#ifndef slic3r_Channel_hpp_ #define slic3r_Channel_hpp_ #include #include #include #include #include namespace Slic3r { template class Channel { private: using UniqueLock = std::unique_lock; using Queue = std::deque; public: class Guard { public: Guard(UniqueLock lock, const Queue &queue) : m_lock(std::move(lock)), m_queue(queue) {} Guard(const Guard &other) = delete; Guard(Guard &&other) = delete; ~Guard() {} // Access trampolines size_t size() const noexcept { return m_queue.size(); } bool empty() const noexcept { return m_queue.empty(); } typename Queue::const_iterator begin() const noexcept { return m_queue.begin(); } typename Queue::const_iterator end() const noexcept { return m_queue.end(); } typename Queue::const_reference operator[](size_t i) const { return m_queue[i]; } Guard& operator=(const Guard &other) = delete; Guard& operator=(Guard &&other) = delete; private: UniqueLock m_lock; const Queue &m_queue; }; Channel() {} ~Channel() {} void push(const T& item, bool silent = false) { { UniqueLock lock(m_mutex); m_queue.push_back(item); } if (! silent) { m_condition.notify_one(); } } void push(T &&item, bool silent = false) { { UniqueLock lock(m_mutex); m_queue.push_back(std::forward(item)); } if (! silent) { m_condition.notify_one(); } } T pop() { UniqueLock lock(m_mutex); m_condition.wait(lock, [this]() { return !m_queue.empty(); }); auto item = std::move(m_queue.front()); m_queue.pop_front(); return item; } boost::optional try_pop() { UniqueLock lock(m_mutex); if (m_queue.empty()) { return boost::none; } else { auto item = std::move(m_queue.front()); m_queue.pop(); return item; } } // Unlocked observers // Thread unsafe! Keep in mind you need to re-verify the result after acquiring lock! size_t size() const noexcept { return m_queue.size(); } bool empty() const noexcept { return m_queue.empty(); } Guard read() const { return Guard(UniqueLock(m_mutex), m_queue); } private: Queue m_queue; std::mutex m_mutex; std::condition_variable m_condition; }; } // namespace Slic3r #endif // slic3r_Channel_hpp_