#include #include #include #include #include #include "libslic3r.h" #include "ClipperUtils.hpp" #include "EdgeGrid.hpp" #include "Geometry.hpp" #include "SVG.hpp" #include "PNGReadWrite.hpp" // #define EDGE_GRID_DEBUG_OUTPUT #if 0 // Enable debugging and assert in this file. #define DEBUG #define _DEBUG #undef NDEBUG #endif #include namespace Slic3r { EdgeGrid::Grid::Grid() : m_rows(0), m_cols(0) { } EdgeGrid::Grid::~Grid() { m_contours.clear(); m_cell_data.clear(); m_cells.clear(); } void EdgeGrid::Grid::create(const Polygons &polygons, coord_t resolution) { // Count the contours. size_t ncontours = 0; for (size_t j = 0; j < polygons.size(); ++ j) if (! polygons[j].points.empty()) ++ ncontours; // Collect the contours. m_contours.assign(ncontours, nullptr); ncontours = 0; for (size_t j = 0; j < polygons.size(); ++ j) if (! polygons[j].points.empty()) m_contours[ncontours ++] = &polygons[j].points; create_from_m_contours(resolution); } void EdgeGrid::Grid::create(const std::vector &polygons, coord_t resolution) { // Count the contours. size_t ncontours = 0; for (size_t j = 0; j < polygons.size(); ++ j) if (! polygons[j]->points.empty()) ++ ncontours; // Collect the contours. m_contours.assign(ncontours, nullptr); ncontours = 0; for (size_t j = 0; j < polygons.size(); ++ j) if (! polygons[j]->points.empty()) m_contours[ncontours ++] = &polygons[j]->points; create_from_m_contours(resolution); } void EdgeGrid::Grid::create(const std::vector &polygons, coord_t resolution) { // Count the contours. size_t ncontours = 0; for (size_t j = 0; j < polygons.size(); ++ j) if (! polygons[j].empty()) ++ ncontours; // Collect the contours. m_contours.assign(ncontours, nullptr); ncontours = 0; for (size_t j = 0; j < polygons.size(); ++ j) if (! polygons[j].empty()) m_contours[ncontours ++] = &polygons[j]; create_from_m_contours(resolution); } void EdgeGrid::Grid::create(const ExPolygon &expoly, coord_t resolution) { // Count the contours. size_t ncontours = 0; if (! expoly.contour.points.empty()) ++ ncontours; for (size_t j = 0; j < expoly.holes.size(); ++ j) if (! expoly.holes[j].points.empty()) ++ ncontours; // Collect the contours. m_contours.assign(ncontours, nullptr); ncontours = 0; if (! expoly.contour.points.empty()) m_contours[ncontours++] = &expoly.contour.points; for (size_t j = 0; j < expoly.holes.size(); ++ j) if (! expoly.holes[j].points.empty()) m_contours[ncontours++] = &expoly.holes[j].points; create_from_m_contours(resolution); } void EdgeGrid::Grid::create(const ExPolygons &expolygons, coord_t resolution) { // Count the contours. size_t ncontours = 0; for (size_t i = 0; i < expolygons.size(); ++ i) { const ExPolygon &expoly = expolygons[i]; if (! expoly.contour.points.empty()) ++ ncontours; for (size_t j = 0; j < expoly.holes.size(); ++ j) if (! expoly.holes[j].points.empty()) ++ ncontours; } // Collect the contours. m_contours.assign(ncontours, nullptr); ncontours = 0; for (size_t i = 0; i < expolygons.size(); ++ i) { const ExPolygon &expoly = expolygons[i]; if (! expoly.contour.points.empty()) m_contours[ncontours++] = &expoly.contour.points; for (size_t j = 0; j < expoly.holes.size(); ++ j) if (! expoly.holes[j].points.empty()) m_contours[ncontours++] = &expoly.holes[j].points; } create_from_m_contours(resolution); } void EdgeGrid::Grid::create(const ExPolygonCollection &expolygons, coord_t resolution) { create(expolygons.expolygons, resolution); } // m_contours has been initialized. Now fill in the edge grid. void EdgeGrid::Grid::create_from_m_contours(coord_t resolution) { assert(resolution > 0); // 1) Measure the bounding box. for (size_t i = 0; i < m_contours.size(); ++ i) { const Slic3r::Points &pts = *m_contours[i]; for (size_t j = 0; j < pts.size(); ++ j) m_bbox.merge(pts[j]); } coord_t eps = 16; m_bbox.min(0) -= eps; m_bbox.min(1) -= eps; m_bbox.max(0) += eps; m_bbox.max(1) += eps; // 2) Initialize the edge grid. m_resolution = resolution; m_cols = (m_bbox.max(0) - m_bbox.min(0) + m_resolution - 1) / m_resolution; m_rows = (m_bbox.max(1) - m_bbox.min(1) + m_resolution - 1) / m_resolution; m_cells.assign(m_rows * m_cols, Cell()); // 3) First round of contour rasterization, count the edges per grid cell. for (size_t i = 0; i < m_contours.size(); ++ i) { const Slic3r::Points &pts = *m_contours[i]; for (size_t j = 0; j < pts.size(); ++ j) { // End points of the line segment. Slic3r::Point p1(pts[j]); Slic3r::Point p2 = pts[(j + 1 == pts.size()) ? 0 : j + 1]; p1(0) -= m_bbox.min(0); p1(1) -= m_bbox.min(1); p2(0) -= m_bbox.min(0); p2(1) -= m_bbox.min(1); // Get the cells of the end points. coord_t ix = p1(0) / m_resolution; coord_t iy = p1(1) / m_resolution; coord_t ixb = p2(0) / m_resolution; coord_t iyb = p2(1) / m_resolution; assert(ix >= 0 && size_t(ix) < m_cols); assert(iy >= 0 && size_t(iy) < m_rows); assert(ixb >= 0 && size_t(ixb) < m_cols); assert(iyb >= 0 && size_t(iyb) < m_rows); // Account for the end points. ++ m_cells[iy*m_cols+ix].end; if (ix == ixb && iy == iyb) // Both ends fall into the same cell. continue; // Raster the centeral part of the line. coord_t dx = std::abs(p2(0) - p1(0)); coord_t dy = std::abs(p2(1) - p1(1)); if (p1(0) < p2(0)) { int64_t ex = int64_t((ix + 1)*m_resolution - p1(0)) * int64_t(dy); if (p1(1) < p2(1)) { // x positive, y positive int64_t ey = int64_t((iy + 1)*m_resolution - p1(1)) * int64_t(dx); do { assert(ix <= ixb && iy <= iyb); if (ex < ey) { ey -= ex; ex = int64_t(dy) * m_resolution; ix += 1; } else if (ex == ey) { ex = int64_t(dy) * m_resolution; ey = int64_t(dx) * m_resolution; ix += 1; iy += 1; } else { assert(ex > ey); ex -= ey; ey = int64_t(dx) * m_resolution; iy += 1; } ++m_cells[iy*m_cols + ix].end; } while (ix != ixb || iy != iyb); } else { // x positive, y non positive int64_t ey = int64_t(p1(1) - iy*m_resolution) * int64_t(dx); do { assert(ix <= ixb && iy >= iyb); if (ex <= ey) { ey -= ex; ex = int64_t(dy) * m_resolution; ix += 1; } else { ex -= ey; ey = int64_t(dx) * m_resolution; iy -= 1; } ++m_cells[iy*m_cols + ix].end; } while (ix != ixb || iy != iyb); } } else { int64_t ex = int64_t(p1(0) - ix*m_resolution) * int64_t(dy); if (p1(1) < p2(1)) { // x non positive, y positive int64_t ey = int64_t((iy + 1)*m_resolution - p1(1)) * int64_t(dx); do { assert(ix >= ixb && iy <= iyb); if (ex < ey) { ey -= ex; ex = int64_t(dy) * m_resolution; ix -= 1; } else { assert(ex >= ey); ex -= ey; ey = int64_t(dx) * m_resolution; iy += 1; } ++m_cells[iy*m_cols + ix].end; } while (ix != ixb || iy != iyb); } else { // x non positive, y non positive int64_t ey = int64_t(p1(1) - iy*m_resolution) * int64_t(dx); do { assert(ix >= ixb && iy >= iyb); if (ex < ey) { ey -= ex; ex = int64_t(dy) * m_resolution; ix -= 1; } else if (ex == ey) { // The lower edge of a grid cell belongs to the cell. // Handle the case where the ray may cross the lower left corner of a cell in a general case, // or a left or lower edge in a degenerate case (horizontal or vertical line). if (dx > 0) { ex = int64_t(dy) * m_resolution; ix -= 1; } if (dy > 0) { ey = int64_t(dx) * m_resolution; iy -= 1; } } else { assert(ex > ey); ex -= ey; ey = int64_t(dx) * m_resolution; iy -= 1; } ++m_cells[iy*m_cols + ix].end; } while (ix != ixb || iy != iyb); } } } } // 4) Prefix sum the numbers of hits per cells to get an index into m_cell_data. size_t cnt = m_cells.front().end; for (size_t i = 1; i < m_cells.size(); ++ i) { m_cells[i].begin = cnt; cnt += m_cells[i].end; m_cells[i].end = cnt; } // 5) Allocate the cell data. m_cell_data.assign(cnt, std::pair(size_t(-1), size_t(-1))); // 6) Finally fill in m_cell_data by rasterizing the lines once again. for (size_t i = 0; i < m_cells.size(); ++i) m_cells[i].end = m_cells[i].begin; struct Visitor { Visitor(std::vector> &cell_data, std::vector &cells, size_t cols) : cell_data(cell_data), cells(cells), cols(cols), i(0), j(0) {} inline bool operator()(coord_t iy, coord_t ix) { cell_data[cells[iy*cols + ix].end++] = std::pair(i, j); // Continue traversing the grid along the edge. return true; } std::vector> &cell_data; std::vector &cells; size_t cols; size_t i; size_t j; } visitor(m_cell_data, m_cells, m_cols); assert(visitor.i == 0); for (; visitor.i < m_contours.size(); ++ visitor.i) { const Slic3r::Points &pts = *m_contours[visitor.i]; for (visitor.j = 0; visitor.j < pts.size(); ++ visitor.j) this->visit_cells_intersecting_line(pts[visitor.j], pts[(visitor.j + 1 == pts.size()) ? 0 : visitor.j + 1], visitor); } } #if 0 // Divide, round to a grid coordinate. // Divide x/y, round down. y is expected to be positive. static inline coord_t div_floor(coord_t x, coord_t y) { assert(y > 0); return ((x < 0) ? (x - y + 1) : x) / y; } // Walk the polyline, test whether any lines of this polyline does not intersect // any line stored into the grid. bool EdgeGrid::Grid::intersect(const MultiPoint &polyline, bool closed) { size_t n = polyline.points.size(); if (closed) ++ n; for (size_t i = 0; i < n; ++ i) { size_t j = i + 1; if (j == polyline.points.size()) j = 0; Point p1src = polyline.points[i]; Point p2src = polyline.points[j]; Point p1 = p1src; Point p2 = p2src; // Discretize the line segment p1, p2. p1(0) -= m_bbox.min(0); p1(1) -= m_bbox.min(1); p2(0) -= m_bbox.min(0); p2(1) -= m_bbox.min(1); // Get the cells of the end points. coord_t ix = div_floor(p1(0), m_resolution); coord_t iy = div_floor(p1(1), m_resolution); coord_t ixb = div_floor(p2(0), m_resolution); coord_t iyb = div_floor(p2(1), m_resolution); // assert(ix >= 0 && ix < m_cols); // assert(iy >= 0 && iy < m_rows); // assert(ixb >= 0 && ixb < m_cols); // assert(iyb >= 0 && iyb < m_rows); // Account for the end points. if (line_cell_intersect(p1src, p2src, m_cells[iy*m_cols + ix])) return true; if (ix == ixb && iy == iyb) // Both ends fall into the same cell. continue; // Raster the centeral part of the line. coord_t dx = std::abs(p2(0) - p1(0)); coord_t dy = std::abs(p2(1) - p1(1)); if (p1(0) < p2(0)) { int64_t ex = int64_t((ix + 1)*m_resolution - p1(0)) * int64_t(dy); if (p1(1) < p2(1)) { int64_t ey = int64_t((iy + 1)*m_resolution - p1(1)) * int64_t(dx); do { assert(ix <= ixb && iy <= iyb); if (ex < ey) { ey -= ex; ex = int64_t(dy) * m_resolution; ix += 1; } else if (ex == ey) { ex = int64_t(dy) * m_resolution; ey = int64_t(dx) * m_resolution; ix += 1; iy += 1; } else { assert(ex > ey); ex -= ey; ey = int64_t(dx) * m_resolution; iy += 1; } if (line_cell_intersect(p1src, p2src, m_cells[iy*m_cols + ix])) return true; } while (ix != ixb || iy != iyb); } else { int64_t ey = int64_t(p1(1) - iy*m_resolution) * int64_t(dx); do { assert(ix <= ixb && iy >= iyb); if (ex <= ey) { ey -= ex; ex = int64_t(dy) * m_resolution; ix += 1; } else { ex -= ey; ey = int64_t(dx) * m_resolution; iy -= 1; } if (line_cell_intersect(p1src, p2src, m_cells[iy*m_cols + ix])) return true; } while (ix != ixb || iy != iyb); } } else { int64_t ex = int64_t(p1(0) - ix*m_resolution) * int64_t(dy); if (p1(1) < p2(1)) { int64_t ey = int64_t((iy + 1)*m_resolution - p1(1)) * int64_t(dx); do { assert(ix >= ixb && iy <= iyb); if (ex < ey) { ey -= ex; ex = int64_t(dy) * m_resolution; ix -= 1; } else { assert(ex >= ey); ex -= ey; ey = int64_t(dx) * m_resolution; iy += 1; } if (line_cell_intersect(p1src, p2src, m_cells[iy*m_cols + ix])) return true; } while (ix != ixb || iy != iyb); } else { int64_t ey = int64_t(p1(1) - iy*m_resolution) * int64_t(dx); do { assert(ix >= ixb && iy >= iyb); if (ex < ey) { ey -= ex; ex = int64_t(dy) * m_resolution; ix -= 1; } else if (ex == ey) { if (dx > 0) { ex = int64_t(dy) * m_resolution; ix -= 1; } if (dy > 0) { ey = int64_t(dx) * m_resolution; iy -= 1; } } else { assert(ex > ey); ex -= ey; ey = int64_t(dx) * m_resolution; iy -= 1; } if (line_cell_intersect(p1src, p2src, m_cells[iy*m_cols + ix])) return true; } while (ix != ixb || iy != iyb); } } } return false; } bool EdgeGrid::Grid::line_cell_intersect(const Point &p1a, const Point &p2a, const Cell &cell) { BoundingBox bbox(p1a, p1a); bbox.merge(p2a); int64_t va_x = p2a(0) - p1a(0); int64_t va_y = p2a(1) - p1a(1); for (size_t i = cell.begin; i != cell.end; ++ i) { const std::pair &cell_data = m_cell_data[i]; // Contour indexed by the ith line of this cell. const Slic3r::Points &contour = *m_contours[cell_data.first]; // Point indices in contour indexed by the ith line of this cell. size_t idx1 = cell_data.second; size_t idx2 = idx1 + 1; if (idx2 == contour.size()) idx2 = 0; // The points of the ith line of this cell and its bounding box. const Point &p1b = contour[idx1]; const Point &p2b = contour[idx2]; BoundingBox bbox2(p1b, p1b); bbox2.merge(p2b); // Do the bounding boxes intersect? if (! bbox.overlap(bbox2)) continue; // Now intersect the two line segments using exact arithmetics. int64_t w1_x = p1b(0) - p1a(0); int64_t w1_y = p1b(1) - p1a(1); int64_t w2_x = p2b(0) - p1a(0); int64_t w2_y = p2b(1) - p1a(1); int64_t side1 = va_x * w1_y - va_y * w1_x; int64_t side2 = va_x * w2_y - va_y * w2_x; if (side1 == side2 && side1 != 0) // The line segments don't intersect. continue; w1_x = p1a(0) - p1b(0); w1_y = p1a(1) - p1b(1); w2_x = p2a(0) - p1b(0); w2_y = p2a(1) - p1b(1); int64_t vb_x = p2b(0) - p1b(0); int64_t vb_y = p2b(1) - p1b(1); side1 = vb_x * w1_y - vb_y * w1_x; side2 = vb_x * w2_y - vb_y * w2_x; if (side1 == side2 && side1 != 0) // The line segments don't intersect. continue; // The line segments intersect. return true; } // The line segment (p1a, p2a) does not intersect any of the line segments inside this cell. return false; } // Test, whether a point is inside a contour. bool EdgeGrid::Grid::inside(const Point &pt_src) { Point p = pt_src; p(0) -= m_bbox.min(0); p(1) -= m_bbox.min(1); // Get the cell of the point. if (p(0) < 0 || p(1) < 0) return false; coord_t ix = p(0) / m_resolution; coord_t iy = p(1) / m_resolution; if (ix >= this->m_cols || iy >= this->m_rows) return false; size_t i_closest = (size_t)-1; bool inside = false; { // Hit in the first cell? const Cell &cell = m_cells[iy * m_cols + ix]; for (size_t i = cell.begin; i != cell.end; ++ i) { const std::pair &cell_data = m_cell_data[i]; // Contour indexed by the ith line of this cell. const Slic3r::Points &contour = *m_contours[cell_data.first]; // Point indices in contour indexed by the ith line of this cell. size_t idx1 = cell_data.second; size_t idx2 = idx1 + 1; if (idx2 == contour.size()) idx2 = 0; const Point &p1 = contour[idx1]; const Point &p2 = contour[idx2]; if (p1(1) < p2(1)) { if (p(1) < p1(1) || p(1) > p2(1)) continue; //FIXME finish this! int64_t vx = 0;// pt_src //FIXME finish this! int64_t det = 0; } else if (p1(1) != p2(1)) { assert(p1(1) > p2(1)); if (p(1) < p2(1) || p(1) > p1(1)) continue; } else { assert(p1(1) == p2(1)); if (p1(1) == p(1)) { if (p(0) >= p1(0) && p(0) <= p2(0)) // On the segment. return true; // Before or after the segment. size_t idx0 = idx1 - 1; size_t idx2 = idx1 + 1; if (idx0 == (size_t)-1) idx0 = contour.size() - 1; if (idx2 == contour.size()) idx2 = 0; } } } } //FIXME This code follows only a single direction. Better to follow the direction closest to the bounding box. } #endif template struct PropagateDanielssonSingleStep { PropagateDanielssonSingleStep(float *aL, unsigned char *asigns, size_t astride, coord_t aresolution) : L(aL), signs(asigns), stride(astride), resolution(aresolution) {} inline void operator()(int r, int c, int addr_delta) { size_t addr = r * stride + c; if ((signs[addr] & 2) == 0) { float *v = &L[addr << 1]; float l = v[0] * v[0] + v[1] * v[1]; float *v2s = v + (addr_delta << 1); float v2[2] = { v2s[0] + INCX * resolution, v2s[1] + INCY * resolution }; float l2 = v2[0] * v2[0] + v2[1] * v2[1]; if (l2 < l) { v[0] = v2[0]; v[1] = v2[1]; } } } float *L; unsigned char *signs; size_t stride; coord_t resolution; }; struct PropagateDanielssonSingleVStep3 { PropagateDanielssonSingleVStep3(float *aL, unsigned char *asigns, size_t astride, coord_t aresolution) : L(aL), signs(asigns), stride(astride), resolution(aresolution) {} inline void operator()(int r, int c, int addr_delta, bool has_l, bool has_r) { size_t addr = r * stride + c; if ((signs[addr] & 2) == 0) { float *v = &L[addr<<1]; float l = v[0]*v[0]+v[1]*v[1]; float *v2s = v+(addr_delta<<1); float v2[2] = { v2s[0], v2s[1] + resolution }; float l2 = v2[0]*v2[0]+v2[1]*v2[1]; if (l2 < l) { v[0] = v2[0]; v[1] = v2[1]; } if (has_l) { float *v2sl = v2s - 1; v2[0] = v2sl[0] + resolution; v2[1] = v2sl[1] + resolution; l2 = v2[0]*v2[0]+v2[1]*v2[1]; if (l2 < l) { v[0] = v2[0]; v[1] = v2[1]; } } if (has_r) { float *v2sr = v2s + 1; v2[0] = v2sr[0] + resolution; v2[1] = v2sr[1] + resolution; l2 = v2[0]*v2[0]+v2[1]*v2[1]; if (l2 < l) { v[0] = v2[0]; v[1] = v2[1]; } } } } float *L; unsigned char *signs; size_t stride; coord_t resolution; }; void EdgeGrid::Grid::calculate_sdf() { #ifdef EDGE_GRID_DEBUG_OUTPUT static int iRun = 0; ++ iRun; #endif // 1) Initialize a signum and an unsigned vector to a zero iso surface. size_t nrows = m_rows + 1; size_t ncols = m_cols + 1; // Unsigned vectors towards the closest point on the surface. std::vector L(nrows * ncols * 2, FLT_MAX); // Bit 0 set - negative. // Bit 1 set - original value, the distance value shall not be changed by the Danielsson propagation. // Bit 2 set - signum not propagated yet. std::vector signs(nrows * ncols, 4); // SDF will be initially filled with unsigned DF. // m_signed_distance_field.assign(nrows * ncols, FLT_MAX); float search_radius = float(m_resolution<<1); m_signed_distance_field.assign(nrows * ncols, search_radius); // For each cell: for (int r = 0; r < (int)m_rows; ++ r) { for (int c = 0; c < (int)m_cols; ++ c) { const Cell &cell = m_cells[r * m_cols + c]; // For each segment in the cell: for (size_t i = cell.begin; i != cell.end; ++ i) { const Slic3r::Points &pts = *m_contours[m_cell_data[i].first]; size_t ipt = m_cell_data[i].second; // End points of the line segment. const Slic3r::Point &p1 = pts[ipt]; const Slic3r::Point &p2 = pts[(ipt + 1 == pts.size()) ? 