# Implements pure perl packages # # Slic3r::GUI::3DScene::Base; # Slic3r::GUI::3DScene::Volume; # Slic3r::GUI::3DScene; # # It uses static methods of a C++ class Slic3r::GUI::_3DScene::GLVertexArray # for efficient building of vertex arrays for OpenGL rendering. # # Slic3r::GUI::Plater::3D derives from Slic3r::GUI::3DScene, # Slic3r::GUI::Plater::3DPreview, Slic3r::GUI::Plater::3DToolpaths, # Slic3r::GUI::Plater::ObjectCutDialog and Slic3r::GUI::Plater::ObjectPartsPanel # own $self->{canvas} of the Slic3r::GUI::3DScene type. # # Therefore the 3DScene supports renderng of STLs, extrusions and cutting planes, # and camera manipulation. package Slic3r::GUI::3DScene::Base; use strict; use warnings; use Wx qw(:timer); use Wx::Event qw(EVT_PAINT EVT_SIZE EVT_ERASE_BACKGROUND EVT_IDLE EVT_MOUSEWHEEL EVT_MOUSE_EVENTS EVT_TIMER); # must load OpenGL *before* Wx::GLCanvas use OpenGL qw(:glconstants :glfunctions :glufunctions :gluconstants); use base qw(Wx::GLCanvas Class::Accessor); use Math::Trig qw(asin tan); use List::Util qw(reduce min max first); use Slic3r::Geometry qw(X Y Z MIN MAX triangle_normal normalize deg2rad tan scale unscale scaled_epsilon); use Slic3r::Geometry::Clipper qw(offset_ex intersection_pl); use Wx::GLCanvas qw(:all); use Slic3r::Geometry qw(PI); # _dirty: boolean flag indicating, that the screen has to be redrawn on EVT_IDLE. # volumes: reference to vector of Slic3r::GUI::3DScene::Volume. # _camera_type: 'perspective' or 'ortho' __PACKAGE__->mk_accessors( qw(_quat _dirty init enable_picking enable_moving on_viewport_changed on_hover on_select on_double_click on_right_click on_move volumes _sphi _stheta cutting_plane_z cut_lines_vertices bed_shape bed_triangles bed_grid_lines background origin _mouse_pos _hover_volume_idx _drag_volume_idx _drag_start_pos _drag_start_xy _dragged layer_editing_enabled _layer_height_edited _camera_type _camera_target _camera_distance _zoom ) ); use constant TRACKBALLSIZE => 0.8; use constant TURNTABLE_MODE => 1; use constant GROUND_Z => -0.02; # For mesh selection: Not selected - bright yellow. use constant DEFAULT_COLOR => [1,1,0]; # For mesh selection: Selected - bright green. use constant SELECTED_COLOR => [0,1,0,1]; # For mesh selection: Mouse hovers over the object, but object not selected yet - dark green. use constant HOVER_COLOR => [0.4,0.9,0,1]; # phi / theta angles to orient the camera. use constant VIEW_DEFAULT => [45.0,45.0]; use constant VIEW_LEFT => [90.0,90.0]; use constant VIEW_RIGHT => [-90.0,90.0]; use constant VIEW_TOP => [0.0,0.0]; use constant VIEW_BOTTOM => [0.0,180.0]; use constant VIEW_FRONT => [0.0,90.0]; use constant VIEW_REAR => [180.0,90.0]; use constant MANIPULATION_IDLE => 0; use constant MANIPULATION_DRAGGING => 1; use constant MANIPULATION_LAYER_HEIGHT => 2; use constant GIMBALL_LOCK_THETA_MAX => 170; # make OpenGL::Array thread-safe { no warnings 'redefine'; *OpenGL::Array::CLONE_SKIP = sub { 1 }; } sub new { my ($class, $parent) = @_; # We can only enable multi sample anti aliasing wih wxWidgets 3.0.3 and with a hacked Wx::GLCanvas, # which exports some new WX_GL_XXX constants, namely WX_GL_SAMPLE_BUFFERS and WX_GL_SAMPLES. my $can_multisample = Wx::wxVERSION >= 3.000003 && defined Wx::GLCanvas->can('WX_GL_SAMPLE_BUFFERS') && defined Wx::GLCanvas->can('WX_GL_SAMPLES'); my $attrib = [WX_GL_RGBA, WX_GL_DOUBLEBUFFER, WX_GL_DEPTH_SIZE, 24]; if ($can_multisample) { # Request a window with multi sampled anti aliasing. This is a new feature in Wx 3.0.3 (backported from 3.1.0). # Use eval to avoid compilation, if the subs WX_GL_SAMPLE_BUFFERS and WX_GL_SAMPLES are missing. eval 'push(@$attrib, (WX_GL_SAMPLE_BUFFERS, 1, WX_GL_SAMPLES, 4));'; } # wxWidgets expect the attrib list to be ended by zero. push(@$attrib, 0); # we request a depth buffer explicitely because it looks like it's not created by # default on Linux, causing transparency issues my $self = $class->SUPER::new($parent, -1, Wx::wxDefaultPosition, Wx::wxDefaultSize, 0, "", $attrib); if (Wx::wxVERSION >= 3.000003) { # Wx 3.0.3 contains an ugly hack to support some advanced OpenGL attributes through the attribute list. # The attribute list is transferred between the wxGLCanvas and wxGLContext constructors using a single static array s_wglContextAttribs. # Immediatelly force creation of the OpenGL context to consume the static variable s_wglContextAttribs. $self->GetContext(); } $self->background(1); $self->_quat((0, 0, 0, 1)); $self->_stheta(45); $self->_sphi(45); $self->_zoom(1); # 3D point in model space $self->_camera_type('ortho'); # $self->_camera_type('perspective'); $self->_camera_target(Slic3r::Pointf3->new(0,0,0)); $self->_camera_distance(0.); # Size of a layer height texture, used by a shader to color map the object print layers. $self->{layer_preview_z_texture_width} = 512; $self->{layer_preview_z_texture_height} = 512; $self->{layer_height_edit_band_width} = 2.; $self->{layer_height_edit_strength} = 0.005; $self->{layer_height_edit_last_object_id} = -1; $self->{layer_height_edit_last_z} = 0.; $self->{layer_height_edit_last_action} = 0; $self->reset_objects; EVT_PAINT($self, sub { my $dc = Wx::PaintDC->new($self); $self->Render($dc); }); EVT_SIZE($self, sub { $self->_dirty(1) }); EVT_IDLE($self, sub { return unless $self->_dirty; return if !$self->IsShownOnScreen; $self->Resize( $self->GetSizeWH ); $self->Refresh; }); EVT_MOUSEWHEEL($self, \&mouse_wheel_event); EVT_MOUSE_EVENTS($self, \&mouse_event); $self->{layer_height_edit_timer_id} = &Wx::NewId(); $self->{layer_height_edit_timer} = Wx::Timer->new($self, $self->{layer_height_edit_timer_id}); EVT_TIMER($self, $self->{layer_height_edit_timer_id}, sub { my ($self, $event) = @_; return if ! $self->_layer_height_edited; return if $self->{layer_height_edit_last_object_id} == -1; $self->_variable_layer_thickness_action(undef, 1); }); return $self; } sub Destroy { my ($self) = @_; $self->{layer_height_edit_timer}->Stop; $self->DestroyGL; return $self->SUPER::Destroy; } sub _first_selected_object_id { my ($self) = @_; for my $i (0..$#{$self->volumes}) { if ($self->volumes->[$i]->selected) { return int($self->volumes->[$i]->select_group_id / 1000000); } } return -1; } # Returns an array with (left, top, right, bottom) of the variable layer thickness bar on the screen. sub _variable_layer_thickness_bar_rect { my ($self) = @_; my ($cw, $ch) = $self->GetSizeWH; my $bar_width = 70; return ($cw - $bar_width, 0, $cw, $ch); } sub _variable_layer_thickness_bar_rect_mouse_inside { my ($self, $mouse_evt) = @_; my ($bar_left, $bar_top, $bar_right, $bar_bottom) = $self->_variable_layer_thickness_bar_rect; return $mouse_evt->GetX >= $bar_left && $mouse_evt->GetX <= $bar_right && $mouse_evt->GetY >= $bar_top && $mouse_evt->GetY <= $bar_bottom; } sub _variable_layer_thickness_bar_mouse_cursor_z { my ($self, $object_idx, $mouse_evt) = @_; my ($bar_left, $bar_top, $bar_right, $bar_bottom) = $self->_variable_layer_thickness_bar_rect; return unscale($self->{print}->get_object($object_idx)->size->z) * ($bar_bottom - $mouse_evt->GetY - 1.) / ($bar_bottom - $bar_top); } sub _variable_layer_thickness_action { my ($self, $mouse_event, $do_modification) = @_; # A volume is selected. Test, whether hovering over a layer thickness bar. if (defined($mouse_event)) { $self->{layer_height_edit_last_z} = $self->_variable_layer_thickness_bar_mouse_cursor_z($self->{layer_height_edit_last_object_id}, $mouse_event); $self->{layer_height_edit_last_action} = $mouse_event->ShiftDown ? ($mouse_event->RightIsDown ? 3 : 2) : ($mouse_event->RightIsDown ? 0 : 1); } if ($self->{layer_height_edit_last_object_id} != -1) { $self->{print}->get_object($self->{layer_height_edit_last_object_id})->adjust_layer_height_profile( $self->{layer_height_edit_last_z}, $self->{layer_height_edit_strength}, $self->{layer_height_edit_band_width}, $self->{layer_height_edit_last_action}); $self->{print}->get_object($self->{layer_height_edit_last_object_id})->generate_layer_height_texture( $self->volumes->[$self->{layer_height_edit_last_object_id}]->layer_height_texture_data->ptr, $self->{layer_preview_z_texture_height}, $self->{layer_preview_z_texture_width}); $self->Refresh; # Automatic action on mouse down with the same coordinate. $self->{layer_height_edit_timer}->Start(100, wxTIMER_CONTINUOUS); } } sub mouse_event { my ($self, $e) = @_; my $pos = Slic3r::Pointf->new($e->GetPositionXY); my $object_idx_selected = $self->{layer_height_edit_last_object_id} = ($self->layer_editing_enabled && $self->{print}) ? $self->_first_selected_object_id : -1; if ($e->Entering && &Wx::wxMSW) { # wxMSW needs focus in order to catch mouse wheel events $self->SetFocus; } elsif ($e->LeftDClick) { if ($object_idx_selected != -1 && $self->_variable_layer_thickness_bar_rect_mouse_inside($e)) { } elsif ($self->on_double_click) { $self->on_double_click->(); } } elsif ($e->LeftDown || $e->RightDown) { # If user pressed left or right button we first check whether this happened # on a volume or not. my $volume_idx = $self->_hover_volume_idx // -1; $self->_layer_height_edited(0); if ($object_idx_selected != -1 && $self->_variable_layer_thickness_bar_rect_mouse_inside($e)) { # A volume is selected and the mouse is hovering over a layer thickness bar. # Start editing the layer height. $self->_layer_height_edited(1); $self->_variable_layer_thickness_action($e, 1); } else { # Select volume in this 3D canvas. # Don't deselect a volume if layer editing is enabled. We want the object to stay selected # during the scene manipulation. if ($self->enable_picking && ($volume_idx != -1 || ! $self->layer_editing_enabled)) { $self->deselect_volumes; $self->select_volume($volume_idx); if ($volume_idx != -1) { my $group_id = $self->volumes->[$volume_idx]->select_group_id; my @volumes; if ($group_id != -1) { $self->select_volume($_) for grep $self->volumes->[$_]->select_group_id == $group_id, 0..