#include #include #include #include #include #include #include "../ClipperUtils.hpp" #include "../ExPolygon.hpp" #include "../Surface.hpp" #include "FillRectilinear2.hpp" #ifdef SLIC3R_DEBUG #include "SVG.hpp" #endif #if defined(SLIC3R_DEBUG) && defined(_WIN32) #include #pragma comment(lib, "user32.lib") static inline void assert_fail(const char *assertion, const char *file, unsigned line, const char *function) { printf("Assert: %s in function %s\nfile %s:%d\n", assertion, function, file, line); if (IsDebuggerPresent()) { DebugBreak(); } else { ExitProcess(-1); } } #undef assert #define assert(expr) \ ((expr) \ ? static_cast(0) \ : assert_fail (#expr, __FILE__, __LINE__, __FUNCTION__)) #endif /* SLIC3R_DEBUG */ namespace Slic3r { #ifndef clamp template static inline T clamp(T low, T high, T x) { return std::max(low, std::min(high, x)); } #endif /* clamp */ #ifndef sqr template static inline T sqr(T x) { return x * x; } #endif /* sqr */ #ifndef mag2 static inline coordf_t mag2(const Point &p) { return sqr(coordf_t(p.x)) + sqr(coordf_t(p.y)); } #endif /* mag2 */ #ifndef mag static inline coordf_t mag(const Point &p) { return std::sqrt(mag2(p)); } #endif /* mag */ enum Orientation { ORIENTATION_CCW = 1, ORIENTATION_CW = -1, ORIENTATION_COLINEAR = 0 }; // Return orientation of the three points (clockwise, counter-clockwise, colinear) // The predicate is exact for the coord_t type, using 64bit signed integers for the temporaries. //FIXME Make sure the temporaries do not overflow, // which means, the coord_t types must not have some of the topmost bits utilized. static inline Orientation orient(const Point &a, const Point &b, const Point &c) { BOOST_STATIC_ASSERT(sizeof(coord_t) * 2 == sizeof(int64_t)); int64_t u = int64_t(b.x) * int64_t(c.y) - int64_t(b.y) * int64_t(c.x); int64_t v = int64_t(a.x) * int64_t(c.y) - int64_t(a.y) * int64_t(c.x); int64_t w = int64_t(a.x) * int64_t(b.y) - int64_t(a.y) * int64_t(b.x); int64_t d = u - v + w; return (d > 0) ? ORIENTATION_CCW : ((d == 0) ? ORIENTATION_COLINEAR : ORIENTATION_CW); } // Return orientation of the polygon. // The input polygon must not contain duplicate points. static inline bool is_ccw(const Polygon &poly) { // The polygon shall be at least a triangle. assert(poly.points.size() >= 3); if (poly.points.size() < 3) return true; // 1) Find the lowest lexicographical point. int imin = 0; for (size_t i = 1; i < poly.points.size(); ++ i) { const Point &pmin = poly.points[imin]; const Point &p = poly.points[i]; if (p.x < pmin.x || (p.x == pmin.x && p.y < pmin.y)) imin = i; } // 2) Detect the orientation of the corner imin. size_t iPrev = ((imin == 0) ? poly.points.size() : imin) - 1; size_t iNext = ((imin + 1 == poly.points.size()) ? 0 : imin + 1); Orientation o = orient(poly.points[iPrev], poly.points[imin], poly.points[iNext]); // The lowest bottom point must not be collinear if the polygon does not contain duplicate points // or overlapping segments. assert(o != ORIENTATION_COLINEAR); return o == ORIENTATION_CCW; } // Having a segment of a closed polygon, calculate its Euclidian length. // The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop, // therefore the point p1 lies on poly.points[seg1-1], poly.points[seg1] etc. static inline coordf_t segment_length(const Polygon &poly, size_t seg1, const Point &p1, size_t seg2, const Point &p2) { #ifdef SLIC3R_DEBUG // Verify that p1 lies on seg1. This is difficult to verify precisely, // but at least verify, that p1 lies in the bounding box of seg1. for (size_t i = 0; i < 2; ++ i) { size_t seg = (i == 0) ? seg1 : seg2; Point px = (i == 0) ? p1 : p2; Point pa = poly.points[((seg == 0) ? poly.points.size() : seg) - 1]; Point pb = poly.points[seg]; if (pa.x > pb.x) std::swap(pa.x, pb.x); if (pa.y > pb.y) std::swap(pa.y, pb.y); assert(px.x >= pa.x && px.x <= pb.x); assert(px.y >= pa.y && px.y <= pb.y); } #endif /* SLIC3R_DEBUG */ const Point *pPrev = &p1; const Point *pThis = NULL; coordf_t len = 0; if (seg1 <= seg2) { for (size_t i = seg1; i < seg2; ++ i, pPrev = pThis) len += pPrev->distance_to(*(pThis = &poly.points[i])); } else { for (size_t i = seg1; i < poly.points.size(); ++ i, pPrev = pThis) len += pPrev->distance_to(*(pThis = &poly.points[i])); for (size_t i = 0; i < seg2; ++ i, pPrev = pThis) len += pPrev->distance_to(*(pThis = &poly.points[i])); } len += pPrev->distance_to(p2); return len; } // Append a segment of a closed polygon to a polyline. // The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop. // Only insert intermediate points between seg1 and seg2. static inline void polygon_segment_append(Points &out, const Polygon &polygon, size_t seg1, size_t seg2) { if (seg1 == seg2) { // Nothing to append from this segment. } else if (seg1 < seg2) { // Do not append a point pointed to by seg2. out.insert(out.end(), polygon.points.begin() + seg1, polygon.points.begin() + seg2); } else { out.reserve(out.size() + seg2 + polygon.points.size() - seg1); out.insert(out.end(), polygon.points.begin() + seg1, polygon.points.end()); // Do not append a point pointed to by seg2. out.insert(out.end(), polygon.points.begin(), polygon.points.begin() + seg2); } } // Append a segment of a closed polygon to a polyline. // The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop, // but this time the segment is traversed backward. // Only insert intermediate points between seg1 and seg2. static inline void polygon_segment_append_reversed(Points &out, const Polygon &polygon, size_t seg1, size_t seg2) { if (seg1 >= seg2) { out.reserve(seg1 - seg2); for (size_t i = seg1; i > seg2; -- i) out.push_back(polygon.points[i - 1]); } else { // it could be, that seg1 == seg2. In that case, append the complete loop. out.reserve(out.size() + seg2 + polygon.points.size() - seg1); for (size_t i = seg1; i > 0; -- i) out.push_back(polygon.points[i - 1]); for (size_t i = polygon.points.size(); i > seg2; -- i) out.push_back(polygon.points[i - 1]); } } // Intersection point of a vertical line with a polygon segment. class SegmentIntersection { public: SegmentIntersection() : iContour(0), iSegment(0), pos(0), type(UNKNOWN), consumed_vertical_up(false), consumed_perimeter_right(false) {} // Index of a contour in ExPolygonWithOffset, with which this vertical line intersects. size_t iContour; // Index of a segment in iContour, with which this vertical line intersects. size_t iSegment; // y position of the intersection. coord_t pos; // Kind of intersection. With the original contour, or with the inner offestted contour? // A vertical segment will be at least intersected by OUTER_LOW, OUTER_HIGH, // but it could be intersected with OUTER_LOW, INNER_LOW, INNER_HIGH, OUTER_HIGH, // and there may be more than one pair of INNER_LOW, INNER_HIGH between OUTER_LOW, OUTER_HIGH. enum SegmentIntersectionType { OUTER_LOW = 0, OUTER_HIGH = 1, INNER_LOW = 2, INNER_HIGH = 3, UNKNOWN = -1 }; SegmentIntersectionType type; // Was this segment along the y axis consumed? // Up means up along the vertical segment. bool consumed_vertical_up; // Was a segment of the inner perimeter contour consumed? // Right means right from the vertical segment. bool consumed_perimeter_right; // For the INNER_LOW type, this point may be connected to another INNER_LOW point following a perimeter contour. // For the INNER_HIGH type, this point may be connected to another INNER_HIGH point following a perimeter contour. // If INNER_LOW is connected to INNER_HIGH or vice versa, // one has to make sure the vertical infill line does not overlap with the connecting perimeter line. bool is_inner() const { return type == INNER_LOW || type == INNER_HIGH; } bool is_outer() const { return type == OUTER_LOW || type == OUTER_HIGH; } bool is_low () const { return type == INNER_LOW || type == OUTER_LOW; } bool is_high () const { return type == INNER_HIGH || type == OUTER_HIGH; } bool operator<(const SegmentIntersection &other) const { return pos < other.pos; } }; // A vertical line with intersection points with polygons. class SegmentedIntersectionLine { public: // Index of this vertical intersection line. size_t idx; // x position of this vertical intersection line. coord_t pos; // List of intersection points with polygons, sorted increasingly by the y axis. std::vector intersections; }; // A container maintaining an expolygon with its inner offsetted polygon. // The purpose of the inner offsetted polygon is to provide segments to connect the infill lines. struct ExPolygonWithOffset { public: ExPolygonWithOffset(const ExPolygon &aexpolygon, coord_t