0 : ipt + 1]; // Segment vector const Slic3r::Point v_seg = p2 - p1; // l2 of v_seg const int64_t l2_seg = int64_t(v_seg(0)) * int64_t(v_seg(0)) + int64_t(v_seg(1)) * int64_t(v_seg(1)); // For each corner of this cell and its 1 ring neighbours: for (int corner_y = -1; corner_y < 3; ++ corner_y) { coord_t corner_r = r + corner_y; if (corner_r < 0 || (size_t)corner_r >= nrows) continue; for (int corner_x = -1; corner_x < 3; ++ corner_x) { coord_t corner_c = c + corner_x; if (corner_c < 0 || (size_t)corner_c >= ncols) continue; float &d_min = m_signed_distance_field[corner_r * ncols + corner_c]; Slic3r::Point pt(m_bbox.min(0) + corner_c * m_resolution, m_bbox.min(1) + corner_r * m_resolution); Slic3r::Point v_pt = pt - p1; // dot(p2-p1, pt-p1) int64_t t_pt = int64_t(v_seg(0)) * int64_t(v_pt(0)) + int64_t(v_seg(1)) * int64_t(v_pt(1)); if (t_pt < 0) { // Closest to p1. double dabs = sqrt(int64_t(v_pt(0)) * int64_t(v_pt(0)) + int64_t(v_pt(1)) * int64_t(v_pt(1))); if (dabs < d_min) { // Previous point. const Slic3r::Point &p0 = pts[(ipt == 0) ? (pts.size() - 1) : ipt - 1]; Slic3r::Point v_seg_prev = p1 - p0; int64_t t2_pt = int64_t(v_seg_prev(0)) * int64_t(v_pt(0)) + int64_t(v_seg_prev(1)) * int64_t(v_pt(1)); if (t2_pt > 0) { // Inside the wedge between the previous and the next segment. // Set the signum depending on whether the vertex is convex or reflex. int64_t det = int64_t(v_seg_prev(0)) * int64_t(v_seg(1)) - int64_t(v_seg_prev(1)) * int64_t(v_seg(0)); assert(det != 0); d_min = dabs; // Fill in an unsigned vector towards the zero iso surface. float *l = &L[(corner_r * ncols + corner_c) << 1]; l[0] = std::abs(v_pt(0)); l[1] = std::abs(v_pt(1)); #ifdef _DEBUG double dabs2 = sqrt(l[0]*l[0]+l[1]*l[1]); assert(std::abs(dabs-dabs2) < 1e-4 * std::max(dabs, dabs2)); #endif /* _DEBUG */ signs[corner_r * ncols + corner_c] = ((det < 0) ? 1 : 0) | 2; } } } else if (t_pt > l2_seg) { // Closest to p2. Then p2 is the starting point of another segment, which shall be discovered in the same cell. continue; } else { // Closest to the segment. assert(t_pt >= 0 && t_pt <= l2_seg); int64_t d_seg = int64_t(v_seg(1)) * int64_t(v_pt(0)) - int64_t(v_seg(0)) * int64_t(v_pt(1)); double d = double(d_seg) / sqrt(double(l2_seg)); double dabs = std::abs(d); if (dabs < d_min) { d_min = dabs; // Fill in an unsigned vector towards the zero iso surface. float *l = &L[(corner_r * ncols + corner_c) << 1]; float linv = float(d_seg) / float(l2_seg); l[0] = std::abs(float(v_seg(1)) * linv); l[1] = std::abs(float(v_seg(0)) * linv); #ifdef _DEBUG double dabs2 = sqrt(l[0]*l[0]+l[1]*l[1]); assert(std::abs(dabs-dabs2) <= 1e-4 * std::max(dabs, dabs2)); #endif /* _DEBUG */ signs[corner_r * ncols + corner_c] = ((d_seg < 0) ? 1 : 0) | 2; } } } } } } } #ifdef EDGE_GRID_DEBUG_OUTPUT { std::vector pixels(ncols * nrows * 3, 0); for (coord_t r = 0; r < nrows; ++ r) { for (coord_t c = 0; c < ncols; ++ c) { uint8_t *pxl = pixels.data() + (((nrows - r - 1) * ncols) + c) * 3; float d = m_signed_distance_field[r * ncols + c]; if (d != search_radius) { float s = 255 * d / search_radius; int is = std::max(0, std::min(255, int(floor(s + 0.5f)))); pxl[0] = 255; pxl[1] = 255 - is; pxl[2] = 255 - is; } else { pxl[0] = 0; pxl[1] = 255; pxl[2] = 0; } } } png::write_rgb_to_file_scaled(debug_out_path("unsigned_df-%d.png", iRun), ncols, nrows, pixels, 10); } { std::vector pixels(ncols * nrows * 3, 0); for (coord_t r = 0; r < nrows; ++ r) { for (coord_t c = 0; c < ncols; ++ c) { unsigned char *pxl = pixels.data() + (((nrows - r - 1) * ncols) + c) * 3; float d = m_signed_distance_field[r * ncols + c]; if (d != search_radius) { float s = 255 * d / search_radius; int is = std::max(0, std::min(255, int(floor(s + 0.5f)))); if ((signs[r * ncols + c] & 1) == 0) { // Positive pxl[0] = 255; pxl[1] = 255 - is; pxl[2] = 255 - is; } else { // Negative pxl[0] = 255 - is; pxl[1] = 255 - is; pxl[2] = 255; } } else { pxl[0] = 0; pxl[1] = 255; pxl[2] = 0; } } } png::write_rgb_to_file_scaled(debug_out_path("signed_df-%d.png", iRun), ncols, nrows, pixels, 10); } #endif // EDGE_GRID_DEBUG_OUTPUT // 2) Propagate the signum. #define PROPAGATE_SIGNUM_SINGLE_STEP(DELTA) do { \ size_t addr = r * ncols + c; \ unsigned char &cur_val = signs[addr]; \ if (cur_val & 4) { \ unsigned char old_val = signs[addr + (DELTA)]; \ if ((old_val & 4) == 0) \ cur_val = old_val & 1; \ } \ } while (0); // Top to bottom propagation. for (size_t r = 0; r < nrows; ++ r) { if (r > 0) for (size_t c = 0; c < ncols; ++ c) PROPAGATE_SIGNUM_SINGLE_STEP(- int(ncols)); for (size_t c = 1; c < ncols; ++ c) PROPAGATE_SIGNUM_SINGLE_STEP(- 1); for (int c = int(ncols) - 2; c >= 0; -- c) PROPAGATE_SIGNUM_SINGLE_STEP(+ 1); } // Bottom to top propagation. for (int r = int(nrows) - 2; r >= 0; -- r) { for (size_t c = 0; c < ncols; ++ c) PROPAGATE_SIGNUM_SINGLE_STEP(+ ncols); for (size_t c = 1; c < ncols; ++ c) PROPAGATE_SIGNUM_SINGLE_STEP(- 1); for (int c = int(ncols) - 2; c >= 0; -- c) PROPAGATE_SIGNUM_SINGLE_STEP(+ 1); } #undef PROPAGATE_SIGNUM_SINGLE_STEP // 3) Propagate the distance by the Danielsson chamfer metric. // Top to bottom propagation. PropagateDanielssonSingleStep<1, 0> danielsson_hstep(L.data(), signs.data(), ncols, m_resolution); PropagateDanielssonSingleStep<0, 1> danielsson_vstep(L.data(), signs.data(), ncols, m_resolution); PropagateDanielssonSingleVStep3 