$#{$self->volumes}; } } $self->Refresh; } # propagate event through callback $self->on_select->($volume_idx) if $self->on_select; if ($volume_idx != -1) { if ($e->LeftDown && $self->enable_moving) { $self->_drag_volume_idx($volume_idx); $self->_drag_start_pos($self->mouse_to_3d(@$pos)); } elsif ($e->RightDown) { # if right clicking on volume, propagate event through callback $self->on_right_click->($e->GetPosition) if $self->on_right_click; } } } } elsif ($e->Dragging && $e->LeftIsDown && ! $self->_layer_height_edited && defined($self->_drag_volume_idx)) { # get new position at the same Z of the initial click point my $mouse_ray = $self->mouse_ray($e->GetX, $e->GetY); my $cur_pos = $mouse_ray->intersect_plane($self->_drag_start_pos->z); # calculate the translation vector my $vector = $self->_drag_start_pos->vector_to($cur_pos); # get volume being dragged my $volume = $self->volumes->[$self->_drag_volume_idx]; # get all volumes belonging to the same group, if any my @volumes; if ($volume->drag_group_id == -1) { @volumes = ($volume); } else { @volumes = grep $_->drag_group_id == $volume->drag_group_id, @{$self->volumes}; } # apply new temporary volume origin and ignore Z $_->origin->translate($vector->x, $vector->y, 0) for @volumes; #,, $self->_drag_start_pos($cur_pos); $self->_dragged(1); $self->Refresh; } elsif ($e->Dragging) { if ($self->_layer_height_edited && $object_idx_selected != -1) { $self->_variable_layer_thickness_action($e, 0); } elsif ($e->LeftIsDown) { # if dragging over blank area with left button, rotate if (defined $self->_drag_start_pos) { my $orig = $self->_drag_start_pos; if (TURNTABLE_MODE) { $self->_sphi($self->_sphi + ($pos->x - $orig->x) * TRACKBALLSIZE); $self->_stheta($self->_stheta - ($pos->y - $orig->y) * TRACKBALLSIZE); #- $self->_stheta(GIMBALL_LOCK_THETA_MAX) if $self->_stheta > GIMBALL_LOCK_THETA_MAX; $self->_stheta(0) if $self->_stheta < 0; } else { my $size = $self->GetClientSize; my @quat = trackball( $orig->x / ($size->width / 2) - 1, 1 - $orig->y / ($size->height / 2), #/ $pos->x / ($size->width / 2) - 1, 1 - $pos->y / ($size->height / 2), #/ ); $self->_quat(mulquats($self->_quat, \@quat)); } $self->on_viewport_changed->() if $self->on_viewport_changed; $self->Refresh; } $self->_drag_start_pos($pos); } elsif ($e->MiddleIsDown || $e->RightIsDown) { # if dragging over blank area with right button, translate if (defined $self->_drag_start_xy) { # get point in model space at Z = 0 my $cur_pos = $self->mouse_ray($e->GetX, $e->GetY)->intersect_plane(0); my $orig = $self->mouse_ray(@{$self->_drag_start_xy})->intersect_plane(0); $self->_camera_target->translate( @{$orig->vector_to($cur_pos)->negative}, ); $self->on_viewport_changed->() if $self->on_viewport_changed; $self->Refresh; } $self->_drag_start_xy($pos); } } elsif ($e->LeftUp || $e->MiddleUp || $e->RightUp) { if ($self->on_move && defined($self->_drag_volume_idx) && $self->_dragged) { # get all volumes belonging to the same group, if any my @volume_idxs; my $group_id = $self->volumes->[$self->_drag_volume_idx]->drag_group_id; if ($group_id == -1) { @volume_idxs = ($self->_drag_volume_idx); } else { @volume_idxs = grep $self->volumes->[$_]->drag_group_id == $group_id, 0..