#include "GLGizmo.hpp" #include "../../libslic3r/Utils.hpp" #include "../../slic3r/GUI/GLCanvas3D.hpp" #include #include "../../libslic3r/Geometry.hpp" #include #include #include static const float DEFAULT_BASE_COLOR[3] = { 0.625f, 0.625f, 0.625f }; static const float DEFAULT_DRAG_COLOR[3] = { 1.0f, 1.0f, 1.0f }; static const float DEFAULT_HIGHLIGHT_COLOR[3] = { 1.0f, 0.38f, 0.0f }; static const float RED[3] = { 1.0f, 0.0f, 0.0f }; static const float GREEN[3] = { 0.0f, 1.0f, 0.0f }; static const float BLUE[3] = { 0.0f, 0.0f, 1.0f }; namespace Slic3r { namespace GUI { const float GLGizmoBase::Grabber::HalfSize = 2.0f; const float GLGizmoBase::Grabber::DraggingScaleFactor = 1.25f; GLGizmoBase::Grabber::Grabber() : center(Vec3d::Zero()) , angles(Vec3d::Zero()) , dragging(false) { color[0] = 1.0f; color[1] = 1.0f; color[2] = 1.0f; } void GLGizmoBase::Grabber::render(bool hover) const { float render_color[3]; if (hover) { render_color[0] = 1.0f - color[0]; render_color[1] = 1.0f - color[1]; render_color[2] = 1.0f - color[2]; } else ::memcpy((void*)render_color, (const void*)color, 3 * sizeof(float)); render(render_color, true); } void GLGizmoBase::Grabber::render(const float* render_color, bool use_lighting) const { float half_size = dragging ? HalfSize * DraggingScaleFactor : HalfSize; if (use_lighting) ::glEnable(GL_LIGHTING); ::glColor3f((GLfloat)render_color[0], (GLfloat)render_color[1], (GLfloat)render_color[2]); ::glPushMatrix(); ::glTranslatef((GLfloat)center(0), (GLfloat)center(1), (GLfloat)center(2)); float rad_to_deg = 180.0f / (GLfloat)PI; ::glRotatef((GLfloat)angles(0) * rad_to_deg, 1.0f, 0.0f, 0.0f); ::glRotatef((GLfloat)angles(1) * rad_to_deg, 0.0f, 1.0f, 0.0f); ::glRotatef((GLfloat)angles(2) * rad_to_deg, 0.0f, 0.0f, 1.0f); // face min x ::glPushMatrix(); ::glTranslatef(-(GLfloat)half_size, 0.0f, 0.0f); ::glRotatef(-90.0f, 0.0f, 1.0f, 0.0f); render_face(half_size); ::glPopMatrix(); // face max x ::glPushMatrix(); ::glTranslatef((GLfloat)half_size, 0.0f, 0.0f); ::glRotatef(90.0f, 0.0f, 1.0f, 0.0f); render_face(half_size); ::glPopMatrix(); // face min y ::glPushMatrix(); ::glTranslatef(0.0f, -(GLfloat)half_size, 0.0f); ::glRotatef(90.0f, 1.0f, 0.0f, 0.0f); render_face(half_size); ::glPopMatrix(); // face max y ::glPushMatrix(); ::glTranslatef(0.0f, (GLfloat)half_size, 0.0f); ::glRotatef(-90.0f, 1.0f, 0.0f, 0.0f); render_face(half_size); ::glPopMatrix(); // face min z ::glPushMatrix(); ::glTranslatef(0.0f, 0.0f, -(GLfloat)half_size); ::glRotatef(180.0f, 1.0f, 0.0f, 0.0f); render_face(half_size); ::glPopMatrix(); // face max z ::glPushMatrix(); ::glTranslatef(0.0f, 0.0f, (GLfloat)half_size); render_face(half_size); ::glPopMatrix(); ::glPopMatrix(); if (use_lighting) ::glDisable(GL_LIGHTING); } void GLGizmoBase::Grabber::render_face(float half_size) const { ::glBegin(GL_TRIANGLES); ::glNormal3f(0.0f, 0.0f, 1.0f); ::glVertex3f(-(GLfloat)half_size, -(GLfloat)half_size, 0.0f); ::glVertex3f((GLfloat)half_size, -(GLfloat)half_size, 0.0f); ::glVertex3f((GLfloat)half_size, (GLfloat)half_size, 0.0f); ::glVertex3f((GLfloat)half_size, (GLfloat)half_size, 0.0f); ::glVertex3f(-(GLfloat)half_size, (GLfloat)half_size, 0.0f); ::glVertex3f(-(GLfloat)half_size, -(GLfloat)half_size, 0.0f); ::glEnd(); } GLGizmoBase::GLGizmoBase(GLCanvas3D& parent) : m_parent(parent) , m_group_id(-1) , m_state(Off) , m_hover_id(-1) { ::memcpy((void*)m_base_color, (const void*)DEFAULT_BASE_COLOR, 3 * sizeof(float)); ::memcpy((void*)m_drag_color, (const void*)DEFAULT_DRAG_COLOR, 3 * sizeof(float)); ::memcpy((void*)m_highlight_color, (const void*)DEFAULT_HIGHLIGHT_COLOR, 3 * sizeof(float)); } void GLGizmoBase::set_hover_id(int id) { if (m_grabbers.empty() || (id < (int)m_grabbers.size())) { m_hover_id = id; on_set_hover_id(); } } void GLGizmoBase::set_highlight_color(const float* color) { if (color != nullptr) ::memcpy((void*)m_highlight_color, (const void*)color, 3 * sizeof(float)); } void GLGizmoBase::start_dragging() { for (int i = 0; i < (int)m_grabbers.size(); ++i) { m_grabbers[i].dragging = (m_hover_id == i); } on_start_dragging(); } void GLGizmoBase::stop_dragging() { set_tooltip(""); for (int i = 0; i < (int)m_grabbers.size(); ++i) { m_grabbers[i].dragging = false; } on_stop_dragging(); } void GLGizmoBase::update(const