danielsson_vstep3(L.data(), signs.data(), ncols, m_resolution); // Top to bottom propagation. for (size_t r = 0; r < nrows; ++ r) { if (r > 0) for (size_t c = 0; c < ncols; ++ c) danielsson_vstep(r, c, -int(ncols)); // PROPAGATE_DANIELSSON_SINGLE_VSTEP3(-int(ncols), c != 0, c + 1 != ncols); for (size_t c = 1; c < ncols; ++ c) danielsson_hstep(r, c, -1); for (int c = int(ncols) - 2; c >= 0; -- c) danielsson_hstep(r, c, +1); } // Bottom to top propagation. for (int r = int(nrows) - 2; r >= 0; -- r) { for (size_t c = 0; c < ncols; ++ c) danielsson_vstep(r, c, +ncols); // PROPAGATE_DANIELSSON_SINGLE_VSTEP3(+int(ncols), c != 0, c + 1 != ncols); for (size_t c = 1; c < ncols; ++ c) danielsson_hstep(r, c, -1); for (int c = int(ncols) - 2; c >= 0; -- c) danielsson_hstep(r, c, +1); } // Update signed distance field from absolte vectors to the iso-surface. for (size_t r = 0; r < nrows; ++ r) { for (size_t c = 0; c < ncols; ++ c) { size_t addr = r * ncols + c; float *v = &L[addr<<1]; float d = sqrt(v[0]*v[0]+v[1]*v[1]); if (signs[addr] & 1) d = -d; m_signed_distance_field[addr] = d; } } #ifdef EDGE_GRID_DEBUG_OUTPUT { std::vector pixels(ncols * nrows * 3, 0); float search_radius = float(m_resolution * 5); for (coord_t r = 0; r < nrows; ++r) { for (coord_t c = 0; c < ncols; ++c) { uint8_t *pxl = pixels.data() + (((nrows - r - 1) * ncols) + c) * 3; uint8_t sign = signs[r * ncols + c]; switch (sign) { case 0: // Positive, outside of a narrow band. pxl[0] = 0; pxl[1] = 0; pxl[2] = 255; break; case 1: // Negative, outside of a narrow band. pxl[0] = 255; pxl[1] = 0; pxl[2] = 0; break; case 2: // Positive, outside of a narrow band. pxl[0] = 100; pxl[1] = 100; pxl[2] = 255; break; case 3: // Negative, outside of a narrow band. pxl[0] = 255; pxl[1] = 100; pxl[2] = 100; break; case 4: // This shall not happen. Undefined signum. pxl[0] = 0; pxl[1] = 255; pxl[2] = 0; break; default: // This shall not happen. Invalid signum value. pxl[0] = 255; pxl[1] = 255; pxl[2] = 255; break; } } } png::write_rgb_to_file_scaled(debug_out_path("signed_df-signs-%d.png", iRun), ncols, nrows, pixels, 10); } #endif // EDGE_GRID_DEBUG_OUTPUT #ifdef EDGE_GRID_DEBUG_OUTPUT { std::vector pixels(ncols * nrows * 3, 0); float search_radius = float(m_resolution * 5); for (coord_t r = 0; r < nrows; ++r) { for (coord_t c = 0; c < ncols; ++c) { uint8_t *pxl = pixels.data() + (((nrows - r - 1) * ncols) + c) * 3; float d = m_signed_distance_field[r * ncols + c]; float s = 255.f * fabs(d) / search_radius; int is = std::max(0, std::min(255, int(floor(s + 0.5f)))); if (d < 0.f) { pxl[0] = 255; pxl[1] = 255 - is; pxl[2] = 255 - is; } else { pxl[0] = 255 - is; pxl[1] = 255 - is; pxl[2] = 255; } } } png::write_rgb_to_file_scaled(debug_out_path("signed_df2-%d.png", iRun), ncols, nrows, pixels, 10); } #endif // EDGE_GRID_DEBUG_OUTPUT } float EdgeGrid::Grid::signed_distance_bilinear(const Point &pt) const { coord_t x = pt(0) - m_bbox.min(0); coord_t y = pt(1) - m_bbox.min(1); coord_t w = m_resolution * m_cols; coord_t h = m_resolution * m_rows; bool clamped = false; coord_t xcl = x; coord_t ycl = y; if (x < 0) { xcl = 0; clamped = true; } else if (x >= w) { xcl = w - 1; clamped = true; } if (y < 0) { ycl = 0; clamped = true; } else if (y >= h) { ycl = h - 1; clamped = true; } coord_t cell_c = coord_t(floor(xcl / m_resolution)); coord_t cell_r = coord_t(floor(ycl / m_resolution)); float tx = float(xcl - cell_c * m_resolution) / float(m_resolution); assert(tx >= -1e-5 && tx < 1.f + 1e-5); float ty = float(ycl - cell_r * m_resolution) / float(m_resolution); assert(ty >= -1e-5 && ty < 1.f + 1e-5); size_t addr = cell_r * (m_cols + 1) + cell_c; float f00 = m_signed_distance_field[addr]; float f01 = m_signed_distance_field[addr+1]; addr += m_cols + 1; float f10 = m_signed_distance_field[addr]; float f11 = m_signed_distance_field[addr+1]; float f0 = (1.f - tx) * f00 + tx * f01; float f1 = (1.f - tx) * f10 + tx * f11; float f = (1.f - ty) * f0 + ty * f1; if (clamped) { if (f > 0) { if (x < 0) f += -x; else if (x >= w) f += x - w + 1; if (y < 0) f += -y; else if (y >= h) f += y - h + 1; } else { if (x < 0) f -= -x; else if (x >= w) f -= x - w + 1; if (y < 0) f -= -y; else if (y >= h) f -= y - h + 1; } } return f; } EdgeGrid::Grid::ClosestPointResult EdgeGrid::Grid::closest_point(const Point &pt, coord_t search_radius) const { BoundingBox bbox; bbox.min = bbox.max = Point(pt(0) - m_bbox.min(0), pt(1) - m_bbox.min(1)); bbox.defined = true; // Upper boundary, round to grid and test validity. bbox.max(0) += search_radius; bbox.max(1) += search_radius; ClosestPointResult result; if (bbox.max(0) < 0 || bbox.max(1) < 0) return result; bbox.max(0) /= m_resolution; bbox.max(1) /= m_resolution; if ((size_t)bbox.max(0) >= m_cols) bbox.max(0) = m_cols - 1; if ((size_t)bbox.max(1) >= m_rows) bbox.max(1) = m_rows - 1; // Lower boundary, round to grid and test validity. bbox.min(0) -= search_radius; bbox.min(1) -= search_radius; if (bbox.min(0) < 0) bbox.min(0) = 0; if (bbox.min(1) < 0) bbox.min(1) = 0; bbox.min(0) /= m_resolution; bbox.min(1) /= m_resolution; // Is the interval empty? if (bbox.min(0) > bbox.max(0) || bbox.min(1) > bbox.max(1)) return result; // Traverse all cells in the bounding box. double d_min = double(search_radius); // Signum of the distance field at pt. int sign_min = 0; double l2_seg_min = 1.; for (int r = bbox.min(1); r <= bbox.max(1); ++ r) { for (int c = bbox.min(0); c <= bbox.max(0); ++ c) { const Cell &cell = m_cells[r * m_cols + c]; for (size_t i = cell.begin; i < cell.end; ++ i) { const size_t contour_idx = m_cell_data[i].first; const Slic3r::Points &pts = *m_contours[contour_idx]; size_t ipt = m_cell_data[i].second; // End points of the line segment. const Slic3r::Point &p1 = pts[ipt]; const Slic3r::Point &p2 = pts[(ipt + 1 == pts.size()) ? 