package Slic3r::Print::Object; # extends c++ class Slic3r::PrintObject (Print.xsp) use strict; use warnings; use List::Util qw(min max sum first); use Slic3r::Flow ':roles'; use Slic3r::Geometry qw(X Y Z PI scale unscale chained_path epsilon); use Slic3r::Geometry::Clipper qw(diff diff_ex intersection intersection_ex union union_ex offset offset_ex offset2 offset2_ex intersection_ppl CLIPPER_OFFSET_SCALE JT_MITER); use Slic3r::Print::State ':steps'; use Slic3r::Surface ':types'; # TODO: lazy sub fill_maker { my $self = shift; return Slic3r::Fill->new(bounding_box => $self->bounding_box); } sub region_volumes { my $self = shift; return [ map $self->get_region_volumes($_), 0..($self->region_count - 1) ]; } sub layers { my $self = shift; return [ map $self->get_layer($_), 0..($self->layer_count - 1) ]; } sub support_layers { my $self = shift; return [ map $self->get_support_layer($_), 0..($self->support_layer_count - 1) ]; } # 1) Decides Z positions of the layers, # 2) Initializes layers and their regions # 3) Slices the object meshes # 4) Slices the modifier meshes and reclassifies the slices of the object meshes by the slices of the modifier meshes # 5) Applies size compensation (offsets the slices in XY plane) # 6) Replaces bad slices by the slices reconstructed from the upper/lower layer # Resulting expolygons of layer regions are marked as Internal. # # this should be idempotent sub slice { my $self = shift; return if $self->step_done(STEP_SLICE); $self->set_step_started(STEP_SLICE); $self->print->status_cb->(10, "Processing triangulated mesh"); # init layers { $self->clear_layers; # make layers taking custom heights into account my $id = 0; my $print_z = 0; my $first_object_layer_height = -1; my $first_object_layer_distance = -1; # add raft layers if ($self->config->raft_layers > 0) { $id += $self->config->raft_layers; # raise first object layer Z by the thickness of the raft itself # plus the extra distance required by the support material logic my $first_layer_height = $self->config->get_value('first_layer_height'); $print_z += $first_layer_height; # use a large height my $support_material_layer_height; { my @nozzle_diameters = ( map $self->print->config->get_at('nozzle_diameter', $_), $self->config->support_material_extruder-1, $self->config->support_material_interface_extruder-1, ); $support_material_layer_height = 0.75 * min(@nozzle_diameters); } $print_z += $support_material_layer_height * ($self->config->raft_layers - 1); # compute the average of all nozzles used for printing the object my $nozzle_diameter; { my @nozzle_diameters = ( map $self->print->config->get_at('nozzle_diameter', $_), @{$self->print->object_extruders} ); $nozzle_diameter = sum(@nozzle_diameters)/@nozzle_diameters; } $first_object_layer_distance = $self->_support_material->contact_distance($self->config->layer_height, $nozzle_diameter); # force first layer print_z according to the contact distance # (the loop below will raise print_z by such height) $first_object_layer_height = $first_object_layer_distance - $self->config->support_material_contact_distance; } # loop until we have at least one layer and the max slice_z reaches the object height my $slice_z = 0; my $height = 0; my $max_z = unscale($self->size->z); while (($slice_z - $height) <= $max_z) { # assign the default height to the layer according to the general settings $height = ($id == 0) ? $self->config->get_value('first_layer_height') : $self->config->layer_height; # look for an applicable custom range if (my $range = first { $_->[0] <= $slice_z && $_->[1] > $slice_z } @{$self->layer_height_ranges}) { $height = $range->[2]; # if user set custom height to zero we should just skip the range and resume slicing over it if ($height == 0) { $slice_z += $range->[1] - $range->[0]; next; } } if ($first_object_layer_height != -1 && !@{$self->layers}) { $height = $first_object_layer_height; $print_z += ($first_object_layer_distance - $height); } $print_z += $height; $slice_z += $height/2; ### Slic3r::debugf "Layer %d: height = %s; slice_z = %s; print_z = %s\n", $id, $height, $slice_z, $print_z; $self->add_layer($id, $height, $print_z, $slice_z); if ($self->layer_count >= 2) { my $lc = $self->layer_count; $self->get_layer($lc - 2)->set_upper_layer($self->get_layer($lc - 1)); $self->get_layer($lc - 1)->set_lower_layer($self->get_layer($lc - 2)); } $id++; $slice_z += $height/2; # add the other half layer } } # make sure all layers contain layer region objects for all regions my $regions_count = $self->print->region_count; foreach my $layer (@{ $self->layers }) { $layer->region($_) for 0 .. ($regions_count-1); } # get array of Z coordinates for slicing my @z = map $_->slice_z, @{$self->layers}; # slice all non-modifier volumes for my $region_id (0..