$#{$self->volumes}; } $self->on_move->(@volume_idxs); } $self->_drag_volume_idx(undef); $self->_drag_start_pos(undef); $self->_drag_start_xy(undef); $self->_dragged(undef); $self->_layer_height_edited(undef); $self->{layer_height_edit_timer}->Stop; } elsif ($e->Moving) { $self->_mouse_pos($pos); # Only refresh if picking is enabled, in that case the objects may get highlighted if the mouse cursor # hovers over. $self->Refresh if ($self->enable_picking); } else { $e->Skip(); } } sub mouse_wheel_event { my ($self, $e) = @_; if ($self->layer_editing_enabled && $self->{print}) { my $object_idx_selected = $self->_first_selected_object_id; if ($object_idx_selected != -1) { # A volume is selected. Test, whether hovering over a layer thickness bar. if ($self->_variable_layer_thickness_bar_rect_mouse_inside($e)) { # Adjust the width of the selection. $self->{layer_height_edit_band_width} = max(min($self->{layer_height_edit_band_width} * (1 + 0.1 * $e->GetWheelRotation() / $e->GetWheelDelta()), 10.), 1.5); $self->Refresh; return; } } } # Calculate the zoom delta and apply it to the current zoom factor my $zoom = $e->GetWheelRotation() / $e->GetWheelDelta(); $zoom = max(min($zoom, 4), -4); $zoom /= 10; $self->_zoom($self->_zoom / (1-$zoom)); # In order to zoom around the mouse point we need to translate # the camera target my $size = Slic3r::Pointf->new($self->GetSizeWH); my $pos = Slic3r::Pointf->new($e->GetX, $size->y - $e->GetY); #- $self->_camera_target->translate( # ($pos - $size/2) represents the vector from the viewport center # to the mouse point. By multiplying it by $zoom we get the new, # transformed, length of such vector. # Since we want that point to stay fixed, we move our camera target # in the opposite direction by the delta of the length of such vector # ($zoom - 1). We then scale everything by 1/$self->_zoom since # $self->_camera_target is expressed in terms of model units. -($pos->x - $size->x/2) * ($zoom) / $self->_zoom, -($pos->y - $size->y/2) * ($zoom) / $self->_zoom, 0, ) if 0; $self->on_viewport_changed->() if $self->on_viewport_changed; $self->_dirty(1); $self->Refresh; } # Reset selection. sub reset_objects { my ($self) = @_; $self->volumes([]); $self->_dirty(1); } # Setup camera to view all objects. sub set_viewport_from_scene { my ($self, $scene) = @_; $self->_sphi($scene->_sphi); $self->_stheta($scene->_stheta); $self->_camera_target($scene->_camera_target); $self->_zoom($scene->_zoom); $self->_quat($scene->_quat); $self->_dirty(1); } # Set the camera to a default orientation, # zoom to volumes. sub select_view { my ($self, $direction) = @_; my $dirvec; if (ref($direction)) { $dirvec = $direction; } else { if ($direction eq 'default') { $dirvec = VIEW_DEFAULT; } elsif ($direction eq 'left') { $dirvec = VIEW_LEFT; } elsif ($direction eq 'right') { $dirvec = VIEW_RIGHT; } elsif ($direction eq 'top') { $dirvec = VIEW_TOP; } elsif ($direction eq 'bottom') { $dirvec = VIEW_BOTTOM; } elsif ($direction eq 'front') { $dirvec = VIEW_FRONT; } elsif ($direction eq 'rear') { $dirvec = VIEW_REAR; } } my $bb = $self->volumes_bounding_box; if (! $bb->empty) { $self->_sphi($dirvec->[0]); $self->_stheta($dirvec->[1]); # Avoid gimball lock. $self->_stheta(GIMBALL_LOCK_THETA_MAX) if $self->_stheta > GIMBALL_LOCK_THETA_MAX; $self->_stheta(0) if $self->_stheta < 0; # View everything. $self->zoom_to_bounding_box($bb); $self->on_viewport_changed->() if $self->on_viewport_changed; $self->Refresh; } } sub zoom_to_bounding_box { my ($self, $bb) = @_; return if ($bb->empty); # calculate the zoom factor needed to adjust viewport to # bounding box my $max_size = max(@{$bb->size}) * 