0 : ipt + 1]; const Slic3r::Point v_seg = p2 - p1; const Slic3r::Point v_pt = pt - p1; // dot(p2-p1, pt-p1) int64_t t_pt = int64_t(v_seg(0)) * int64_t(v_pt(0)) + int64_t(v_seg(1)) * int64_t(v_pt(1)); // l2 of seg int64_t l2_seg = int64_t(v_seg(0)) * int64_t(v_seg(0)) + int64_t(v_seg(1)) * int64_t(v_seg(1)); if (t_pt < 0) { // Closest to p1. double dabs = sqrt(int64_t(v_pt(0)) * int64_t(v_pt(0)) + int64_t(v_pt(1)) * int64_t(v_pt(1))); if (dabs < d_min) { // Previous point. const Slic3r::Point &p0 = pts[(ipt == 0) ? (pts.size() - 1) : ipt - 1]; Slic3r::Point v_seg_prev = p1 - p0; int64_t t2_pt = int64_t(v_seg_prev(0)) * int64_t(v_pt(0)) + int64_t(v_seg_prev(1)) * int64_t(v_pt(1)); if (t2_pt > 0) { // Inside the wedge between the previous and the next segment. d_min = dabs; // Set the signum depending on whether the vertex is convex or reflex. int64_t det = int64_t(v_seg_prev(0)) * int64_t(v_seg(1)) - int64_t(v_seg_prev(1)) * int64_t(v_seg(0)); assert(det != 0); sign_min = (det > 0) ? 1 : -1; result.contour_idx = contour_idx; result.start_point_idx = ipt; result.t = 0.; #ifndef NDEBUG Vec2d vfoot = (p1 - pt).cast(); double dist_foot = vfoot.norm(); double dist_foot_err = dist_foot - d_min; assert(std::abs(dist_foot_err) < 1e-7 * d_min); #endif /* NDEBUG */ } } } else if (t_pt > l2_seg) { // Closest to p2. Then p2 is the starting point of another segment, which shall be discovered in the same cell. continue; } else { // Closest to the segment. assert(t_pt >= 0 && t_pt <= l2_seg); int64_t d_seg = int64_t(v_seg(1)) * int64_t(v_pt(0)) - int64_t(v_seg(0)) * int64_t(v_pt(1)); double d = double(d_seg) / sqrt(double(l2_seg)); double dabs = std::abs(d); if (dabs < d_min) { d_min = dabs; sign_min = (d_seg < 0) ? -1 : ((d_seg == 0) ? 0 : 1); l2_seg_min = l2_seg; result.contour_idx = contour_idx; result.start_point_idx = ipt; result.t = t_pt; #ifndef NDEBUG Vec2d foot = p1.cast() * (1. - result.t / l2_seg_min) + p2.cast() * (result.t / l2_seg_min); Vec2d vfoot = foot - pt.cast(); double dist_foot = vfoot.norm(); double dist_foot_err = dist_foot - d_min; assert(std::abs(dist_foot_err) < 1e-7 || std::abs(dist_foot_err) < 1e-7 * d_min); #endif /* NDEBUG */ } } } } } if (result.contour_idx != size_t(-1) && d_min <= double(search_radius)) { result.distance = d_min * sign_min; result.t /= l2_seg_min; assert(result.t >= 0. && result.t <= 1.); #ifndef NDEBUG { const Slic3r::Points &pts = *m_contours[result.contour_idx]; const Slic3r::Point &p1 = pts[result.start_point_idx]; const Slic3r::Point &p2 = pts[(result.start_point_idx + 1 == pts.size()) ? 0 : result.start_point_idx + 1]; Vec2d vfoot; if (result.t == 0) vfoot = p1.cast() - pt.cast(); else vfoot = p1.cast() * (1. - result.t) + p2.cast() * result.t - pt.cast(); double dist_foot = vfoot.norm(); double dist_foot_err = dist_foot - std::abs(result.distance); assert(std::abs(dist_foot_err) < 1e-7 || std::abs(dist_foot_err) < 1e-7 * std::abs(result.distance)); } #endif /* NDEBUG */ } else result = ClosestPointResult(); return result; } bool EdgeGrid::Grid::signed_distance_edges(const Point &pt, coord_t search_radius, coordf_t &result_min_dist, bool *pon_segment) const { BoundingBox bbox; bbox.min = bbox.max = Point(pt(0) - m_bbox.min(0), pt(1) - m_bbox.min(1)); bbox.defined = true; // Upper boundary, round to grid and test validity. bbox.max(0) += search_radius; bbox.max(1) += search_radius; if (bbox.max(0) < 0 || bbox.max(1) < 0) return false; bbox.max(0) /= m_resolution; bbox.max(1) /= m_resolution; if ((size_t)bbox.max(0) >= m_cols) bbox.max(0) = m_cols - 1; if ((size_t)bbox.max(1) >= m_rows) bbox.max(1) = m_rows - 1; // Lower boundary, round to grid and test validity. bbox.min(0) -= search_radius; bbox.min(1) -= search_radius; if (bbox.min(0) < 0) bbox.min(0) = 0; if (bbox.min(1) < 0) bbox.min(1) = 0; bbox.min(0) /= m_resolution; bbox.min(1) /= m_resolution; // Is the interval empty? if (bbox.min(0) > bbox.max(0) || bbox.min(1) > bbox.max(1)) return false; // Traverse all cells in the bounding box. double d_min = double(search_radius); // Signum of the distance field at pt. int sign_min = 0; bool on_segment = false; for (int r = bbox.min(1); r <= bbox.max(1); ++ r) { for (int c = bbox.min(0); c <= bbox.max(0); ++ c) { const Cell &cell = m_cells[r * m_cols + c]; for (size_t i = cell.begin; i < cell.end; ++ i) { const Slic3r::Points &pts = *m_contours[m_cell_data[i].first]; size_t ipt = m_cell_data[i].second; // End points of the line segment. const Slic3r::Point &p1 = pts[ipt]; const Slic3r::Point &p2 = pts[(ipt + 1 == pts.size()) ? 0 : ipt + 1]; Slic3r::Point v_seg = p2 - p1; Slic3r::Point v_pt = pt - p1; // dot(p2-p1, pt-p1) int64_t t_pt = int64_t(v_seg(0)) * int64_t(v_pt(0)) + int64_t(v_seg(1)) * int64_t(v_pt(1)); // l2 of seg int64_t l2_seg = int64_t(v_seg(0)) * int64_t(v_seg(0)) + int64_t(v_seg(1)) * int64_t(v_seg(1)); if (t_pt < 0) { // Closest to p1. double dabs = sqrt(int64_t(v_pt(0)) * int64_t(v_pt(0)) + int64_t(v_pt(1)) * int64_t(v_pt(1))); if (dabs < d_min) { // Previous point. const Slic3r::Point &p0 = pts[(ipt == 0) ? (pts.size() - 1) : ipt - 1]; Slic3r::Point v_seg_prev = p1 - p0; int64_t t2_pt = int64_t(v_seg_prev(0)) * int64_t(v_pt(0)) + int64_t(v_seg_prev(1)) * int64_t(v_pt(1)); if (t2_pt > 0) { // Inside the wedge between the previous and the next segment. d_min = dabs; // Set the signum depending on whether the vertex is convex or reflex. int64_t det = int64_t(v_seg_prev(0)) * int64_t(v_seg(1)) - int64_t(v_seg_prev(1)) * int64_t(v_seg(0)); assert(det != 0); sign_min = (det > 0) ? 1 : -1; on_segment = false; } } } else if (t_pt > l2_seg) { // Closest to p2. Then p2 is the starting point of another segment, which shall be discovered in the same cell. continue; } else { // Closest to the segment. assert(t_pt >= 0 && t_pt <= l2_seg); int64_t d_seg = int64_t(v_seg(1)) * int64_t(v_pt(0)) - int64_t(v_seg(0)) * int64_t(v_pt(1)); double d = double(d_seg) / sqrt(double(l2_seg)); double dabs = std::abs(d); if (dabs < d_min) { d_min = dabs; sign_min = (d_seg < 0) ? -1 : ((d_seg == 0) ? 