aoffset) : expolygon(aexpolygon) { polygons_inner = offset((Polygons)expolygon, aoffset, CLIPPER_OFFSET_SCALE, ClipperLib::jtMiter, // for the infill pattern, don't cut the corners. // default miterLimt = 3 10.); n_contours_outer = 1 + expolygon.holes.size(); n_contours_inner = polygons_inner.size(); n_contours = n_contours_outer + n_contours_inner; polygons_inner_ccw.assign(polygons_inner.size(), false); for (size_t i = 0; i < polygons_inner.size(); ++ i) polygons_inner_ccw[i] = is_ccw(polygons_inner[i]); #ifdef SLIC3R_DEBUG // Verify orientation of the expolygon. assert(is_ccw(expolygon.contour)); for (size_t i = 0; i < expolygon.holes.size(); ++ i) assert(is_ccw(expolygon.holes[i])); #endif /* SLIC3R_DEBUG */ } // Outer contour of the expolygon. bool is_contour_external(size_t idx) const { return idx == 0; } // Any contour of the expolygon. bool is_contour_outer(size_t idx) const { return idx < n_contours_inner; } // Contour of the shrunk expolygon. bool is_contour_inner(size_t idx) const { return idx >= n_contours_inner; } const Polygon& contour(size_t idx) const { return is_contour_external(idx) ? expolygon.contour : (is_contour_outer(idx) ? expolygon.holes[idx - 1] : polygons_inner[idx - n_contours_inner]); } bool is_contour_ccw(size_t idx) const { return is_contour_external(idx) || (is_contour_inner(idx) && polygons_inner_ccw[idx - n_contours_inner]); } const ExPolygon &expolygon; Polygons polygons_inner; size_t n_contours_outer; size_t n_contours_inner; size_t n_contours; protected: // For each polygon of polygons_inner, remember its orientation. std::vector polygons_inner_ccw; }; // For a vertical line, an inner contour and an intersection point, // find an intersection point on the previous resp. next vertical line. // The intersection point is connected with the prev resp. next intersection point with iInnerContour. // Return -1 if there is no such point on the previous resp. next vertical line. static inline int intersection_on_prev_next_vertical_line( const ExPolygonWithOffset &poly_with_offset, const std::vector &segs, size_t iVerticalLine, size_t iInnerContour, size_t iIntersection, bool dir_is_next) { size_t iVerticalLineOther = iVerticalLine; if (dir_is_next) { if (++ iVerticalLineOther == segs.size()) // No successive vertical line. return -1; } else if (iVerticalLineOther -- == 0) { // No preceding vertical line. return -1; } const SegmentedIntersectionLine &il = segs[iVerticalLine]; const SegmentIntersection &itsct = il.intersections[iIntersection]; const SegmentedIntersectionLine &il2 = segs[iVerticalLineOther]; const Polygon &poly = poly_with_offset.contour(iInnerContour); const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour); // Resulting index of an intersection point on il2. int out = -1; // Find an intersection point on iVerticalLineOther, intersecting iInnerContour // at the same orientation as iIntersection, and being closest to iIntersection // in the number of contour segments, when following the direction of the contour. int dmin = std::numeric_limits::max(); for (size_t i = 0; i < il2.intersections.size(); ++ i) { const SegmentIntersection &itsct2 = il2.intersections[i]; if (itsct.iContour == itsct2.iContour && itsct.type == itsct2.type) { // The intersection points lie on the same contour and have the same orientation. // Find the intersection point with a shortest path in the direction of the contour. int d = int(itsct2.iSegment) - int(itsct.iSegment); if (ccw != dir_is_next) d = - d; if (d < 0) d += int(poly.points.size()); if (d < dmin) { out = i; dmin = d; } } } //FIXME this routine is not asymptotic optimal, it will be slow if there are many intersection points along the line. return out; } static inline int intersection_on_prev_vertical_line( const ExPolygonWithOffset &poly_with_offset, const std::vector &segs, size_t iVerticalLine, size_t iInnerContour, size_t iIntersection) { return intersection_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, false); } static inline int intersection_on_next_vertical_line( const ExPolygonWithOffset &poly_with_offset, const std::vector &segs, size_t iVerticalLine, size_t iInnerContour, size_t iIntersection) { return intersection_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, true); } // Find