Linef3& mouse_ray) { if (m_hover_id != -1) on_update(mouse_ray); } float GLGizmoBase::picking_color_component(unsigned int id) const { int color = 254 - (int)id; if (m_group_id > -1) color -= m_group_id; return (float)color / 255.0f; } void GLGizmoBase::render_grabbers() const { for (int i = 0; i < (int)m_grabbers.size(); ++i) { m_grabbers[i].render(m_hover_id == i); } } void GLGizmoBase::render_grabbers_for_picking() const { for (int i = 0; i < (int)m_grabbers.size(); ++i) { m_grabbers[i].render_for_picking(); } } void GLGizmoBase::set_tooltip(const std::string& tooltip) const { m_parent.set_tooltip(tooltip); } std::string GLGizmoBase::format(float value, unsigned int decimals) const { char buf[1024]; ::sprintf(buf, "%.*f", decimals, value); return buf; } const float GLGizmoRotate::Offset = 5.0f; const unsigned int GLGizmoRotate::CircleResolution = 64; const unsigned int GLGizmoRotate::AngleResolution = 64; const unsigned int GLGizmoRotate::ScaleStepsCount = 72; const float GLGizmoRotate::ScaleStepRad = 2.0f * (float)PI / GLGizmoRotate::ScaleStepsCount; const unsigned int GLGizmoRotate::ScaleLongEvery = 2; const float GLGizmoRotate::ScaleLongTooth = 2.0f; const float GLGizmoRotate::ScaleShortTooth = 1.0f; const unsigned int GLGizmoRotate::SnapRegionsCount = 8; const float GLGizmoRotate::GrabberOffset = 5.0f; GLGizmoRotate::GLGizmoRotate(GLCanvas3D& parent, GLGizmoRotate::Axis axis) : GLGizmoBase(parent) , m_axis(axis) , m_angle(0.0) , m_center(0.0, 0.0, 0.0) , m_radius(0.0f) , m_keep_initial_values(false) { } void GLGizmoRotate::set_angle(double angle) { if (std::abs(angle - 2.0 * (double)PI) < EPSILON) angle = 0.0; m_angle = angle; } bool GLGizmoRotate::on_init() { m_grabbers.push_back(Grabber()); return true; } void GLGizmoRotate::on_update(const Linef3& mouse_ray) { Vec2d mouse_pos = to_2d(mouse_position_in_local_plane(mouse_ray)); Vec2d orig_dir = Vec2d::UnitX(); Vec2d new_dir = mouse_pos.normalized(); double theta = ::acos(clamp(-1.0, 1.0, new_dir.dot(orig_dir))); if (cross2(orig_dir, new_dir) < 0.0) theta = 2.0 * (double)PI - theta; double len = mouse_pos.norm(); // snap to snap region double in_radius = (double)m_radius / 3.0; double out_radius = 2.0 * (double)in_radius; if ((in_radius <= len) && (len <= out_radius)) { double step = 2.0 * (double)PI / (double)SnapRegionsCount; theta = step * (double)std::round(theta / step); } else { // snap to scale in_radius = (double)m_radius; out_radius = in_radius + (double)ScaleLongTooth; if ((in_radius <= len) && (len <= out_radius)) { double step = 2.0 * (double)PI / (double)ScaleStepsCount; theta = step * (double)std::round(theta / step); } } if (theta == 2.0 * (double)PI) theta = 0.0; m_angle = theta; } void GLGizmoRotate::on_render(const BoundingBoxf3& box) const { if (m_grabbers[0].dragging) set_tooltip(format(m_angle * 180.0f / (float)PI, 4)); ::glEnable(GL_DEPTH_TEST); if (!m_keep_initial_values) { m_center = box.center(); m_radius = Offset + box.radius(); m_keep_initial_values = true; } ::glPushMatrix(); transform_to_local(); ::glLineWidth((m_hover_id != -1) ? 2.0f : 1.5f); ::glColor3fv((m_hover_id != -1) ? m_drag_color : m_highlight_color); render_circle(); if (m_hover_id != -1) { render_scale(); render_snap_radii(); render_reference_radius(); } ::glColor3fv(m_highlight_color); if (m_hover_id != -1) render_angle(); render_grabber(); ::glPopMatrix(); } void GLGizmoRotate::on_render_for_picking(const BoundingBoxf3& box) const { ::glDisable(GL_DEPTH_TEST); ::glPushMatrix(); transform_to_local(); m_grabbers[0].color[0] = 1.0f; m_grabbers[0].color[1] = 1.0f; m_grabbers[0].color[2] = picking_color_component(0); render_grabbers_for_picking(); ::glPopMatrix(); } void GLGizmoRotate::render_circle() const { ::glBegin(GL_LINE_LOOP); for (unsigned int i = 0; i < ScaleStepsCount; ++i) { float angle = (float)i * ScaleStepRad; float x = ::cos(angle) * m_radius; float y = ::sin(angle) * m_radius; float z = 0.0f; ::glVertex3f((GLfloat)x, (GLfloat)y, (GLfloat)z); } ::glEnd(); } void GLGizmoRotate::render_scale() const { float out_radius_long = m_radius + ScaleLongTooth; float out_radius_short = m_radius + ScaleShortTooth; ::glBegin(GL_LINES); for (unsigned int i = 0; i < ScaleStepsCount; ++i) { float angle = (float)i * ScaleStepRad; float cosa = ::cos(angle); float