($self->region_count - 1)) { my $expolygons_by_layer = $self->_slice_region($region_id, \@z, 0); for my $layer_id (0..$#$expolygons_by_layer) { my $layerm = $self->get_layer($layer_id)->regions->[$region_id]; $layerm->slices->clear; foreach my $expolygon (@{ $expolygons_by_layer->[$layer_id] }) { $layerm->slices->append(Slic3r::Surface->new( expolygon => $expolygon, surface_type => S_TYPE_INTERNAL, )); } } } # then slice all modifier volumes if ($self->region_count > 1) { for my $region_id (0..$self->region_count) { my $expolygons_by_layer = $self->_slice_region($region_id, \@z, 1); # loop through the other regions and 'steal' the slices belonging to this one for my $other_region_id (0..$self->region_count) { next if $other_region_id == $region_id; for my $layer_id (0..$#$expolygons_by_layer) { my $layerm = $self->get_layer($layer_id)->regions->[$region_id]; my $other_layerm = $self->get_layer($layer_id)->regions->[$other_region_id]; next if !defined $other_layerm; my $other_slices = [ map $_->p, @{$other_layerm->slices} ]; # Polygons my $my_parts = intersection_ex( $other_slices, [ map @$_, @{ $expolygons_by_layer->[$layer_id] } ], ); next if !@$my_parts; # append new parts to our region foreach my $expolygon (@$my_parts) { $layerm->slices->append(Slic3r::Surface->new( expolygon => $expolygon, surface_type => S_TYPE_INTERNAL, )); } # remove such parts from original region $other_layerm->slices->clear; $other_layerm->slices->append(Slic3r::Surface->new( expolygon => $_, surface_type => S_TYPE_INTERNAL, )) for @{ diff_ex($other_slices, [ map @$_, @$my_parts ]) }; } } } } # remove last layer(s) if empty $self->delete_layer($self->layer_count - 1) while $self->layer_count && (!map @{$_->slices}, @{$self->get_layer($self->layer_count - 1)->regions}); foreach my $layer (@{ $self->layers }) { # apply size compensation if ($self->config->xy_size_compensation != 0) { my $delta = scale($self->config->xy_size_compensation); if (@{$layer->regions} == 1) { # single region my $layerm = $layer->regions->[0]; my $slices = [ map $_->p, @{$layerm->slices} ]; $layerm->slices->clear; $layerm->slices->append(Slic3r::Surface->new( expolygon => $_, surface_type => S_TYPE_INTERNAL, )) for @{offset_ex($slices, $delta)}; } else { if ($delta < 0) { # multiple regions, shrinking # we apply the offset to the combined shape, then intersect it # with the original slices for each region my $slices = union([ map $_->p, map @{$_->slices}, @{$layer->regions} ]); $slices = offset($slices, $delta); foreach my $layerm (@{$layer->regions}) { my $this_slices = intersection_ex( $slices, [ map $_->p, @{$layerm->slices} ], ); $layerm->slices->clear; $layerm->slices->append(Slic3r::Surface->new( expolygon => $_, surface_type => S_TYPE_INTERNAL, )) for @$this_slices; } } else { # multiple regions, growing # this is an ambiguous case, since it's not clear how to grow regions where they are going to overlap # so we give priority to the first one and so on for my $i (0..$#{$layer->regions}) { my $layerm = $layer->regions->[$i]; my $slices = offset_ex([ map $_->p, @{$layerm->slices} ], $delta); if ($i > 0) { $slices = diff_ex( [ map @$_, @$slices ], [ map $_->p, map @{$_->slices}, map $layer->regions->[$_], 0..($i-1) ], # slices of already processed regions ); } $layerm->slices->clear; $layerm->slices->append(Slic3r::Surface->new( expolygon => $_, surface_type => S_TYPE_INTERNAL, )) for @$slices; } } } } # merge all regions' slices to get islands $layer->make_slices; } # detect slicing errors my $warning_thrown = 0; for my $i (0 .. ($self->layer_count - 1)) { my $layer = $self->get_layer($i); next unless $layer->slicing_errors; if (!$warning_thrown) { warn "The model has overlapping or self-intersecting facets. I tried to repair it, " . "however you might want to check the results or repair the input file and retry.\n"; $warning_thrown = 1; } # try to repair the layer surfaces by merging all contours and all holes from # neighbor layers Slic3r::debugf "Attempting to repair layer %d\n", $i; foreach my $region_id (0 .. ($layer->region_count - 1)) { my $layerm = $layer->region($region_id); my (@upper_surfaces, @lower_surfaces); for (my $j = $i+1; $j < $self->layer_count; $j++) { if (!$self->get_layer($j)->slicing_errors) { @upper_surfaces = @{$self->get_layer($j)->region($region_id)->slices}; last; } } for (my $j = $i-1; $j >= 0; $j--) { if (!$self->get_layer($j)->slicing_errors) { @lower_surfaces = @{$self->get_layer($j)->region($region_id)->slices}; last; } } my $union = union_ex([ map $_->expolygon->contour, @upper_surfaces, @lower_surfaces, ]); my $diff = diff_ex( [ map @$_, @$union ], [ map @{$_->expolygon->holes}, @upper_surfaces, @lower_surfaces, ], ); $layerm->slices->clear; $layerm->slices->append($_) for map Slic3r::Surface->new (expolygon => $_, surface_type => S_TYPE_INTERNAL), @$diff; } # update layer slices after repairing the single regions $layer->make_slices; } # remove empty layers from bottom while (@{$self->layers} && !