an intersection on a previous line, but return -1, if the connecting segment of a perimeter was already extruded. static inline int intersection_unused_on_prev_next_vertical_line( const ExPolygonWithOffset &poly_with_offset, const std::vector &segs, size_t iVerticalLine, size_t iInnerContour, size_t iIntersection, bool dir_is_next) { int iIntersectionOther = intersection_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, dir_is_next); if (iIntersectionOther == -1) return -1; //FIXME this routine will propose a connecting line even if the connecting perimeter segment intersects iVertical line multiple times before reaching iIntersectionOther. assert(dir_is_next ? (iVerticalLine + 1 < segs.size()) : (iVerticalLine > 0)); const SegmentedIntersectionLine &il_this = segs[iVerticalLine]; const SegmentIntersection &itsct_this = il_this.intersections[iIntersection]; const SegmentedIntersectionLine &il_other = segs[dir_is_next ? (iVerticalLine+1) : (iVerticalLine-1)]; const SegmentIntersection &itsct_other = il_other.intersections[iIntersectionOther]; assert(itsct_other.is_inner()); assert(itsct_other.is_low() || iIntersectionOther > 1); if (dir_is_next ? itsct_this.consumed_perimeter_right : itsct_other.consumed_perimeter_right) // This perimeter segment was already consumed. return -1; if (itsct_other.is_low() ? itsct_other.consumed_vertical_up : il_other.intersections[iIntersectionOther-1].consumed_vertical_up) // This vertical segment was already consumed. return -1; return iIntersectionOther; } static inline int intersection_unused_on_prev_vertical_line( const ExPolygonWithOffset &poly_with_offset, const std::vector &segs, size_t iVerticalLine, size_t iInnerContour, size_t iIntersection) { return intersection_unused_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, false); } static inline int intersection_unused_on_next_vertical_line( const ExPolygonWithOffset &poly_with_offset, const std::vector &segs, size_t iVerticalLine, size_t iInnerContour, size_t iIntersection) { return intersection_unused_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, true); } // Measure an Euclidian length of a perimeter segment when going from iIntersection to iIntersection2. static inline coordf_t measure_perimeter_prev_next_segment_length( const ExPolygonWithOffset &poly_with_offset, const std::vector &segs, size_t iVerticalLine, size_t iInnerContour, size_t iIntersection, size_t iIntersection2, bool dir_is_next) { size_t iVerticalLineOther = iVerticalLine; if (dir_is_next) { if (++ iVerticalLineOther == segs.size()) // No successive vertical line. return coordf_t(-1); } else if (iVerticalLineOther -- == 0) { // No preceding vertical line. return coordf_t(-1); } const SegmentedIntersectionLine &il = segs[iVerticalLine]; const SegmentIntersection &itsct = il.intersections[iIntersection]; const SegmentedIntersectionLine &il2 = segs[iVerticalLineOther]; const SegmentIntersection &itsct2 = il2.intersections[iIntersection2]; const Polygon &poly = poly_with_offset.contour(iInnerContour); const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour); assert(itsct.type == itsct2.type); assert(itsct.iContour == itsct2.iContour); assert(itsct.is_inner()); const bool forward = (itsct.is_low() == ccw) == dir_is_next; Point p1(il.pos, itsct.pos); Point p2(il2.pos, itsct2.pos); return forward ? segment_length(poly, itsct .iSegment, p1, itsct2.iSegment, p2) : segment_length(poly, itsct2.iSegment, p2, itsct .iSegment, p1); } static inline coordf_t measure_perimeter_prev_segment_length( const ExPolygonWithOffset &poly_with_offset, const std::vector &segs, size_t iVerticalLine, size_t iInnerContour, size_t iIntersection, size_t iIntersection2) { return measure_perimeter_prev_next_segment_length(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, iIntersection2, false); } static inline coordf_t measure_perimeter_next_segment_length( const ExPolygonWithOffset &poly_with_offset, const std::vector &segs, size_t iVerticalLine, size_t iInnerContour, size_t iIntersection, size_t iIntersection2) { return measure_perimeter_prev_next_segment_length(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, iIntersection2, true); } // Append the points of a perimeter segment when going from iIntersection