sina = ::sin(angle); float in_x = cosa * m_radius; float in_y = sina * m_radius; float in_z = 0.0f; float out_x = (i % ScaleLongEvery == 0) ? cosa * out_radius_long : cosa * out_radius_short; float out_y = (i % ScaleLongEvery == 0) ? sina * out_radius_long : sina * out_radius_short; float out_z = 0.0f; ::glVertex3f((GLfloat)in_x, (GLfloat)in_y, (GLfloat)in_z); ::glVertex3f((GLfloat)out_x, (GLfloat)out_y, (GLfloat)out_z); } ::glEnd(); } void GLGizmoRotate::render_snap_radii() const { float step = 2.0f * (float)PI / (float)SnapRegionsCount; float in_radius = m_radius / 3.0f; float out_radius = 2.0f * in_radius; ::glBegin(GL_LINES); for (unsigned int i = 0; i < SnapRegionsCount; ++i) { float angle = (float)i * step; float cosa = ::cos(angle); float sina = ::sin(angle); float in_x = cosa * in_radius; float in_y = sina * in_radius; float in_z = 0.0f; float out_x = cosa * out_radius; float out_y = sina * out_radius; float out_z = 0.0f; ::glVertex3f((GLfloat)in_x, (GLfloat)in_y, (GLfloat)in_z); ::glVertex3f((GLfloat)out_x, (GLfloat)out_y, (GLfloat)out_z); } ::glEnd(); } void GLGizmoRotate::render_reference_radius() const { ::glBegin(GL_LINES); ::glVertex3f(0.0f, 0.0f, 0.0f); ::glVertex3f((GLfloat)(m_radius + GrabberOffset), 0.0f, 0.0f); ::glEnd(); } void GLGizmoRotate::render_angle() const { float step_angle = (float)m_angle / AngleResolution; float ex_radius = m_radius + GrabberOffset; ::glBegin(GL_LINE_STRIP); for (unsigned int i = 0; i <= AngleResolution; ++i) { float angle = (float)i * step_angle; float x = ::cos(angle) * ex_radius; float y = ::sin(angle) * ex_radius; float z = 0.0f; ::glVertex3f((GLfloat)x, (GLfloat)y, (GLfloat)z); } ::glEnd(); } void GLGizmoRotate::render_grabber() const { double grabber_radius = (double)(m_radius + GrabberOffset); m_grabbers[0].center = Vec3d(::cos(m_angle) * grabber_radius, ::sin(m_angle) * grabber_radius, 0.0); m_grabbers[0].angles(2) = m_angle; ::glColor3fv((m_hover_id != -1) ? m_drag_color : m_highlight_color); ::glBegin(GL_LINES); ::glVertex3f(0.0f, 0.0f, 0.0f); ::glVertex3f((GLfloat)m_grabbers[0].center(0), (GLfloat)m_grabbers[0].center(1), (GLfloat)m_grabbers[0].center(2)); ::glEnd(); ::memcpy((void*)m_grabbers[0].color, (const void*)m_highlight_color, 3 * sizeof(float)); render_grabbers(); } void GLGizmoRotate::transform_to_local() const { ::glTranslatef((GLfloat)m_center(0), (GLfloat)m_center(1), (GLfloat)m_center(2)); switch (m_axis) { case X: { ::glRotatef(90.0f, 0.0f, 1.0f, 0.0f); ::glRotatef(90.0f, 0.0f, 0.0f, 1.0f); break; } case Y: { ::glRotatef(-90.0f, 1.0f, 0.0f, 0.0f); ::glRotatef(180.0f, 0.0f, 0.0f, 1.0f); break; } default: case Z: { // no rotation break; } } } Vec3d GLGizmoRotate::mouse_position_in_local_plane(const Linef3& mouse_ray) const { double half_pi = 0.5 * (double)PI; Transform3d m = Transform3d::Identity(); switch (m_axis) { case X: { m.rotate(Eigen::AngleAxisd(-half_pi, Vec3d::UnitZ())); m.rotate(Eigen::AngleAxisd(-half_pi, Vec3d::UnitY())); break; } case Y: { m.rotate(Eigen::AngleAxisd(-(double)PI, Vec3d::UnitZ())); m.rotate(Eigen::AngleAxisd(half_pi, Vec3d::UnitX())); break; } default: case Z: { // no rotation applied break; } } m.translate(-m_center); return transform(mouse_ray, m).intersect_plane(0.0); } GLGizmoRotate3D::GLGizmoRotate3D(GLCanvas3D& parent) : GLGizmoBase(parent) , m_x(parent, GLGizmoRotate::X) , m_y(parent, GLGizmoRotate::Y) , m_z(parent, GLGizmoRotate::Z) { m_x.set_group_id(0); m_y.set_group_id(1); m_z.set_group_id(2); } bool GLGizmoRotate3D::on_init() { if (!m_x.init() || !m_y.init() || !m_z.init()) return false; m_x.set_highlight_color(RED); m_y.set_highlight_color(GREEN); m_z.set_highlight_color(BLUE); std::string path = resources_dir() + "/icons/overlay/"; std::string filename = path + "rotate_off.png"; if (!m_textures[Off].load_from_file(filename, false)) return false; filename = path + "rotate_hover.png"; if (!m_textures[Hover].load_from_file(filename, false)) return false; filename = path + "rotate_on.png"; if (!m_textures[On].load_from_file(filename, false)) return false; return true; } void GLGizmoRotate3D::on_start_dragging() { switch (m_hover_id) { case 0: { m_x.start_dragging(); break; } case 1: { m_y.start_dragging(); break; } case 2: { m_z.start_dragging(); break; } default: { break; } } } void