@{$self->get_layer(0)->slices}) { $self->delete_layer(0); for (my $i = 0; $i <= $#{$self->layers}; $i++) { $self->get_layer($i)->set_id( $self->get_layer($i)->id-1 ); } } # simplify slices if required if ($self->print->config->resolution) { $self->_simplify_slices(scale($self->print->config->resolution)); } die "No layers were detected. You might want to repair your STL file(s) or check their size or thickness and retry.\n" if !@{$self->layers}; $self->set_typed_slices(0); $self->set_step_done(STEP_SLICE); } # called from slice() sub _slice_region { my ($self, $region_id, $z, $modifier) = @_; return [] if !@{$self->get_region_volumes($region_id)}; # compose mesh my $mesh; foreach my $volume_id (@{ $self->get_region_volumes($region_id) }) { my $volume = $self->model_object->volumes->[$volume_id]; next if $volume->modifier && !$modifier; next if !$volume->modifier && $modifier; if (defined $mesh) { $mesh->merge($volume->mesh); } else { $mesh = $volume->mesh->clone; } } return if !defined $mesh; # transform mesh # we ignore the per-instance transformations currently and only # consider the first one $self->model_object->instances->[0]->transform_mesh($mesh, 1); # align mesh to Z = 0 (it should be already aligned actually) and apply XY shift $mesh->translate((map unscale(-$_), @{$self->_copies_shift}), -$self->model_object->bounding_box->z_min); # perform actual slicing return $mesh->slice($z); } sub make_perimeters { my $self = shift; # prerequisites $self->slice; return if $self->step_done(STEP_PERIMETERS); $self->set_step_started(STEP_PERIMETERS); $self->print->status_cb->(20, "Generating perimeters"); # merge slices if they were split into types if ($self->typed_slices) { $_->merge_slices for @{$self->layers}; $self->set_typed_slices(0); $self->invalidate_step(STEP_PREPARE_INFILL); } # compare each layer to the one below, and mark those slices needing # one additional inner perimeter, like the top of domed objects- # this algorithm makes sure that at least one perimeter is overlapping # but we don't generate any extra perimeter if fill density is zero, as they would be floating # inside the object - infill_only_where_needed should be the method of choice for printing # hollow objects for my $region_id (0 .. ($self->print->region_count-1)) { my $region = $self->print->regions->[$region_id]; my $region_perimeters = $region->config->perimeters; next if !$region->config->extra_perimeters; next if $region_perimeters == 0; next if $region->config->fill_density == 0; for my $i (0 .. ($self->layer_count - 2)) { my $layerm = $self->get_layer($i)->get_region($region_id); my $upper_layerm = $self->get_layer($i+1)->get_region($region_id); my $upper_layerm_polygons = [ map $_->p, @{$upper_layerm->slices} ]; # Filter upper layer polygons in intersection_ppl by their bounding boxes? # my $upper_layerm_poly_bboxes= [ map $_->bounding_box, @{$upper_layerm_polygons} ]; my $total_loop_length = sum(map $_->length, @$upper_layerm_polygons) // 0; my $perimeter_spacing = $layerm->flow(FLOW_ROLE_PERIMETER)->scaled_spacing; my $ext_perimeter_flow = $layerm->flow(FLOW_ROLE_EXTERNAL_PERIMETER); my $ext_perimeter_width = $ext_perimeter_flow->scaled_width; my $ext_perimeter_spacing = $ext_perimeter_flow->scaled_spacing; foreach my $slice (@{$layerm->slices}) { while (1) { # compute the total thickness of perimeters my $perimeters_thickness = $ext_perimeter_width/2 + $ext_perimeter_spacing/2 + ($region_perimeters-1 + $slice->extra_perimeters) * $perimeter_spacing; # define a critical area where we don't want the upper slice to fall into # (it should either lay over our perimeters or outside this area) my $critical_area_depth = $perimeter_spacing*1.5; my $critical_area = diff( offset($slice->expolygon->arrayref, -$perimeters_thickness), offset($slice->expolygon->arrayref, -($perimeters_thickness + $critical_area_depth)), ); # check whether a portion of the upper slices falls inside the critical area my $intersection = intersection_ppl( $upper_layerm_polygons, $critical_area, ); # only add an additional loop if at least 30% of the slice loop would benefit from it my $total_intersection_length = sum(map $_->length, @$intersection) // 0; last unless $total_intersection_length > $total_loop_length*0.3; if (0) { require "Slic3r/SVG.pm"; Slic3r::SVG::output( "extra.svg", no_arrows => 1, expolygons => union_ex($critical_area), polylines => [ map $_->split_at_first_point, map $_->p, @{$upper_layerm->slices} ], ); } $slice->extra_perimeters($slice->extra_perimeters + 1); } Slic3r::debugf " adding %d