to iIntersection2. // The first point (the point of iIntersection) will not be inserted, // the last point will be inserted. static inline void emit_perimeter_prev_next_segment( const ExPolygonWithOffset &poly_with_offset, const std::vector &segs, size_t iVerticalLine, size_t iInnerContour, size_t iIntersection, size_t iIntersection2, Polyline &out, bool dir_is_next) { size_t iVerticalLineOther = iVerticalLine; if (dir_is_next) { ++ iVerticalLineOther; assert(iVerticalLineOther < segs.size()); } else { assert(iVerticalLineOther > 0); -- iVerticalLineOther; } const SegmentedIntersectionLine &il = segs[iVerticalLine]; const SegmentIntersection &itsct = il.intersections[iIntersection]; const SegmentedIntersectionLine &il2 = segs[iVerticalLineOther]; const SegmentIntersection &itsct2 = il2.intersections[iIntersection2]; const Polygon &poly = poly_with_offset.contour(iInnerContour); const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour); assert(itsct.type == itsct2.type); assert(itsct.iContour == itsct2.iContour); assert(itsct.is_inner()); const bool forward = (itsct.is_low() == ccw) == dir_is_next; // Do not append the first point. // out.points.push_back(Point(il.pos, itsct.pos)); if (forward) polygon_segment_append(out.points, poly, itsct.iSegment, itsct2.iSegment); else polygon_segment_append_reversed(out.points, poly, itsct.iSegment, itsct2.iSegment); // Append the last point. out.points.push_back(Point(il2.pos, itsct2.pos)); } Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParams ¶ms) { // rotate polygons so that we can work with vertical lines here ExPolygon expolygon = surface->expolygon; std::pair rotate_vector = this->infill_direction(surface); expolygon.rotate(- rotate_vector.first); // No need to translate the polygon anyhow for the infill. // The infill will be performed inside a bounding box of the expolygon and its absolute position does not matter. // expolygon.translate(rotate_vector.second.x, rotate_vector.second.y); this->_min_spacing = scale_(this->spacing); assert(params.density > 0.0001f && params.density <= 1.f); this->_line_spacing = coord_t(coordf_t(this->_min_spacing) / params.density); this->_diagonal_distance = this->_line_spacing * 2; BoundingBox bounding_box = expolygon.contour.bounding_box(); // define flow spacing according to requested density if (params.density > 0.9999f && !params.dont_adjust) { this->_line_spacing = this->adjust_solid_spacing(bounding_box.size().x, this->_line_spacing); this->spacing = unscale(this->_line_spacing); } else { // extend bounding box so that our pattern will be aligned with other layers bounding_box.merge(Point( bounding_box.min.x - (bounding_box.min.x % this->_line_spacing), bounding_box.min.y - (bounding_box.min.y % this->_line_spacing))); } // Intersect a set of euqally spaced vertical lines wiht expolygon. size_t n_vlines = (bounding_box.max.x - bounding_box.min.x + SCALED_EPSILON) / this->_line_spacing; coord_t x0 = bounding_box.min.x + this->_line_spacing; // On these polygons the infill lines will be connected. ExPolygonWithOffset poly_with_offset(expolygon, - _min_spacing / 2); #ifdef SLIC3R_DEBUG char path[2048]; static int iRun = 0; sprintf(path, "out/FillRectilinear2-%d.svg", iRun); BoundingBox bbox_svg = expolygon.contour.bounding_box(); bbox_svg.min.x -= coord_t(1. / SCALING_FACTOR); bbox_svg.min.y -= coord_t(1. / SCALING_FACTOR); bbox_svg.max.x += coord_t(1. / SCALING_FACTOR); bbox_svg.max.y += coord_t(1. / SCALING_FACTOR); ::Slic3r::SVG svg(path, bbox_svg); svg.draw(expolygon.lines()); svg.draw(poly_with_offset.polygons_inner); { char path2[2048]; sprintf(path2, "out/FillRectilinear2-initial-%d.svg", iRun); ::Slic3r::SVG svg(path2, bbox_svg); svg.draw(expolygon.lines()); svg.draw(poly_with_offset.polygons_inner); svg.Close(); } iRun ++; #endif /* SLIC3R_DEBUG */ // For each contour // Allocate the storage for the segments. std::vector segs(n_vlines, SegmentedIntersectionLine()); for (size_t i = 0; i < n_vlines; ++ i) { segs[i].idx = i; segs[i].pos = x0 + i * this->_line_spacing; } for (size_t iContour = 0; iContour < poly_with_offset.n_contours; ++ iContour) { const Points &contour = poly_with_offset.contour(iContour); if (contour.size() < 2) continue; // For each segment for (size_t iSegment = 0; iSegment < contour.size(); ++ iSegment) { size_t iPrev = ((iSegment == 0) ? contour.size() : iSegment) - 1; const Point &p1 = contour[iPrev]; const Point &p2 = contour[iSegment]; // Which of the equally spaced vertical lines is intersected by this segment? coord_t l = p1.x; coord_t r = p2.x; if (l > r) std::swap(l, r); // il, ir are the left / right indices of vertical lines intersecting a segment int il = (l - x0) / this->_line_spacing; while (il * this->_line_spacing + x0 < l) ++ il; il = std::max(int(0), il); int ir = (r - x0 + this->_line_spacing) / this->_line_spacing; while (ir * this->_line_spacing + x0 > r) -- ir; ir = std::min(int(segs.size()) - 1, ir); if (il > ir) // No vertical line intersects this segment. continue; assert(il >= 0 && il < segs.size()); assert(ir >= 0 && ir < segs.size()); if (l == r) { // The segment is vertical. SegmentIntersection is; is.iContour = iContour; is.iSegment = iSegment; is.pos = p1.y; segs[il].intersections.push_back(is); is.pos = p2.y; segs[il].intersections.push_back(is); continue; } for (int i = il; i <= ir; ++ i) { SegmentIntersection is; is.iContour = iContour; is.iSegment = iSegment; assert(l <= segs[i].pos); assert(r >= segs[i].pos); // Calculate the intersection position in y axis. x is known. double t = double(segs[i].pos - p1.x) / double(p2.x - p1.x); assert(t > -0.000001 && t < 1.000001); t = clamp(0., 1., t); coord_t lo = p1.y; coord_t hi = p2.y; if (lo > hi) std::swap(lo, hi); is.pos = p1.y + coord_t(t * double(p2.y - p1.y)); assert(is.pos > lo - 0.000001 && is.pos < hi + 0.000001); is.pos = clamp(lo, hi, is.pos); segs[i].intersections.push_back(is); } } } // Sort the intersections along their segments, specify the intersection types. for (size_t i_seg = 0; i_seg < segs.size(); ++ i_seg) { SegmentedIntersectionLine &sil = segs[i_seg]; // Sort the intersection points. This needs to be verified, because the intersection points were calculated // using imprecise arithmetics. std::sort(sil.intersections.begin(), sil.intersections.end()); // Verify the order, bubble sort the intersections until sorted. bool modified = false; do { modified = false; for (size_t i = 1; i < sil.intersections.size(); ++ i) { size_t iContour1 = sil.intersections[i-1].iContour; size_t iContour2 = sil.intersections[i].iContour; const Points &contour1 = poly_with_offset.contour(iContour1); const Points &contour2 = poly_with_offset.contour(iContour2); size_t iSegment1 = sil.intersections[i-1].iSegment; size_t iPrev1 = ((iSegment1 == 0) ? contour1.size() : iSegment1) - 1; size_t iSegment2 = sil.intersections[i].iSegment; size_t iPrev2 = ((iSegment2 == 0) ? contour2.size() : iSegment2) - 1; bool swap = false; if (iContour1 == iContour2 && iSegment1 == iSegment2) { // The same segment, it has to be vertical. assert(iPrev1 == iPrev2); swap = contour1[iPrev1].y > contour1[iContour1].y; #ifdef SLIC3R_DEBUG if (swap) printf("Swapping when single vertical segment\n"); #endif } else { // Segments are in a general position. Here an exact airthmetics may come into play. coord_t y1max = std::max(contour1[iPrev1].y, contour1[iSegment1].y); coord_t y2min = std::min(contour2[iPrev2].y, contour2[iSegment2].y); if (y1max < y2min) { // The segments are separated, nothing to do. } else { // Use an exact predicate to verify, that segment1 is below segment2. const Point *a = &contour1[iPrev1]; const Point *b = &contour1[iSegment1]; const Point *c = &contour2[iPrev2]; const Point *d = &contour2[iSegment2]; #ifdef SLIC3R_DEBUG const Point x1(sil.pos, sil.intersections[i-1].pos); const Point x2(sil.pos, sil.intersections[i ].pos); bool successive = false; #endif /* SLIC3R_DEBUG */ if (a->x > b->x) std::swap(a, b); if (c->x > d->x) std::swap(c, d); bool upper_more_left = false; if (a->x > c->x) { upper_more_left = true; std::swap(a, c); std::swap(b, d); } if (a == c || b == c) { assert(iContour1 == iContour2); assert(iSegment1 == iPrev2 || iPrev1 == iSegment2); std::swap(c, d); assert(a != c && b != c); #ifdef SLIC3R_DEBUG successive = true; #endif /* SLIC3R_DEBUG */ } Orientation o = orient(*a, *b, *c); assert(! ORIENTATION_COLINEAR); swap = upper_more_left != (o == ORIENTATION_CW); #ifdef SLIC3R_DEBUG if (swap) printf(successive ? "Swapping when iContour1 == iContour2 