GLGizmoRotate3D::on_stop_dragging() { switch (m_hover_id) { case 0: { m_x.stop_dragging(); break; } case 1: { m_y.stop_dragging(); break; } case 2: { m_z.stop_dragging(); break; } default: { break; } } } void GLGizmoRotate3D::on_render(const BoundingBoxf3& box) const { if ((m_hover_id == -1) || (m_hover_id == 0)) m_x.render(box); if ((m_hover_id == -1) || (m_hover_id == 1)) m_y.render(box); if ((m_hover_id == -1) || (m_hover_id == 2)) m_z.render(box); } const float GLGizmoScale3D::Offset = 5.0f; GLGizmoScale3D::GLGizmoScale3D(GLCanvas3D& parent) : GLGizmoBase(parent) , m_scale(Vec3d::Ones()) , m_starting_scale(Vec3d::Ones()) , m_show_starting_box(false) { } bool GLGizmoScale3D::on_init() { std::string path = resources_dir() + "/icons/overlay/"; std::string filename = path + "scale_off.png"; if (!m_textures[Off].load_from_file(filename, false)) return false; filename = path + "scale_hover.png"; if (!m_textures[Hover].load_from_file(filename, false)) return false; filename = path + "scale_on.png"; if (!m_textures[On].load_from_file(filename, false)) return false; for (int i = 0; i < 10; ++i) { m_grabbers.push_back(Grabber()); } double half_pi = 0.5 * (double)PI; // x axis m_grabbers[0].angles(1) = half_pi; m_grabbers[1].angles(1) = half_pi; // y axis m_grabbers[2].angles(0) = half_pi; m_grabbers[3].angles(0) = half_pi; return true; } void GLGizmoScale3D::on_start_dragging() { if (m_hover_id != -1) { m_starting_drag_position = m_grabbers[m_hover_id].center; m_show_starting_box = true; m_starting_box = m_box; } } void GLGizmoScale3D::on_update(const Linef3& mouse_ray) { if ((m_hover_id == 0) || (m_hover_id == 1)) do_scale_x(mouse_ray); else if ((m_hover_id == 2) || (m_hover_id == 3)) do_scale_y(mouse_ray); else if ((m_hover_id == 4) || (m_hover_id == 5)) do_scale_z(mouse_ray); else if (m_hover_id >= 6) do_scale_uniform(mouse_ray); } void GLGizmoScale3D::on_render(const BoundingBoxf3& box) const { if (m_grabbers[0].dragging || m_grabbers[1].dragging) set_tooltip("X: " + format(100.0f * m_scale(0), 4) + "%"); else if (m_grabbers[2].dragging || m_grabbers[3].dragging) set_tooltip("Y: " + format(100.0f * m_scale(1), 4) + "%"); else if (m_grabbers[4].dragging || m_grabbers[5].dragging) set_tooltip("Z: " + format(100.0f * m_scale(2), 4) + "%"); else if (m_grabbers[6].dragging || m_grabbers[7].dragging || m_grabbers[8].dragging || m_grabbers[9].dragging) { std::string tooltip = "X: " + format(100.0f * m_scale(0), 4) + "%\n"; tooltip += "Y: " + format(100.0f * m_scale(1), 4) + "%\n"; tooltip += "Z: " + format(100.0f * m_scale(2), 4) + "%"; set_tooltip(tooltip); } ::glEnable(GL_DEPTH_TEST); Vec3d offset_vec = (double)Offset * Vec3d::Ones(); m_box = BoundingBoxf3(box.min - offset_vec, box.max + offset_vec); const Vec3d& center = m_box.center(); // x axis m_grabbers[0].center = Vec3d(m_box.min(0), center(1), center(2)); m_grabbers[1].center = Vec3d(m_box.max(0), center(1), center(2)); ::memcpy((void*)m_grabbers[0].color, (const void*)RED, 3 * sizeof(float)); ::memcpy((void*)m_grabbers[1].color, (const void*)RED, 3 * sizeof(float)); // y axis m_grabbers[2].center = Vec3d(center(0), m_box.min(1), center(2)); m_grabbers[3].center = Vec3d(center(0), m_box.max(1), center(2)); ::memcpy((void*)m_grabbers[2].color, (const void*)GREEN, 3 * sizeof(float)); ::memcpy((void*)m_grabbers[3].color, (const void*)GREEN, 3 * sizeof(float)); // z axis m_grabbers[4].center = Vec3d(center(0), center(1), m_box.min(2)); m_grabbers[5].center = Vec3d(center(0), center(1), m_box.max(2)); ::memcpy((void*)m_grabbers[4].color, (const void*)BLUE, 3 * sizeof(float)); ::memcpy((void*)m_grabbers[5].color, (const void*)BLUE, 3 * sizeof(float)); // uniform m_grabbers[6].center = Vec3d(m_box.min(0), m_box.min(1), m_box.min(2)); m_grabbers[7].center = Vec3d(m_box.max(0), m_box.min(1), m_box.min(2)); m_grabbers[8].center = Vec3d(m_box.max(0), m_box.max(1), m_box.min(2)); m_grabbers[9].center = Vec3d(m_box.min(0), m_box.max(1), m_box.min(2)); for (int i = 6; i < 10; ++i) { ::memcpy((void*)m_grabbers[i].color, (const void*)m_highlight_color, 3 * sizeof(float)); } ::glLineWidth((m_hover_id != -1) ? 