more perimeter(s) at layer %d\n", $slice->extra_perimeters, $layerm->layer->id if $slice->extra_perimeters > 0; } } } Slic3r::parallelize( threads => $self->print->config->threads, items => sub { 0 .. ($self->layer_count - 1) }, thread_cb => sub { my $q = shift; while (defined (my $i = $q->dequeue)) { $self->get_layer($i)->make_perimeters; } }, no_threads_cb => sub { $_->make_perimeters for @{$self->layers}; }, ); # simplify slices (both layer and region slices), # we only need the max resolution for perimeters ### This makes this method not-idempotent, so we keep it disabled for now. ###$self->_simplify_slices(&Slic3r::SCALED_RESOLUTION); $self->set_step_done(STEP_PERIMETERS); } sub prepare_infill { my ($self) = @_; # prerequisites $self->make_perimeters; return if $self->step_done(STEP_PREPARE_INFILL); $self->set_step_started(STEP_PREPARE_INFILL); $self->print->status_cb->(30, "Preparing infill"); # this will assign a type (top/bottom/internal) to $layerm->slices # and transform $layerm->fill_surfaces from expolygon # to typed top/bottom/internal surfaces; $self->detect_surfaces_type; $self->set_typed_slices(1); # decide what surfaces are to be filled $_->prepare_fill_surfaces for map @{$_->regions}, @{$self->layers}; # this will detect bridges and reverse bridges # and rearrange top/bottom/internal surfaces $self->process_external_surfaces; # detect which fill surfaces are near external layers # they will be split in internal and internal-solid surfaces $self->discover_horizontal_shells; $self->clip_fill_surfaces; # the following step needs to be done before combination because it may need # to remove only half of the combined infill $self->bridge_over_infill; # combine fill surfaces to honor the "infill every N layers" option $self->combine_infill; $self->set_step_done(STEP_PREPARE_INFILL); } sub infill { my ($self) = @_; # prerequisites $self->prepare_infill; return if $self->step_done(STEP_INFILL); $self->set_step_started(STEP_INFILL); $self->print->status_cb->(70, "Infilling layers"); Slic3r::parallelize( threads => $self->print->config->threads, items => sub { 0..$#{$self->layers} }, thread_cb => sub { my $q = shift; while (defined (my $i = $q->dequeue)) { $self->get_layer($i)->make_fill; } }, no_threads_cb => sub { foreach my $layer (@{$self->layers}) { $layer->make_fill; } }, ); ### we could free memory now, but this would make this step not idempotent ### $_->fill_surfaces->clear for map @{$_->regions}, @{$object->layers}; $self->set_step_done(STEP_INFILL); } sub generate_support_material { my $self = shift; # prerequisites $self->slice; return if $self->step_done(STEP_SUPPORTMATERIAL); $self->set_step_started(STEP_SUPPORTMATERIAL); $self->clear_support_layers; if ((!$self->config->support_material && $self->config->raft_layers == 0) || scalar(@{$self->layers}) < 2) { $self->set_step_done(STEP_SUPPORTMATERIAL); return; } $self->print->status_cb->(85, "Generating support material"); $self->_support_material->generate($self); $self->set_step_done(STEP_SUPPORTMATERIAL); } sub _support_material { my ($self) = @_; my $first_layer_flow = Slic3r::Flow->new_from_width( width => ($self->print->config->first_layer_extrusion_width || $self->config->support_material_extrusion_width), role => FLOW_ROLE_SUPPORT_MATERIAL, nozzle_diameter => $self->print->config->nozzle_diameter->[ $self->config->support_material_extruder-1 ] // $self->print->config->nozzle_diameter->[0], layer_height => $self->config->get_abs_value('first_layer_height'), bridge_flow_ratio => 0, ); return Slic3r::Print::SupportMaterial->new( print_config => $self->print->config, object_config => $self->config, first_layer_flow => $first_layer_flow, flow => $self->support_material_flow, interface_flow => $self->support_material_flow(FLOW_ROLE_SUPPORT_MATERIAL_INTERFACE), ); } sub detect_surfaces_type { my $self = shift; Slic3r::debugf "Detecting solid surfaces...\n"; for my $region_id (0 .. ($self->print->region_count-1)) { for my $i (0 .. ($self->layer_count - 1)) { my $layerm = $self->get_layer($i)->regions->[$region_id]; # prepare a reusable subroutine to make surface differences my $difference = sub { my ($subject, $clip, $result_type) = @_; my $diff = diff( [ map @$_, @$subject ], [ map @$_, @$clip ], 1, ); # collapse very narrow parts (using the safety offset in the diff is not enough) my $offset = $layerm->flow(FLOW_ROLE_EXTERNAL_PERIMETER)->scaled_width / 10; return map Slic3r::Surface->new(expolygon => $_, surface_type => $result_type), @{ offset2_ex($diff, -$offset, +$offset) }; }; # comparison happens against the *full* slices (considering all regions) # unless internal shells are requested my $upper_layer = $i < $self->layer_count - 1 ? $self->get_layer($i+1) : undef; my $lower_layer = $i > 0 ? $self->get_layer($i-1) : undef; # find top surfaces (difference between current surfaces # of current layer and upper one) my @top = (); if ($upper_layer) { my $upper_slices = $self->config->interface_shells ? [ map $_->expolygon, @{$upper_layer->regions->[$region_id]->slices} ] : $upper_layer->slices; @top = $difference->( [ map $_->expolygon, @{$layerm->slices} ], $upper_slices, S_TYPE_TOP, ); } else { # if no upper layer, all surfaces of this one are solid # we clone surfaces because we're going to clear the slices collection @top = map $_->clone, @{$layerm->slices}; $_->surface_type(S_TYPE_TOP) for @top; } # find bottom surfaces (difference between current surfaces # of current layer and lower one) my @bottom = (); if ($lower_layer) { # any surface lying on the void is a true bottom bridge push @bottom, $difference->( [ map $_->expolygon, @{$layerm->slices} ], $lower_layer->slices, S_TYPE_BOTTOMBRIDGE, ); # if we have soluble support material, don't bridge if ($self->config->support_material && $self->config->support_material_contact_distance == 0) { $_->surface_type(S_TYPE_BOTTOM) for @bottom; } # if user requested internal shells, we need to identify surfaces # lying on other slices not belonging to this region if ($self->config->interface_shells) { # non-bridging bottom surfaces: any part of this layer lying # on something else, excluding those lying on our own region my $supported = intersection_ex( [ map @{$_->expolygon}, @{$layerm->slices} ], [ map @$_, @{$lower_layer->slices} ], ); push @bottom, $difference->( $supported, [ map $_->expolygon, @{$lower_layer->regions->[$region_id]->slices} ], S_TYPE_BOTTOM, ); } } else { # if no lower layer, all surfaces of this one are solid # we clone surfaces because we're going to clear the slices collection @bottom = map $_->clone, @{$layerm->slices}; # if we have raft layers, consider bottom layer as a bridge # just like any other bottom surface lying on the void if ($self->config->raft_layers > 0 && $self->config->support_material_contact_distance > 0) { $_->surface_type(S_TYPE_BOTTOMBRIDGE) for @bottom; } else { $_->surface_type(S_TYPE_BOTTOM) for @bottom; } } # now, if the object contained a thin membrane, we could have overlapping bottom # and top surfaces; let's do an intersection to discover them and consider them # as bottom surfaces (to allow for bridge detection) if (@top && @bottom) { my $overlapping = intersection_ex([ map $_->p, @top ], [ map $_->p, @bottom ]); Slic3r::debugf " layer %d contains %d membrane(s)\n", $layerm->layer->id, scalar(@$overlapping) if $Slic3r::debug; @top = $difference->([map $_->expolygon, @top], $overlapping, S_TYPE_TOP); } # find internal surfaces (difference between top/bottom surfaces and others) my @internal = $difference->( [ map $_->expolygon, @{$layerm->slices} ], [ map $_->expolygon, @top, @bottom ], S_TYPE_INTERNAL, ); # save surfaces to layer $layerm->slices->clear; $layerm->slices->append($_) for (@bottom, @top, @internal); Slic3r::debugf " layer %d has %d bottom, %d top and %d internal surfaces\n", $layerm->layer->id, scalar(@bottom), scalar(@top), scalar(@internal) if $Slic3r::debug; } # clip surfaces to the fill boundaries foreach my $layer (@{$self->layers}) { my $layerm = $layer->regions->[$region_id]; # Note: this method should be idempotent, but fill_surfaces gets modified # in place. However we're now only using its boundaries (which are invariant) # so we're safe. This guarantees idempotence of prepare_infill() also in case # that combine_infill() turns some fill_surface into VOID surfaces. my $fill_boundaries = [ map $_->clone->p, @{$layerm->fill_surfaces} ]; $layerm->fill_surfaces->clear; foreach my $surface (@{$layerm->slices}) { my $intersection = intersection_ex( [ $surface->p ], $fill_boundaries, ); $layerm->fill_surfaces->append($_) for map Slic3r::Surface->new(expolygon => $_, surface_type => $surface->surface_type), @$intersection; } } } } # Idempotence of this method is guaranteed by the fact that we don't remove things from # fill_surfaces but we only turn them into VOID surfaces, thus preserving the boundaries. sub clip_fill_surfaces { my $self = shift; return unless $self->config->infill_only_where_needed; # We only want infill under ceilings; this is almost like an # internal support material. # proceed top-down skipping bottom layer my $upper_internal = []; for my $layer_id (reverse 1..