0 : 1); on_segment = true; } } } } } if (d_min >= search_radius) return false; result_min_dist = d_min * sign_min; if (pon_segment != NULL) *pon_segment = on_segment; return true; } bool EdgeGrid::Grid::signed_distance(const Point &pt, coord_t search_radius, coordf_t &result_min_dist) const { if (signed_distance_edges(pt, search_radius, result_min_dist)) return true; if (m_signed_distance_field.empty()) return false; result_min_dist = signed_distance_bilinear(pt); return true; } Polygons EdgeGrid::Grid::contours_simplified(coord_t offset, bool fill_holes) const { assert(std::abs(2 * offset) < m_resolution); typedef std::unordered_multimap EndPointMapType; // 0) Prepare a binary grid. size_t cell_rows = m_rows + 2; size_t cell_cols = m_cols + 2; std::vector cell_inside(cell_rows * cell_cols, false); for (int r = 0; r < int(cell_rows); ++ r) for (int c = 0; c < int(cell_cols); ++ c) cell_inside[r * cell_cols + c] = cell_inside_or_crossing(r - 1, c - 1); // Fill in empty cells, which have a left / right neighbor filled. // Fill in empty cells, which have the top / bottom neighbor filled. if (fill_holes) { std::vector cell_inside2(cell_inside); for (int r = 1; r + 1 < int(cell_rows); ++ r) { for (int c = 1; c + 1 < int(cell_cols); ++ c) { int addr = r * cell_cols + c; if ((cell_inside2[addr - 1] && cell_inside2[addr + 1]) || (cell_inside2[addr - cell_cols] && cell_inside2[addr + cell_cols])) cell_inside[addr] = true; } } } // 1) Collect the lines. std::vector lines; EndPointMapType start_point_to_line_idx; for (int r = 0; r <= int(m_rows); ++ r) { for (int c = 0; c <= int(m_cols); ++ c) { int addr = (r + 1) * cell_cols + c + 1; bool left = cell_inside[addr - 1]; bool top = cell_inside[addr - cell_cols]; bool current = cell_inside[addr]; if (left != current) { lines.push_back( left ? Line(Point(c, r+1), Point(c, r )) : Line(Point(c, r ), Point(c, r+1))); start_point_to_line_idx.insert(std::pair(lines.back().a, int(lines.size()) - 1)); } if (top != current) { lines.push_back( top ? Line(Point(c , r), Point(c+1, r)) : Line(Point(c+1, r), Point(c , r))); start_point_to_line_idx.insert(std::pair(lines.back().a, int(lines.size()) - 1)); } } } // 2) Chain the lines. std::vector line_processed(lines.size(), false); Polygons out; for (int i_candidate = 0; i_candidate < int(lines.size()); ++ i_candidate) { if (line_processed[i_candidate]) continue; Polygon poly; line_processed[i_candidate] = true; poly.points.push_back(lines[i_candidate].b); int i_line_current = i_candidate; for (;;) { std::pair line_range = start_point_to_line_idx.equal_range(lines[i_line_current].b); // The interval has to be non empty, there shall be at least one line continuing the current one. assert(line_range.first != line_range.second); int i_next = -1; for (EndPointMapType::iterator it = line_range.first; it != line_range.second; ++ it) { if (it->second == i_candidate) { // closing the loop. goto end_of_poly; } if (line_processed[it->second]) continue; if (i_next == -1) { i_next = it->second; } else { // This is a corner, where two lines meet exactly. Pick the line, which encloses a smallest angle with // the current edge. const Line &line_current = lines[i_line_current]; const Line &line_next = lines[it->second]; const Vector v1 = line_current.vector(); const Vector v2 = line_next.vector(); int64_t cross = int64_t(v1(0)) * int64_t(v2(1)) - int64_t(v2(0)) * int64_t(v1(1)); if (cross > 0) { // This has to be a convex right angle. There is no better next line. i_next = it->second; break; } } } line_processed[i_next] = true; i_line_current = i_next; poly.points.push_back(lines[i_line_current].b); } end_of_poly: out.push_back(std::move(poly)); } // 3) Scale the polygons back into world, shrink slightly and remove collinear points. for (size_t i = 0; i < out.size(); ++ i) { Polygon &poly = out[i]; for (size_t j = 0; j < poly.points.size(); ++ j) { Point &p = poly.points[j]; p(0) *= m_resolution; p(1) *= m_resolution; p(0) += m_bbox.min(0); p(1) += m_bbox.min(1); } // Shrink the contour slightly, so if the same contour gets discretized and simplified again, one will get the same result. // Remove collineaer points. Points pts; pts.reserve(poly.points.size()); for (size_t j = 0; j < poly.points.size(); ++ j) { size_t j0 = (j == 0) ? poly.points.size() - 1 : j - 1; size_t j2 = (j + 1 == poly.points.size()) ? 0 : j + 1; Point v = poly.points[j2] - poly.points[j0]; if (v(0) != 0 && v(1) != 0) { // This is a corner point. Copy it to the output contour. Point p = poly.points[j]; p(1) += (v(0) < 0) ? - offset : offset; p(0) += (v(1) > 0) ? - offset : offset; pts.push_back(p); } } poly.points = std::move(pts); } return out; } std::vector> EdgeGrid::Grid::intersecting_edges() const { std::vector> out; // For each cell: for (int r = 0; r < (int)m_rows; ++ r) { for (int c = 0; c < (int)m_cols; ++ c) { const Cell &cell = m_cells[r * m_cols + c]; // For each pair of segments in the cell: for (size_t i = cell.begin; i != cell.end; ++ i) { const Slic3r::Points &ipts = *m_contours[m_cell_data[i].first]; size_t ipt = m_cell_data[i].second; // End points of the line segment and their vector. const Slic3r::Point &ip1 = ipts[ipt]; const Slic3r::Point &ip2 = ipts[(ipt + 1 == ipts.size()) ? 0 : ipt + 1]; for (size_t j = i + 1; j != cell.end; ++ j) { const Slic3r::Points &jpts = *m_contours[m_cell_data[j].first]; size_t jpt = m_cell_data[j].second; // End points of the line segment and their vector. const Slic3r::Point &jp1 = jpts[jpt]; const Slic3r::Point &jp2 = jpts[(jpt + 1 == jpts.size()) ? 