2.0f : 1.5f); if (m_hover_id == -1) { // draw box ::glColor3fv(m_base_color); render_box(m_box); // draw grabbers render_grabbers(); } else if ((m_hover_id == 0) || (m_hover_id == 1)) { // draw starting box if (m_show_starting_box) { ::glColor3fv(m_base_color); render_box(m_starting_box); } // draw current box ::glColor3fv(m_drag_color); render_box(m_box); // draw connection ::glColor3fv(m_grabbers[0].color); render_grabbers_connection(0, 1); // draw grabbers m_grabbers[0].render(true); m_grabbers[1].render(true); } else if ((m_hover_id == 2) || (m_hover_id == 3)) { // draw starting box if (m_show_starting_box) { ::glColor3fv(m_base_color); render_box(m_starting_box); } // draw current box ::glColor3fv(m_drag_color); render_box(m_box); // draw connection ::glColor3fv(m_grabbers[2].color); render_grabbers_connection(2, 3); // draw grabbers m_grabbers[2].render(true); m_grabbers[3].render(true); } else if ((m_hover_id == 4) || (m_hover_id == 5)) { // draw starting box if (m_show_starting_box) { ::glColor3fv(m_base_color); render_box(m_starting_box); } // draw current box ::glColor3fv(m_drag_color); render_box(m_box); // draw connection ::glColor3fv(m_grabbers[4].color); render_grabbers_connection(4, 5); // draw grabbers m_grabbers[4].render(true); m_grabbers[5].render(true); } else if (m_hover_id >= 6) { // draw starting box if (m_show_starting_box) { ::glColor3fv(m_base_color); render_box(m_starting_box); } // draw current box ::glColor3fv(m_drag_color); render_box(m_box); // draw grabbers for (int i = 6; i < 10; ++i) { m_grabbers[i].render(true); } } } void GLGizmoScale3D::on_render_for_picking(const BoundingBoxf3& box) const { ::glDisable(GL_DEPTH_TEST); for (unsigned int i = 0; i < (unsigned int)m_grabbers.size(); ++i) { m_grabbers[i].color[0] = 1.0f; m_grabbers[i].color[1] = 1.0f; m_grabbers[i].color[2] = picking_color_component(i); } render_grabbers_for_picking(); } void GLGizmoScale3D::render_box(const BoundingBoxf3& box) const { // bottom face ::glBegin(GL_LINE_LOOP); ::glVertex3f((GLfloat)box.min(0), (GLfloat)box.min(1), (GLfloat)box.min(2)); ::glVertex3f((GLfloat)box.min(0), (GLfloat)box.max(1), (GLfloat)box.min(2)); ::glVertex3f((GLfloat)box.max(0), (GLfloat)box.max(1), (GLfloat)box.min(2)); ::glVertex3f((GLfloat)box.max(0), (GLfloat)box.min(1), (GLfloat)box.min(2)); ::glEnd(); // top face ::glBegin(GL_LINE_LOOP); ::glVertex3f((GLfloat)box.min(0), (GLfloat)box.min(1), (GLfloat)box.max(2)); ::glVertex3f((GLfloat)box.min(0), (GLfloat)box.max(1), (GLfloat)box.max(2)); ::glVertex3f((GLfloat)box.max(0), (GLfloat)box.max(1), (GLfloat)box.max(2)); ::glVertex3f((GLfloat)box.max(0), (GLfloat)box.min(1), (GLfloat)box.max(2)); ::glEnd(); // vertical edges ::glBegin(GL_LINES); ::glVertex3f((GLfloat)box.min(0), (GLfloat)box.min(1), (GLfloat)box.min(2)); ::glVertex3f((GLfloat)box.min(0), (GLfloat)box.min(1), (GLfloat)box.max(2)); ::glVertex3f((GLfloat)box.min(0), (GLfloat)box.max(1), (GLfloat)box.min(2)); ::glVertex3f((GLfloat)box.min(0), (GLfloat)box.max(1), (GLfloat)box.max(2)); ::glVertex3f((GLfloat)box.max(0), (GLfloat)box.max(1), (GLfloat)box.min(2)); ::glVertex3f((GLfloat)box.max(0), (GLfloat)box.max(1), (GLfloat)box.max(2)); ::glVertex3f((GLfloat)box.max(0), (GLfloat)box.min(1), (GLfloat)box.min(2)); ::glVertex3f((GLfloat)box.max(0), (GLfloat)box.min(1), (GLfloat)box.max(2)); ::glEnd(); } void GLGizmoScale3D::render_grabbers_connection(unsigned int id_1, unsigned int id_2) const { unsigned int grabbers_count = (unsigned int)m_grabbers.size(); if ((id_1 < grabbers_count) && (id_2 < grabbers_count)) { ::glBegin(GL_LINES); ::glVertex3f((GLfloat)m_grabbers[id_1].center(0), (GLfloat)m_grabbers[id_1].center(1), (GLfloat)m_grabbers[id_1].center(2)); ::glVertex3f((GLfloat)m_grabbers[id_2].center(0), (GLfloat)m_grabbers[id_2].center(1), (GLfloat)m_grabbers[id_2].center(2)); ::glEnd(); } } void GLGizmoScale3D::do_scale_x(const Linef3& mouse_ray) { double ratio = calc_ratio(1, mouse_ray, m_starting_box.center()); if (ratio > 0.0) m_scale(0) = m_starting_scale(0) * ratio; } void GLGizmoScale3D::do_scale_y(const Linef3& mouse_ray) { double ratio = calc_ratio(2, mouse_ray, m_starting_box.center()); if (ratio > 0.0) m_scale(0) = m_starting_scale(1) * ratio; // << this is temporary // m_scale(1) = m_starting_scale(1) * ratio; } void GLGizmoScale3D::do_scale_z(const Linef3& mouse_ray) { double ratio = calc_ratio(1, mouse_ray, m_starting_box.center()); if (ratio > 