($self->layer_count - 1)) { my $layer = $self->get_layer($layer_id); my $lower_layer = $self->get_layer($layer_id-1); # detect things that we need to support my $overhangs = []; # Polygons # we need to support any solid surface push @$overhangs, map $_->p, grep $_->is_solid, map @{$_->fill_surfaces}, @{$layer->regions}; # we also need to support perimeters when there's at least one full # unsupported loop { # get perimeters area as the difference between slices and fill_surfaces my $perimeters = diff( [ map @$_, @{$layer->slices} ], [ map $_->p, map @{$_->fill_surfaces}, @{$layer->regions} ], ); # only consider the area that is not supported by lower perimeters $perimeters = intersection( $perimeters, [ map $_->p, map @{$_->fill_surfaces}, @{$lower_layer->regions} ], 1, ); # only consider perimeter areas that are at least one extrusion width thick my $pw = min(map $_->flow(FLOW_ROLE_PERIMETER)->scaled_width, @{$layer->regions}); $perimeters = offset2($perimeters, -$pw, +$pw); # append such thick perimeters to the areas that need support push @$overhangs, @$perimeters; } # find new internal infill $upper_internal = my $new_internal = intersection( [ @$overhangs, @$upper_internal, ], [ # our current internal fill boundaries map $_->p, grep $_->surface_type == S_TYPE_INTERNAL || $_->surface_type == S_TYPE_INTERNALVOID, map @{$_->fill_surfaces}, @{$lower_layer->regions} ], ); # apply new internal infill to regions foreach my $layerm (@{$lower_layer->regions}) { my (@internal, @other) = (); foreach my $surface (map $_->clone, @{$layerm->fill_surfaces}) { if ($surface->surface_type == S_TYPE_INTERNAL || $surface->surface_type == S_TYPE_INTERNALVOID) { push @internal, $surface; } else { push @other, $surface; } } my @new = map Slic3r::Surface->new( expolygon => $_, surface_type => S_TYPE_INTERNAL, ), @{intersection_ex( [ map $_->p, @internal ], $new_internal, 1, )}; push @other, map Slic3r::Surface->new( expolygon => $_, surface_type => S_TYPE_INTERNALVOID, ), @{diff_ex( [ map $_->p, @internal ], $new_internal, 1, )}; # If there are voids it means that our internal infill is not adjacent to # perimeters. In this case it would be nice to add a loop around infill to # make it more robust and nicer. TODO. $layerm->fill_surfaces->clear; $layerm->fill_surfaces->append($_) for (@new, @other); } } } sub discover_horizontal_shells { my $self = shift; Slic3r::debugf "==> DISCOVERING HORIZONTAL SHELLS\n"; for my $region_id (0 .. ($self->print->region_count-1)) { for (my $i = 0; $i < $self->layer_count; $i++) { my $layerm = $self->get_layer($i)->regions->[$region_id]; if ($layerm->region->config->solid_infill_every_layers && $layerm->region->config->fill_density > 0 && ($i % $layerm->region->config->solid_infill_every_layers) == 0) { my $type = $layerm->region->config->fill_density == 100 ? S_TYPE_INTERNALSOLID : S_TYPE_INTERNALBRIDGE; $_->surface_type($type) for @{$layerm->fill_surfaces->filter_by_type(S_TYPE_INTERNAL)}; } EXTERNAL: foreach my $type (S_TYPE_TOP, S_TYPE_BOTTOM, S_TYPE_BOTTOMBRIDGE) { # find slices of current type for current layer # use slices instead of fill_surfaces because they also include the perimeter area # which needs to be propagated in shells; we need to grow slices like we did for # fill_surfaces though. Using both ungrown slices and grown fill_surfaces will # not work in some situations, as there won't be any grown region in the perimeter # area (this was seen in a model where the top layer had one extra perimeter, thus # its fill_surfaces were thinner than the lower layer's infill), however it's the best # solution so far. Growing the external slices by EXTERNAL_INFILL_MARGIN will put # too much solid infill inside nearly-vertical slopes. my $solid = [ (map $_->p, @{$layerm->slices->filter_by_type($type)}), (map $_->p, @{$layerm->fill_surfaces->filter_by_type($type)}), ]; next if !@$solid; Slic3r::debugf "Layer %d has %s surfaces\n", $i, ($type == S_TYPE_TOP) ? 'top' : 'bottom'; my $solid_layers = ($type == S_TYPE_TOP) ? $layerm->region->config->top_solid_layers : $layerm->region->config->bottom_solid_layers; NEIGHBOR: for (my $n = ($type == S_TYPE_TOP) ? $i-1 : $i+1; abs($n - $i) <= $solid_layers-1; ($type == S_TYPE_TOP) ? $n-- : $n++) { next if $n < 0 || $n >= $self->layer_count; Slic3r::debugf " looking for neighbors on layer %d...\n", $n; my $neighbor_layerm = $self->get_layer($n)->regions->[$region_id]; my $neighbor_fill_surfaces = $neighbor_layerm->fill_surfaces; my @neighbor_fill_surfaces = map $_->clone, @$neighbor_fill_surfaces; # clone because we will use these surfaces even after clearing the collection # find intersection between neighbor and current layer's surfaces # intersections have contours and holes # we update $solid so that we limit the next neighbor layer to the areas that were # found on this one - in other words, solid shells on one layer (for a given external surface) # are always a subset of the shells found on the previous shell layer # this approach allows for DWIM in hollow sloping vases, where we want bottom # shells to be generated in the base but not in the walls (where there are many # narrow bottom surfaces): reassigning $solid will consider the 'shadow' of the # upper perimeter as an obstacle and shell will not be propagated to more upper layers my $new_internal_solid = $solid = intersection( $solid, [ map $_->p, grep { ($_->surface_type == S_TYPE_INTERNAL) || ($_->surface_type == S_TYPE_INTERNALSOLID) } @neighbor_fill_surfaces ], 1, ); next EXTERNAL if !