#include "Geometry.hpp" #include "Line.hpp" #include "Polyline.hpp" #include #include #include namespace Slic3r { bool Line::intersection_infinite(const Line &other, Point* point) const { Vec2d a1 = this->a.cast(); Vec2d a2 = other.a.cast(); Vec2d v12 = (other.a - this->a).cast(); Vec2d v1 = (this->b - this->a).cast(); Vec2d v2 = (other.b - other.a).cast(); double denom = cross2(v1, v2); if (std::fabs(denom) < EPSILON) return false; double t1 = cross2(v12, v2) / denom; *point = (a1 + t1 * v1).cast(); return true; } /* distance to the closest point of line */ double Line::distance_to(const Point &point) const { const Line &line = *this; const Vec2d v = (line.b - line.a).cast(); const Vec2d va = (point - line.a).cast(); const double l2 = v.squaredNorm(); // avoid a sqrt if (l2 == 0.0) // line.a == line.b case return va.norm(); // Consider the line extending the segment, parameterized as line.a + t (line.b - line.a). // We find projection of this point onto the line. // It falls where t = [(this-line.a) . (line.b-line.a)] / |line.b-line.a|^2 const double t = va.dot(v) / l2; if (t < 0.0) return va.norm(); // beyond the 'a' end of the segment else if (t > 1.0) return (point - line.b).cast().norm(); // beyond the 'b' end of the segment return (t * v - va).norm(); } double Line::perp_distance_to(const Point &point) const { const Line &line = *this; const Vec2d v = (line.b - line.a).cast(); const Vec2d va = (point - line.a).cast(); if (line.a == line.b) return va.norm(); return std::abs(cross2(v, va)) / v.norm(); } double Line::orientation() const { double angle = this->atan2_(); if (angle < 0) angle = 2*PI + angle; return angle; } double Line::direction() const { double atan2 = this->atan2_(); return (fabs(atan2 - PI) < EPSILON) ? 0 : (atan2 < 0) ? (atan2 + PI) : atan2; } bool Line::parallel_to(double angle) const { return Slic3r::Geometry::directions_parallel(this->direction(), angle); } bool Line::intersection(const Line &l2, Point *intersection) const { const Line &l1 = *this; const Vec2d v1 = (l1.b - l1.a).cast(); const Vec2d v2 = (l2.b - l2.a).cast(); const Vec2d v12 = (l1.a - l2.a).cast(); double denom = cross2(v1, v2); double nume_a = cross2(v2, v12); double nume_b = cross2(v1, v12); if (fabs(denom) < EPSILON) #if 0 // Lines are collinear. Return true if they are coincident (overlappign). return ! (fabs(nume_a) < EPSILON && fabs(nume_b) < EPSILON); #else return false; #endif double t1 = nume_a / denom; double t2 = nume_b / denom; if (t1 >= 0 && t1 <= 1.0f && t2 >= 0 && t2 <= 1.0f) { // Get the intersection point. (*intersection) = (l1.a.cast() + t1 * v1).cast(); return true; } return false; // not intersecting } Vec3d Linef3::intersect_plane(double z) const { auto v = (this->b - this->a).cast(); double t = (z - this->a(2)) / v(2); return Vec3d(this->a(0) + v(0) * t, this->a(1) + v(1) * t, z); } }