and successive segments\n" : "Swapping when exact predicate\n"); #endif } } if (swap) { // Swap the intersection points, but keep the original positions, so they are sorted. std::swap(sil.intersections[i-1], sil.intersections[i]); std::swap(sil.intersections[i-1].pos, sil.intersections[i].pos); modified = true; } } } while (modified); // Assign the intersection types. for (size_t i = 0; i < sil.intersections.size(); ++ i) { // What is the orientation of the segment at the intersection point? size_t iContour = sil.intersections[i].iContour; const Points &contour = poly_with_offset.contour(iContour); size_t iSegment = sil.intersections[i].iSegment; size_t iPrev = ((iSegment == 0) ? contour.size() : iSegment) - 1; coord_t dir = contour[iSegment].x - contour[iPrev].x; bool ccw = poly_with_offset.is_contour_ccw(iContour); bool low = (dir > 0) == ccw; sil.intersections[i].type = poly_with_offset.is_contour_outer(iContour) ? (low ? SegmentIntersection::OUTER_LOW : SegmentIntersection::OUTER_HIGH) : (low ? SegmentIntersection::INNER_LOW : SegmentIntersection::INNER_HIGH); } } #ifdef SLIC3R_DEBUG // Verify the segments & paint them. for (size_t i_seg = 0; i_seg < segs.size(); ++ i_seg) { SegmentedIntersectionLine &sil = segs[i_seg]; // The intersection points have to be even. assert((sil.intersections.size() & 1) == 0); for (size_t i = 0; i < sil.intersections.size();) { // An intersection segment crossing the bigger contour may cross the inner offsetted contour even number of times. assert(sil.intersections[i].type == SegmentIntersection::OUTER_LOW); size_t j = i + 1; assert(j < sil.intersections.size()); assert(sil.intersections[j].type == SegmentIntersection::INNER_LOW || sil.intersections[j].type == SegmentIntersection::OUTER_HIGH); for (; j < sil.intersections.size() && sil.intersections[j].is_inner(); ++ j) ; assert(j < sil.intersections.size()); assert((j & 1) == 1); assert(sil.intersections[j].type == SegmentIntersection::OUTER_HIGH); assert(i + 1 == j || sil.intersections[j - 1].type == SegmentIntersection::INNER_HIGH); if (i + 1 == j) { svg.draw(Line(Point(sil.pos, sil.intersections[i].pos), Point(sil.pos, sil.intersections[j].pos)), "blue"); } else { svg.draw(Line(Point(sil.pos, sil.intersections[i].pos), Point(sil.pos, sil.intersections[i+1].pos)), "green"); svg.draw(Line(Point(sil.pos, sil.intersections[i+1].pos), Point(sil.pos, sil.intersections[j-1].pos)), (j - i + 1 > 4) ? "yellow" : "magenta"); svg.draw(Line(Point(sil.pos, sil.intersections[j-1].pos), Point(sil.pos, sil.intersections[j].pos)), "green"); } i = j + 1; } } svg.Close(); #endif /* SLIC3R_DEBUG */ // Now construct a graph. // Find the first point. //FIXME ideally one would plan the initial point to be closest to the current print head position. size_t i_vline = 0; size_t i_intersection = size_t(-1); // Follow the line, connect the lines into a graph. // Until no new line could be added to the output path: Point pointLast; Polylines polylines_out; Polyline *polyline_current = NULL; for (;;) { if (i_intersection == size_t(-1)) { // The path has been interrupted. Find a next starting point, closest to the previous extruder position. coordf_t dist2min = std::numeric_limits().max(); for (size_t i_vline2 = 0; i_vline2 < segs.size(); ++ i_vline2) { const SegmentedIntersectionLine &seg = segs[i_vline2]; if (! seg.intersections.empty()) { assert(seg.intersections.size() > 1); // Even number of intersections with the loops. assert((seg.intersections.size() & 1) == 0); assert(seg.intersections.front().type == SegmentIntersection::OUTER_LOW); for (size_t i = 0; i < seg.intersections.size(); ++ i) { const SegmentIntersection &intrsctn = seg.intersections[i]; if (intrsctn.is_outer()) { assert(intrsctn.is_low() || i > 0); bool consumed = intrsctn.is_low() ? intrsctn.consumed_vertical_up : seg.intersections[i-1].consumed_vertical_up; if (! consumed) { coordf_t dist2 = sqr(coordf_t(pointLast.x - seg.pos)) + sqr(coordf_t(pointLast.y - intrsctn.pos)); if (dist2 < dist2min) { dist2min = dist2; i_vline = i_vline2; i_intersection = i; if (polylines_out.empty()) { // Initial state, take the first line, which is the first from the left. goto found; } } } } } } } if (i_intersection == size_t(-1)) // We are finished. break; found: // Start a new path. polylines_out.push_back(Polyline()); polyline_current = &polylines_out.back(); // Emit the first point of a path. pointLast = Point(segs[i_vline].pos, segs[i_vline].intersections[i_intersection].pos); polyline_current->points.push_back(pointLast); } // From the initial point (i_vline, i_intersection), follow a path. SegmentedIntersectionLine &seg = segs[i_vline]; SegmentIntersection *intrsctn = &seg.intersections[i_intersection]; bool going_up = intrsctn->is_low(); bool try_connect = false; if (going_up) { assert(! intrsctn->consumed_vertical_up); assert(i_intersection + 1 < seg.intersections.size()); // Step back to the beginning of the vertical segment to mark it as consumed. if (intrsctn->is_inner()) { assert(i_intersection > 0); -- intrsctn; -- i_intersection; } // Consume the complete vertical segment up to the outer contour. do { intrsctn->consumed_vertical_up = true; ++ intrsctn; ++ i_intersection; assert(i_intersection < seg.intersections.size()); } while (intrsctn->type != SegmentIntersection::OUTER_HIGH); if ((intrsctn - 1)->is_inner()) { // Step back. -- intrsctn; -- i_intersection; assert(intrsctn->type == SegmentIntersection::INNER_HIGH); try_connect = true; } } else { // Going down. assert(intrsctn->is_high()); assert(i_intersection > 0); assert(! (intrsctn - 1)->consumed_vertical_up); // Consume the complete vertical segment up to the outer contour. if (intrsctn->is_inner()) intrsctn->consumed_vertical_up = true; do { assert(i_intersection > 0); -- intrsctn; -- i_intersection; intrsctn->consumed_vertical_up = true; } while (intrsctn->type != SegmentIntersection::OUTER_LOW); if ((intrsctn + 1)->is_inner()) { // Step back. ++ intrsctn; ++ i_intersection; assert(intrsctn->type == SegmentIntersection::INNER_LOW); try_connect = true; } } if (try_connect) { // Decide, whether to finish the segment, or whether to follow the perimeter. int iPrev = intersection_unused_on_prev_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection); int iNext = intersection_unused_on_next_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection); if (iPrev != -1 || iNext != -1) { // Zig zag coord_t distPrev = (iPrev == -1) ? std::numeric_limits::max() : measure_perimeter_prev_segment_length(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iPrev); coord_t distNext = (iNext == -1) ? std::numeric_limits::max() : measure_perimeter_next_segment_length(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iNext); // Take the shorter path. bool take_next = (iPrev != -1 && iNext != -1) ? (distNext < distPrev) : distNext != -1; assert(intrsctn->is_inner()); polyline_current->points.push_back(Point(seg.pos, intrsctn->pos)); emit_perimeter_prev_next_segment(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, take_next ? iNext : iPrev, *polyline_current, take_next); // Mark both the left and right connecting segment as consumed, because one cannot go to this intersection point as it has been consumed. if (iPrev != -1) segs[i_vline-1].intersections[iPrev].consumed_perimeter_right = true; if (iNext != -1) intrsctn->consumed_perimeter_right = true; //FIXME consume the left / right connecting segments at the other end of this line? Currently it is not critical because a perimeter segment is not followed if the vertical segment at the other side has already been consumed. // Advance to the neighbor line. if (take_next) { ++ i_vline; i_intersection = iNext; } else { -- i_vline; i_intersection = iPrev; } continue; } // Take the complete line up to the outer contour. if (going_up) ++ intrsctn; else -- intrsctn; } // Finish the current vertical line, // reset the current vertical line to pick a new starting point in the next round. assert(intrsctn->is_outer()); assert(intrsctn->is_high() == going_up); pointLast = Point(seg.pos, intrsctn->pos); polyline_current->points.push_back(pointLast); intrsctn = NULL; i_intersection = -1; polyline_current = NULL; } // paths must be rotated back for (Polylines::iterator it = polylines_out.begin(); it != polylines_out.end(); ++ it) { // No need to translate, the absolute position is irrelevant. // it->translate(- rotate_vector.second.x, - rotate_vector.second.y); it->rotate(rotate_vector.first); } return polylines_out; } } // namespace Slic3r