@$new_internal_solid; if ($layerm->region->config->fill_density == 0) { # if we're printing a hollow object we discard any solid shell thinner # than a perimeter width, since it's probably just crossing a sloping wall # and it's not wanted in a hollow print even if it would make sense when # obeying the solid shell count option strictly (DWIM!) my $margin = $neighbor_layerm->flow(FLOW_ROLE_EXTERNAL_PERIMETER)->scaled_width; my $too_narrow = diff( $new_internal_solid, offset2($new_internal_solid, -$margin, +$margin, CLIPPER_OFFSET_SCALE, JT_MITER, 5), 1, ); $new_internal_solid = $solid = diff( $new_internal_solid, $too_narrow, ) if @$too_narrow; } # make sure the new internal solid is wide enough, as it might get collapsed # when spacing is added in Fill.pm { my $margin = 3 * $layerm->flow(FLOW_ROLE_SOLID_INFILL)->scaled_width; # require at least this size # we use a higher miterLimit here to handle areas with acute angles # in those cases, the default miterLimit would cut the corner and we'd # get a triangle in $too_narrow; if we grow it below then the shell # would have a different shape from the external surface and we'd still # have the same angle, so the next shell would be grown even more and so on. my $too_narrow = diff( $new_internal_solid, offset2($new_internal_solid, -$margin, +$margin, CLIPPER_OFFSET_SCALE, JT_MITER, 5), 1, ); if (@$too_narrow) { # grow the collapsing parts and add the extra area to the neighbor layer # as well as to our original surfaces so that we support this # additional area in the next shell too # make sure our grown surfaces don't exceed the fill area my @grown = @{intersection( offset($too_narrow, +$margin), # Discard bridges as they are grown for anchoring and we can't # remove such anchors. (This may happen when a bridge is being # anchored onto a wall where little space remains after the bridge # is grown, and that little space is an internal solid shell so # it triggers this too_narrow logic.) [ map $_->p, grep { $_->is_internal && !$_->is_bridge } @neighbor_fill_surfaces ], )}; $new_internal_solid = $solid = [ @grown, @$new_internal_solid ]; } } # internal-solid are the union of the existing internal-solid surfaces # and new ones my $internal_solid = union_ex([ ( map $_->p, grep $_->surface_type == S_TYPE_INTERNALSOLID, @neighbor_fill_surfaces ), @$new_internal_solid, ]); # subtract intersections from layer surfaces to get resulting internal surfaces my $internal = diff_ex( [ map $_->p, grep $_->surface_type == S_TYPE_INTERNAL, @neighbor_fill_surfaces ], [ map @$_, @$internal_solid ], 1, ); Slic3r::debugf " %d internal-solid and %d internal surfaces found\n", scalar(@$internal_solid), scalar(@$internal); # assign resulting internal surfaces to layer $neighbor_fill_surfaces->clear; $neighbor_fill_surfaces->append($_) for map Slic3r::Surface->new(expolygon => $_, surface_type => S_TYPE_INTERNAL), @$internal; # assign new internal-solid surfaces to layer $neighbor_fill_surfaces->append($_) for map Slic3r::Surface->new(expolygon => $_, surface_type => S_TYPE_INTERNALSOLID), @$internal_solid; # assign top and bottom surfaces to layer foreach my $s (@{Slic3r::Surface::Collection->new(grep { ($_->surface_type == S_TYPE_TOP) || $_->is_bottom } @neighbor_fill_surfaces)->group}) { my $solid_surfaces = diff_ex( [ map $_->p, @$s ], [ map @$_, @$internal_solid, @$internal ], 1, ); $neighbor_fill_surfaces->append($_) for map $s->[0]->clone(expolygon => $_), @$solid_surfaces; } } } } } } # combine fill surfaces across layers # Idempotence of this method is guaranteed by the fact that we don't remove things from # fill_surfaces but we only turn them into VOID surfaces, thus preserving the boundaries. sub combine_infill { my $self = shift; # define the type used for voids my %voidtype = ( &S_TYPE_INTERNAL() => S_TYPE_INTERNALVOID, ); # work on each region separately for my $region_id (0 .. ($self->print->region_count-1)) { my $region = $self->print->get_region($region_id); my $every = $region->config->infill_every_layers; next unless $every > 1 && $region->config->fill_density > 0; # limit the number of combined layers to the maximum height allowed by this regions' nozzle my $nozzle_diameter = min( $self->print->config->get_at('nozzle_diameter', $region->config->infill_extruder-1), $self->print->config->get_at('nozzle_diameter', $region->config->solid_infill_extruder-1), ); # define the combinations my %combine = (); # layer_idx => number of additional combined lower layers { my $current_height = my $layers = 0; for my $layer_idx (0 .. ($self->layer_count-1)) { my $layer = $self->get_layer($layer_idx); next if $layer->id == 0; # skip first print layer (which may not be first layer in array because of raft) my $height = $layer->height; # check whether the combination of this layer with the lower layers' buffer # would exceed max layer height or max combined layer count if ($current_height + $height >= $nozzle_diameter + epsilon || $layers >= $every) { # append combination to lower layer $combine{$layer_idx-1} = $layers; $current_height = $layers = 0; } $current_height += $height; $layers++; } # append lower layers (if any) to uppermost layer $combine{$self->layer_count-1} = $layers; } # loop through layers to which we have assigned layers to combine for my $layer_idx (sort keys %combine) { next unless $combine{$layer_idx} > 1; # get all the LayerRegion objects to be combined my @layerms = map $self->get_layer($_)->get_region($region_id), ($layer_idx - ($combine{$layer_idx}-1) .. $layer_idx); # only combine internal infill for my $type (S_TYPE_INTERNAL) { # we need to perform a multi-layer intersection, so let's split it in pairs # initialize the intersection with the candidates of the lowest layer my $intersection = [ map $_->expolygon, @{$layerms[0]->fill_surfaces->filter_by_type($type)} ]; # start looping from the second layer and intersect the current intersection with it for my $layerm (@layerms[1 .. $#layerms]) { $intersection = intersection_ex( [ map @$_, @$intersection ], [ map @{$_->expolygon}, @{$layerm->fill_surfaces->filter_by_type($type)} ], ); } my $area_threshold = $layerms[0]->infill_area_threshold; @$intersection = grep $_->area > $area_threshold, @$intersection; next if !@$intersection; Slic3r::debugf " combining %d %s regions from layers %d-%d\n", scalar(@$intersection), ($type == S_TYPE_INTERNAL ? 'internal' : 'internal-solid'), $layer_idx-($every-1), $layer_idx; # $intersection now contains the regions that can be combined across the full amount of layers # so let's remove those areas from all layers my @intersection_with_clearance = map @{$_->offset( $layerms[-1]->flow(FLOW_ROLE_SOLID_INFILL)->scaled_width / 2 + $layerms[-1]->flow(FLOW_ROLE_PERIMETER)->scaled_width / 2 # Because fill areas for rectilinear and honeycomb are grown # later to overlap perimeters, we need to counteract that too. + (($type == S_TYPE_INTERNALSOLID || $region->config->fill_pattern =~ /(rectilinear|grid|line|honeycomb)/) ? $layerms[-1]->flow(FLOW_ROLE_SOLID_INFILL)->scaled_width : 0) )}, @$intersection; foreach my $layerm (@layerms) { my @this_type = @{$layerm->fill_surfaces->filter_by_type($type)}; my @other_types = map $_->clone, grep $_->surface_type != $type, @{$layerm->fill_surfaces}; my @new_this_type = map Slic3r::Surface->new(expolygon => $_, surface_type => $type), @{diff_ex( [ map $_->p, @this_type ], [ @intersection_with_clearance ], )}; # apply surfaces back with adjusted depth to the uppermost layer if ($layerm->layer->id == $self->get_layer($layer_idx)->id) { push @new_this_type, map Slic3r::Surface->new( expolygon => $_, surface_type => $type, thickness => sum(map $_->layer->height, @layerms), thickness_layers => scalar(@layerms), ), @$intersection; } else { # save void surfaces push @new_this_type, map Slic3r::Surface->new(expolygon => $_, surface_type => $voidtype{$type}), @{intersection_ex( [ map @{$_->expolygon}, @this_type ], [ @intersection_with_clearance ], )}; } $layerm->fill_surfaces->clear; $layerm->fill_surfaces->append($_) for (@new_this_type, @other_types); } } } } } # Simplify the sliced model, if "resolution" configuration parameter > 0. # The simplification is problematic, because it simplifies the slices independent from each other, # which makes the simplified discretization visible on the object surface. sub _simplify_slices { my ($self, $distance) = @_; foreach my $layer (@{$self->layers}) { $layer->slices->simplify($distance); $_->slices->simplify($distance) for @{$layer->regions}; } } sub support_material_flow { my ($self, $role) = @_; $role //= FLOW_ROLE_SUPPORT_MATERIAL; my $extruder = ($role == FLOW_ROLE_SUPPORT_MATERIAL) ? $self->config->support_material_extruder : $self->config->support_material_interface_extruder; # we use a bogus layer_height because we use the same flow for all # support material layers return Slic3r::Flow->new_from_width( width => $self->config->support_material_extrusion_width || $self->config->extrusion_width, role => $role, nozzle_diameter => $self->print->config->nozzle_diameter->[$extruder-1] // $self->print->config->nozzle_diameter->[0], layer_height => $self->config->layer_height, bridge_flow_ratio => 0, ); } 1;