0.0) m_scale(0) = m_starting_scale(2) * ratio; // << this is temporary // m_scale(2) = m_starting_scale(2) * ratio; } void GLGizmoScale3D::do_scale_uniform(const Linef3& mouse_ray) { Vec3d center = m_starting_box.center(); center(2) = m_box.min(2); double ratio = calc_ratio(0, mouse_ray, center); if (ratio > 0.0) m_scale = m_starting_scale * ratio; } double GLGizmoScale3D::calc_ratio(unsigned int preferred_plane_id, const Linef3& mouse_ray, const Vec3d& center) const { double ratio = 0.0; Vec3d starting_vec = m_starting_drag_position - center; double len_starting_vec = starting_vec.norm(); if (len_starting_vec == 0.0) return ratio; Vec3d starting_vec_dir = starting_vec.normalized(); Vec3d mouse_dir = mouse_ray.unit_vector(); unsigned int plane_id = preferred_plane_id; // 1st try to see if the mouse direction is close enough to the preferred plane normal double dot_to_normal = 0.0; switch (plane_id) { case 0: { dot_to_normal = std::abs(mouse_dir.dot(Vec3d::UnitZ())); break; } case 1: { dot_to_normal = std::abs(mouse_dir.dot(-Vec3d::UnitY())); break; } case 2: { dot_to_normal = std::abs(mouse_dir.dot(Vec3d::UnitX())); break; } } if (dot_to_normal < 0.1) { // if not, select the plane who's normal is closest to the mouse direction typedef std::map ProjsMap; ProjsMap projs_map; projs_map.insert(ProjsMap::value_type(std::abs(mouse_dir.dot(Vec3d::UnitZ())), 0)); // plane xy projs_map.insert(ProjsMap::value_type(std::abs(mouse_dir.dot(-Vec3d::UnitY())), 1)); // plane xz projs_map.insert(ProjsMap::value_type(std::abs(mouse_dir.dot(Vec3d::UnitX())), 2)); // plane yz plane_id = projs_map.rbegin()->second; } switch (plane_id) { case 0: { // calculates the intersection of the mouse ray with the plane parallel to plane XY and passing through the given center Transform3d m = Transform3d::Identity(); m.translate(-center); Vec2d mouse_pos_2d = to_2d(transform(mouse_ray, m).intersect_plane(0.0)); // ratio is given by the projection of the calculated intersection on the starting vector divided by the starting vector length ratio = starting_vec_dir.dot(Vec3d(mouse_pos_2d(0), mouse_pos_2d(1), 0.0)) / len_starting_vec; break; } case 1: { // calculates the intersection of the mouse ray with the plane parallel to plane XZ and passing through the given center Transform3d m = Transform3d::Identity(); m.rotate(Eigen::AngleAxisd(-0.5 * (double)PI, Vec3d::UnitX())); m.translate(-center); Vec2d mouse_pos_2d = to_2d(transform(mouse_ray, m).intersect_plane(0.0)); // ratio is given by the projection of the calculated intersection on the starting vector divided by the starting vector length ratio = starting_vec_dir.dot(Vec3d(mouse_pos_2d(0), 0.0, mouse_pos_2d(1))) / len_starting_vec; break; } case 2: { // calculates the intersection of the mouse ray with the plane parallel to plane YZ and passing through the given center Transform3d m = Transform3d::Identity(); m.rotate(Eigen::AngleAxisd(-0.5f * (double)PI, Vec3d::UnitY())); m.translate(-center); Vec2d mouse_pos_2d = to_2d(transform(mouse_ray, m).intersect_plane(0.0)); // ratio is given by the projection of the calculated intersection on the starting vector divided by the starting vector length ratio = starting_vec_dir.dot(Vec3d(0.0, mouse_pos_2d(1), -mouse_pos_2d(0))) / len_starting_vec; break; } } return ratio; } GLGizmoFlatten::GLGizmoFlatten(GLCanvas3D& parent) : GLGizmoBase(parent) , m_normal(0.0, 0.0, 0.0) { } bool GLGizmoFlatten::on_init() { std::string path = resources_dir() + "/icons/overlay/"; std::string filename = path + "layflat_off.png"; if (!m_textures[Off].load_from_file(filename, false)) return false; filename = path + "layflat_hover.png"; if (!m_textures[Hover].load_from_file(filename, false)) return false; filename = path + "layflat_on.png"; if (!m_textures[On].load_from_file(filename, false)) return false; return true; } void GLGizmoFlatten::on_start_dragging() { if (m_hover_id != -1) m_normal = m_planes[m_hover_id].normal; } void GLGizmoFlatten::on_render(const BoundingBoxf3& box) const { // the dragged_offset is a vector measuring where was the object moved // with the gizmo being on. This is reset in set_flattening_data and // does not work correctly when there are multiple copies. if (!m_center) // this is the first bounding box that we see m_center.reset(new