = new ConfigOptionBools(); break; case coEnum: opt = new ConfigOptionEnumGeneric(optdef->enum_keys_map); break; default: throw std::runtime_error(std::string("Unknown option type for option ") + opt_key); } this->options[opt_key] = opt; return opt; } void DynamicConfig::read_cli(const std::vector &tokens, t_config_option_keys* extra) { std::vector args; // push a bogus executable name (argv[0]) args.emplace_back(const_cast("")); for (size_t i = 0; i < tokens.size(); ++ i) args.emplace_back(const_cast(tokens[i].c_str())); this->read_cli(args.size(), &args[0], extra); } bool DynamicConfig::read_cli(int argc, char** argv, t_config_option_keys* extra) { // cache the CLI option => opt_key mapping std::map opts; for (const auto &oit : this->def()->options) { std::string cli = oit.second.cli; cli = cli.substr(0, cli.find("=")); boost::trim_right_if(cli, boost::is_any_of("!")); std::vector tokens; boost::split(tokens, cli, boost::is_any_of("|")); for (const std::string &t : tokens) opts[t] = oit.first; } bool parse_options = true; for (int i = 1; i < argc; ++ i) { std::string token = argv[i]; // Store non-option arguments in the provided vector. if (! parse_options || ! boost::starts_with(token, "-")) { extra->push_back(token); continue; } // Stop parsing tokens as options when -- is supplied. if (token == "--") { parse_options = false; continue; } // Remove leading dashes boost::trim_left_if(token, boost::is_any_of("-")); // Remove the "no-" prefix used to negate boolean options. bool no = false; if (boost::starts_with(token, "no-")) { no = true; boost::replace_first(token, "no-", ""); } // Read value when supplied in the --key=value form. std::string value; { size_t equals_pos = token.find("="); if (equals_pos != std::string::npos) { value = token.substr(equals_pos+1); token.erase(equals_pos); } } // Look for the cli -> option mapping. const auto it = opts.find(token); if (it == opts.end()) { printf("Warning: unknown option --%s\n", token.c_str()); // instead of continuing, return false to caller // to stop execution and print usage return false; //continue; } const t_config_option_key opt_key = it->second; const ConfigOptionDef &optdef = this->def()->options.at(opt_key); // If the option type expects a value and it was not already provided, // look for it in the next token. if (optdef.type != coBool && optdef.type != coBools && value.empty()) { if (i == (argc-1)) { printf("No value supplied for --%s\n", token.c_str()); continue; } value = argv[++ i]; } // Store the option value. const bool existing = this->has(opt_key); if (ConfigOptionBool* opt = this->opt(opt_key, true)) { opt->value = !no; } else if (ConfigOptionBools* opt = this->opt(opt_key, true)) { if (!existing) opt->values.clear(); // remove the default values opt->values.push_back(!no); } else if (ConfigOptionStrings* opt = this->opt(opt_key, true)) { if (!existing) opt->values.clear(); // remove the default values opt->deserialize(value, true); } else if (ConfigOptionFloats* opt = this->opt(opt_key, true)) { if (!existing) opt->values.clear(); // remove the default values opt->deserialize(value, true); } else if (ConfigOptionPoints* opt = this->opt(opt_key, true)) { if (!existing) opt->values.clear(); // remove the default values opt->deserialize(value, true); } else { this->set_deserialize(opt_key, value, true); } } return true; } t_config_option_keys DynamicConfig::keys() const { t_config_option_keys keys; keys.reserve(this->options.size()); for (const auto &opt : this->options) keys.emplace_back(opt.first); return keys; } void StaticConfig::set_defaults() { // use defaults from definition auto *defs = this->def(); if (defs != nullptr) { for (const std::string &key : this->keys()) { const ConfigOptionDef *def = defs->get(key); ConfigOption *opt = this->option(key); if (def != nullptr && opt != nullptr && def->default_value != nullptr) opt->set(def->default_value); } } } t_config_option_keys StaticConfig::keys() const { t_config_option_keys keys; assert(this->def() != nullptr); for (const auto &opt_def : this->def()->options) if (this->option(opt_def.first) != nullptr) keys.push_back(opt_def.first); return keys; } }