0 : jpt + 1]; if (&ipts == &jpts && (&ip1 == &jp2 || &jp1 == &ip2)) // Segments of the same contour share a common vertex. continue; if (Geometry::segments_intersect(ip1, ip2, jp1, jp2)) { // The two segments intersect. Add them to the output. int jfirst = (&jpts < &ipts) || (&jpts == &ipts && jpt < ipt); out.emplace_back(jfirst ? std::make_pair(std::make_pair(&ipts, ipt), std::make_pair(&jpts, jpt)) : std::make_pair(std::make_pair(&ipts, ipt), std::make_pair(&jpts, jpt))); } } } } } Slic3r::sort_remove_duplicates(out); return out; } bool EdgeGrid::Grid::has_intersecting_edges() const { // For each cell: for (int r = 0; r < (int)m_rows; ++ r) { for (int c = 0; c < (int)m_cols; ++ c) { const Cell &cell = m_cells[r * m_cols + c]; // For each pair of segments in the cell: for (size_t i = cell.begin; i != cell.end; ++ i) { const Slic3r::Points &ipts = *m_contours[m_cell_data[i].first]; size_t ipt = m_cell_data[i].second; // End points of the line segment and their vector. const Slic3r::Point &ip1 = ipts[ipt]; const Slic3r::Point &ip2 = ipts[(ipt + 1 == ipts.size()) ? 0 : ipt + 1]; for (size_t j = i + 1; j != cell.end; ++ j) { const Slic3r::Points &jpts = *m_contours[m_cell_data[j].first]; size_t jpt = m_cell_data[j].second; // End points of the line segment and their vector. const Slic3r::Point &jp1 = jpts[jpt]; const Slic3r::Point &jp2 = jpts[(jpt + 1 == jpts.size()) ? 0 : jpt + 1]; if (! (&ipts == &jpts && (&ip1 == &jp2 || &jp1 == &ip2)) && Geometry::segments_intersect(ip1, ip2, jp1, jp2)) return true; } } } } return false; } void EdgeGrid::save_png(const EdgeGrid::Grid &grid, const BoundingBox &bbox, coord_t resolution, const char *path, size_t scale) { unsigned int w = (bbox.max(0) - bbox.min(0) + resolution - 1) / resolution; unsigned int h = (bbox.max(1) - bbox.min(1) + resolution - 1) / resolution; std::vector pixels(w * h * 3, 0); const coord_t search_radius = grid.resolution() * 2; const coord_t display_blend_radius = grid.resolution() * 2; for (coord_t r = 0; r < h; ++r) { for (coord_t c = 0; c < w; ++ c) { unsigned char *pxl = pixels.data() + (((h - r - 1) * w) + c) * 3; Point pt(c * resolution + bbox.min(0), r * resolution + bbox.min(1)); coordf_t min_dist; bool on_segment = true; #if 0 if (grid.signed_distance_edges(pt, search_radius, min_dist, &on_segment)) { #else if (grid.signed_distance(pt, search_radius, min_dist)) { #endif float s = 255 * std::abs(min_dist) / float(display_blend_radius); int is = std::max(0, std::min(255, int(floor(s + 0.5f)))); if (min_dist < 0) { if (on_segment) { pxl[0] = 255; pxl[1] = 255 - is; pxl[2] = 255 - is; } else { pxl[0] = 255; pxl[1] = 0; pxl[2] = 255 - is; } } else { if (on_segment) { pxl[0] = 255 - is; pxl[1] = 255 - is; pxl[2] = 255; } else { pxl[0] = 255 - is; pxl[1] = 0; pxl[2] = 255; } } } else { pxl[0] = 0; pxl[1] = 255; pxl[2] = 0; } float gridx = float(pt(0) - grid.bbox().min(0)) / float(grid.resolution()); float gridy = float(pt(1) - grid.bbox().min(1)) / float(grid.resolution()); if (gridx >= -0.4f && gridy >= -0.4f && gridx <= grid.cols() + 0.4f && gridy <= grid.rows() + 0.4f) { int ix = int(floor(gridx + 0.5f)); int iy = int(floor(gridy + 0.5f)); float dx = gridx - float(ix); float dy = gridy - float(iy); float d = sqrt(dx*dx + dy*dy) * float(grid.resolution()) / float(resolution); if (d < 1.f) { // Less than 1 pixel from the grid point. float t = 0.5f + 0.5f * d; pxl[0] = (unsigned char)(t * pxl[0]); pxl[1] = (unsigned char)(t * pxl[1]); pxl[2] = (unsigned char)(t * pxl[2]); } } float dgrid = fabs(min_dist) / float(grid.resolution()); float igrid = floor(dgrid + 0.5f); dgrid = std::abs(dgrid - igrid) * float(grid.resolution()) / float(resolution); if (dgrid < 1.f) { // Less than 1 pixel from the grid point. float t = 0.5f + 0.5f * dgrid; pxl[0] = (unsigned char)(t * pxl[0]); pxl[1] = (unsigned char)(t * pxl[1]); pxl[2] = (unsigned char)(t * pxl[2]); if (igrid > 0.f) { // Other than zero iso contour. int g = pxl[1] + 255.f * (1.f - t); pxl[1] = std::min(g, 255); } } } } png::write_rgb_to_file_scaled(path, w, h, pixels, scale); } // Find all pairs of intersectiong edges from the set of polygons. std::vector> intersecting_edges(const Polygons &polygons) { double len = 0; size_t cnt = 0; BoundingBox bbox; for (const Polygon &poly : polygons) { if (poly.points.size() < 2) continue; for (size_t i = 0; i < poly.points.size(); ++ i) { bbox.merge(poly.points[i]); size_t j = (i == 0) ? (poly.points.size() - 1) : i - 1; len += (poly.points[j] - poly.points[i]).cast().norm(); ++ cnt; } } std::vector> out; if (cnt > 0) { len /= double(cnt); bbox.offset(20); EdgeGrid::Grid grid; grid.set_bbox(bbox); grid.create(polygons, len); out = grid.intersecting_edges(); } return out; } // Find all pairs of intersectiong edges from the set of polygons, highlight them in an SVG. void export_intersections_to_svg(const std::string &filename, const Polygons &polygons) { std::vector> intersections = intersecting_edges(polygons); BoundingBox bbox = get_extents(polygons); SVG svg(filename.c_str(), bbox); svg.draw(union_ex(polygons), "gray", 0.25f); svg.draw_outline(polygons, "black"); std::set intersecting_contours; for (const std::pair &ie : intersections) { intersecting_contours.insert(ie.first.first); intersecting_contours.insert(ie.second.first); } // Highlight the contours with intersections. coord_t line_width = coord_t(scale_(0.01)); for (const Points *ic : intersecting_contours) { svg.draw_outline(Polygon(*ic), "green"); svg.draw_outline(Polygon(*ic), "black", line_width); } // Paint the intersections. for (const std::pair &intersecting_edges : intersections) { auto edge = [](const EdgeGrid::Grid::ContourEdge &e) { return Line(e.first->at(e.second), e.first->at((e.second + 1 == e.first->size()) ? 0 : e.second + 1)); }; svg.draw(edge(intersecting_edges.first), "red", line_width); svg.draw(edge(intersecting_edges.second), "red", line_width); } svg.Close(); } } // namespace Slic3r