Vec3d(box.center())); Vec3d dragged_offset = box.center() - *m_center; ::glEnable(GL_BLEND); ::glEnable(GL_DEPTH_TEST); for (int i=0; i<(int)m_planes.size(); ++i) { if (i == m_hover_id) ::glColor4f(0.9f, 0.9f, 0.9f, 0.75f); else ::glColor4f(0.9f, 0.9f, 0.9f, 0.5f); for (Vec2d offset : m_instances_positions) { offset += to_2d(dragged_offset); ::glPushMatrix(); ::glTranslatef((GLfloat)offset(0), (GLfloat)offset(1), 0.0f); ::glBegin(GL_POLYGON); for (const Vec3d& vertex : m_planes[i].vertices) ::glVertex3f((GLfloat)vertex(0), (GLfloat)vertex(1), (GLfloat)vertex(2)); ::glEnd(); ::glPopMatrix(); } } ::glDisable(GL_BLEND); } void GLGizmoFlatten::on_render_for_picking(const BoundingBoxf3& box) const { ::glEnable(GL_DEPTH_TEST); for (unsigned int i = 0; i < m_planes.size(); ++i) { // FIXME: the color assignement will fail if the planes count is greater than 254 // use the other color components in that case !! ::glColor3f(1.0f, 1.0f, picking_color_component(i)); for (const Vec2d& offset : m_instances_positions) { ::glPushMatrix(); ::glTranslatef((GLfloat)offset(0), (GLfloat)offset(1), 0.0f); ::glBegin(GL_POLYGON); for (const Vec3d& vertex : m_planes[i].vertices) ::glVertex3f((GLfloat)vertex(0), (GLfloat)vertex(1), (GLfloat)vertex(2)); ::glEnd(); ::glPopMatrix(); } } } void GLGizmoFlatten::set_flattening_data(const ModelObject* model_object) { m_center.release(); // object is not being dragged (this would not be called otherwise) - we must forget about the bounding box position... m_model_object = model_object; // ...and save the updated positions of the object instances: if (m_model_object && !m_model_object->instances.empty()) { m_instances_positions.clear(); for (const auto* instance : m_model_object->instances) m_instances_positions.emplace_back(instance->offset); } if (is_plane_update_necessary()) update_planes(); } void GLGizmoFlatten::update_planes() { TriangleMesh ch; for (const ModelVolume* vol : m_model_object->volumes) ch.merge(vol->get_convex_hull()); ch = ch.convex_hull_3d(); ch.scale(m_model_object->instances.front()->scaling_factor); ch.rotate_z(m_model_object->instances.front()->rotation); m_planes.clear(); // Now we'll go through all the facets and append Points of facets sharing the same normal: const int num_of_facets = ch.stl.stats.number_of_facets; std::vector facet_queue(num_of_facets, 0); std::vector facet_visited(num_of_facets, false); int facet_queue_cnt = 0; const stl_normal* normal_ptr = nullptr; while (1) { // Find next unvisited triangle: int facet_idx = 0; for (; facet_idx < num_of_facets; ++ facet_idx) if (!facet_visited[facet_idx]) { facet_queue[facet_queue_cnt ++] = facet_idx; facet_visited[facet_idx] = true; normal_ptr = &ch.stl.facet_start[facet_idx].normal; m_planes.emplace_back(); break; } if (facet_idx == num_of_facets) break; // Everything was visited already while (facet_queue_cnt > 0) { int facet_idx = facet_queue[-- facet_queue_cnt]; const stl_normal& this_normal = ch.stl.facet_start[facet_idx].normal; if (std::abs(this_normal(0) - (*normal_ptr)(0)) < 0.001 && std::abs(this_normal(1) - (*normal_ptr)(1)) < 0.001 && std::abs(this_normal(2) - (*normal_ptr)(2)) < 0.001) { stl_vertex* first_vertex = ch.stl.facet_start[facet_idx].vertex; for (int j=0; j<3; ++j) m_planes.back().vertices.emplace_back(first_vertex[j](0), first_vertex[j](1), first_vertex[j](2)); facet_visited[facet_idx] = true; for (int j = 0; j < 3; ++ j) { int neighbor_idx = ch.stl.neighbors_start[facet_idx].neighbor[j]; if (! facet_visited[neighbor_idx]) facet_queue[facet_queue_cnt ++] = neighbor_idx; } } } m_planes.back().normal = Vec3d((double)(*normal_ptr)(0), (double)(*normal_ptr)(1), (double)(*normal_ptr)(2)); // if this is a just a very small triangle, remove it to speed up further calculations (it would be rejected anyway): if (m_planes.back().vertices.size() == 3 && (m_planes.back().vertices[0] - m_planes.back().vertices[1]).norm() < 1.f || (m_planes.back().vertices[0] - m_planes.back().vertices[2]).norm() < 1.f) m_planes.pop_back(); } // Now we'll go through all the polygons, transform the points into xy plane to process them: for (unsigned int polygon_id=0; polygon_id < m_planes.size(); ++polygon_id) { Pointf3s& polygon = m_planes[polygon_id].vertices; const Vec3d& normal = m_planes[polygon_id].normal; // We are going to rotate about z and y to flatten the plane float angle_z = 0.f; float angle_y = 0.f; if (std::abs(normal(1)) > 0.001) angle_z = -atan2(normal(1), normal(0)); // angle to rotate so that normal ends up in xz-plane if (std::abs(normal(0)*cos(angle_z) - normal(1)*sin(angle_z)) > 0.001) angle_y = -atan2(normal(0)*cos(angle_z) - normal(1)*sin(angle_z), normal(2)); // angle to rotate to make normal point upwards else { // In case it already was in z-direction, we must ensure it is not the wrong way: angle_y = normal(2) > 0.f ? 0.f : -PI; } // Rotate all points to the xy plane: Transform3d m = Transform3d::Identity(); m.rotate(Eigen::AngleAxisd((double)angle_y, Vec3d::UnitY())); m.rotate(Eigen::AngleAxisd((double)angle_z, Vec3d::UnitZ())); polygon = transform(polygon, m); polygon = Slic3r::Geometry::convex_hull(polygon); // To remove the inner points // We will calculate area of the polygon and discard ones that are too small // The limit is more forgiving in case the normal is in the direction of the coordinate axes const float minimal_area = (std::abs(normal(0)) > 0.999f || std::abs(normal(1)) > 0.999f || std::abs(normal(2)) > 0.999f) ? 1.f : 20.f; float& area = m_planes[polygon_id].area; area = 0.f; for (unsigned int i = 0; i < polygon.size(); i++) // Shoelace formula area += polygon[i](0)*polygon[i + 1 < polygon.size() ? i + 1 : 0](1) - polygon[i + 1 < polygon.size() ? i + 1 : 0](0)*polygon[i](1); area = std::abs(area / 2.f); if (area < minimal_area) { m_planes.erase(m_planes.begin()+(polygon_id--)); continue; } // We will shrink the polygon a little bit so it does not touch the object edges: Vec3d centroid = std::accumulate(polygon.begin(), polygon.end(), Vec3d(0.0, 0.0, 0.0)); centroid /= (double)polygon.size(); for (auto& vertex : polygon) vertex = 0.9f*vertex + 0.1f*centroid; // Polygon is now simple and convex, we'll round the corners to make them look nicer. // The algorithm takes a vertex, calculates middles of respective sides and moves the vertex // towards their average (controlled by 'aggressivity'). This is repeated k times. // In next iterations, the neighbours are not always taken at the middle (to increase the // rounding effect at the corners, where we need it most). const unsigned int k = 10; // number of iterations const float aggressivity = 0.2f; // agressivity const unsigned int N = polygon.size(); std::vector> neighbours; if (k != 0) { Pointf3s points_out(2*k*N); // vector long enough to store the future vertices for (unsigned int j=0; jvolumes) m_source_data.bounding_boxes.push_back(vol->get_convex_hull().bounding_box()); m_source_data.scaling_factor = m_model_object->instances.front()->scaling_factor; m_source_data.rotation = m_model_object->instances.front()->rotation; const float* first_vertex = m_model_object->volumes.front()->get_convex_hull().first_vertex(); m_source_data.mesh_first_point = Vec3d((double)first_vertex[0], (double)first_vertex[1], (double)first_vertex[2]); } // Check if the bounding boxes of each volume's convex hull is the same as before // and that scaling and rotation has not changed. In that case we don't have to recalculate it. bool GLGizmoFlatten::is_plane_update_necessary() const { if (m_state != On || !m_model_object || m_model_object->instances.empty()) return false; if (m_model_object->volumes.size() != m_source_data.bounding_boxes.size() || m_model_object->instances.front()->scaling_factor != m_source_data.scaling_factor || m_model_object->instances.front()->rotation != m_source_data.rotation) return true; // now compare the bounding boxes: for (unsigned int i=0; ivolumes.size(); ++i) if (m_model_object->volumes[i]->get_convex_hull().bounding_box() != m_source_data.bounding_boxes[i]) return true; const float* first_vertex = m_model_object->volumes.front()->get_convex_hull().first_vertex(); Vec3d first_point((double)first_vertex[0], (double)first_vertex[1], (double)first_vertex[2]); if (first_point != m_source_data.mesh_first_point) return true; return false; } Vec3d GLGizmoFlatten::get_flattening_normal() const { Vec3d normal = m_model_object->instances.front()->world_matrix(true).matrix().block(0, 0, 3, 3).inverse() * m_normal; m_normal = Vec3d::Zero(); return normal.normalized(); } } // namespace GUI } // namespace Slic3r