2; my $min_viewport_size = min($self->GetSizeWH); $self->_zoom($min_viewport_size / $max_size); # center view around bounding box center $self->_camera_target($bb->center); $self->on_viewport_changed->() if $self->on_viewport_changed; } sub zoom_to_bed { my ($self) = @_; if ($self->bed_shape) { $self->zoom_to_bounding_box($self->bed_bounding_box); } } sub zoom_to_volume { my ($self, $volume_idx) = @_; my $volume = $self->volumes->[$volume_idx]; my $bb = $volume->transformed_bounding_box; $self->zoom_to_bounding_box($bb); } sub zoom_to_volumes { my ($self) = @_; $self->zoom_to_bounding_box($self->volumes_bounding_box); } sub volumes_bounding_box { my ($self) = @_; my $bb = Slic3r::Geometry::BoundingBoxf3->new; $bb->merge($_->transformed_bounding_box) for @{$self->volumes}; return $bb; } sub bed_bounding_box { my ($self) = @_; my $bb = Slic3r::Geometry::BoundingBoxf3->new; if ($self->bed_shape) { $bb->merge_point(Slic3r::Pointf3->new(@$_, 0)) for @{$self->bed_shape}; } return $bb; } sub max_bounding_box { my ($self) = @_; my $bb = $self->bed_bounding_box; $bb->merge($self->volumes_bounding_box); return $bb; } sub set_auto_bed_shape { my ($self, $bed_shape) = @_; # draw a default square bed around object center my $max_size = max(@{ $self->volumes_bounding_box->size }); my $center = $self->volumes_bounding_box->center; $self->set_bed_shape([ [ $center->x - $max_size, $center->y - $max_size ], #-- [ $center->x + $max_size, $center->y - $max_size ], #-- [ $center->x + $max_size, $center->y + $max_size ], #++ [ $center->x - $max_size, $center->y + $max_size ], #++ ]); $self->origin(Slic3r::Pointf->new(@$center[X,Y])); } sub set_bed_shape { my ($self, $bed_shape) = @_; $self->bed_shape($bed_shape); # triangulate bed my $expolygon = Slic3r::ExPolygon->new([ map [map scale($_), @$_], @$bed_shape ]); my $bed_bb = $expolygon->bounding_box; { my @points = (); foreach my $triangle (@{ $expolygon->triangulate }) { push @points, map {+ unscale($_->x), unscale($_->y), GROUND_Z } @$triangle; #)) } $self->bed_triangles(OpenGL::Array->new_list(GL_FLOAT, @points)); } { my @polylines = (); for (my $x = $bed_bb->x_min; $x <= $bed_bb->x_max; $x += scale 10) { push @polylines, Slic3r::Polyline->new([$x,$bed_bb->y_min], [$x,$bed_bb->y_max]); } for (my $y = $bed_bb->y_min; $y <= $bed_bb->y_max; $y += scale 10) { push @polylines, Slic3r::Polyline->new([$bed_bb->x_min,$y], [$bed_bb->x_max,$y]); } # clip with a slightly grown expolygon because our lines lay on the contours and # may get erroneously clipped my @lines = map Slic3r::Line->new(@$_[0,-1]), @{intersection_pl(\@polylines, [ @{$expolygon->offset(+scaled_epsilon)} ])}; # append bed contours push @lines, map @{$_->lines}, @$expolygon; my @points = (); foreach my $line (@lines) { push @points, map {+ unscale($_->x), unscale($_->y), GROUND_Z } @$line; #)) } $self->bed_grid_lines(OpenGL::Array->new_list(GL_FLOAT, @points)); } $self->origin(Slic3r::Pointf->new(0,0)); } sub deselect_volumes { my ($self) = @_; $_->selected(0) for @{$self->volumes}; } sub select_volume { my ($self, $volume_idx) = @_; $self->volumes->[$volume_idx]->selected(1) if $volume_idx != -1; } sub SetCuttingPlane { my ($self, $z, $expolygons) = @_; $self->cutting_plane_z($z); # grow slices in order to display them better $expolygons = offset_ex([ map @$_, @$expolygons ], scale 0.1); my @verts = (); foreach my $line (map @{$_->lines}, map @$_, @$expolygons) { push @verts, ( unscale($line->a->x), unscale($line->a->y), $z, #)) unscale($line->b->x), unscale($line->b->y), $z, #)) ); } $self->cut_lines_vertices(OpenGL::Array->new_list(GL_FLOAT, @verts)); } # Given an axis and angle, compute quaternion. sub axis_to_quat { my ($ax, $phi) = @_; my $lena = sqrt(reduce { $a + $b } (map { $_ * $_ } @$ax)); my @q = map { $_ * (1 / $lena) } @$ax; @q = map { $_ * sin($phi / 2.0) } @q; $q[$#q + 1] = cos($phi / 2.0); return @q; } # Project a point on the virtual trackball. # If it is inside the sphere, map it to the sphere, if it outside map it # to a hyperbola. sub project_to_sphere { my ($r, $x, $y) = @_; my $d = sqrt($x * $x + $y * $y); if ($d < $r * 0.70710678118654752440) { # Inside sphere return sqrt($r * $r - $d * $d); } else { # On hyperbola my $t = $r / 1.41421356237309504880; return $t * $t / $d; } } sub cross { my ($v1, $v2) = @_; return (@$v1[1] * @$v2[2] - @$v1[2] * @$v2[1], @$v1[2] * @$v2[0] - @$v1[0] * @$v2[2], @$v1[0] * @$v2[1] - @$v1[1] * @$v2[0]); } # Simulate a track-ball. Project the points onto the virtual trackball, # then figure out the axis of rotation, which is the cross product of # P1 P2 and O P1 (O is the center of the ball, 0,0,0) Note: This is a # deformed trackball-- is a trackball in the center, but is deformed # into a hyperbolic sheet of rotation away from the center. # It is assumed that the arguments to this routine are in the range # (-1.0 ... 1.0). sub trackball { my ($p1x, $p1y, $p2x, $p2y) = @_; if ($p1x == $p2x && $p1y == $p2y) { # zero rotation return (0.0, 0.0, 0.0, 1.0); } # First, figure out z-coordinates for projection of P1 and P2 to # deformed sphere my @p1 = ($p1x, $p1y, project_to_sphere(TRACKBALLSIZE, $p1x, $p1y)); my @p2 = ($p2x, $p2y, project_to_sphere(TRACKBALLSIZE, $p2x, $p2y)); # axis of rotation (cross product of P1 and P2) my @a = cross(\@p2, \@p1); # Figure out how much to rotate around that axis. my @d = map { $_ * $_ } (map { $p1[$_] - $p2[$_] } 0 .. $#p1); my $t = sqrt(reduce { $a + $b } @d) / (2.0 * TRACKBALLSIZE); # Avoid problems with out-of-control values... $t = 1.0 if ($t > 1.0); $t = -1.0 if ($t < -1.0); my $phi = 2.0 * asin($t); return axis_to_quat(\@a, $phi); } # Build a rotation matrix, given a quaternion rotation. sub quat_to_rotmatrix { my ($q) = @_; my @m = (); $m[0] = 1.0 - 2.0 * (@$q[1] * @$q[1] + @$q[2] * @$q[2]); $m[1] = 2.0 * (@$q[0] * @$q[1] - @$q[2] * @$q[3]); $m[2] = 2.0 * (@$q[2] * @$q[0] + @$q[1] * @$q[3]); $m[3] = 0.0; $m[4] = 2.0 * (@$q[0] * @$q[1] + @$q[2] * @$q[3]); $m[5] = 1.0 - 2.0 * (@$q[2] * @$q[2] + @$q[0] * @$q[0]); $m[6] = 2.0 * (@$q[1] * @$q[2] - @$q[0] * @$q[3]); $m[7] = 0.0; $m[8] = 2.0 * (@$q[2] * @$q[0] - @$q[1] * @$q[3]); $m[9] = 2.0 * (@$q[1] * @$q[2] + @$q[0] * @$q[3]); $m[10] = 1.0 - 2.0 * (@$q[1] * @$q[1] + @$q[0] * @$q[0]); $m[11] = 0.0; $m[12] = 0.0; $m[13] = 0.0; $m[14] = 0.0; $m[15] = 1.0; return @m; } sub mulquats { my ($q1, $rq) = @_; return (@$q1[3] * @$rq[0] + @$q1[0] * @$rq[3] + @$q1[1] * @$rq[2] - @$q1[2] * @$rq[1], @$q1[3] * @$rq[1] + @$q1[1] * @$rq[3] + @$q1[2] * @$rq[0] - @$q1[0] * @$rq[2], @$q1[3] * @$rq[2] + @$q1[2] * @$rq[3] + @$q1[0] * @$rq[1] - @$q1[1] * @$rq[0], @$q1[3] * @$rq[3] - @$q1[0] * @$rq[0] - @$q1[1] * @$rq[1] - @$q1[2] * @$rq[2]) } sub mouse_to_3d { my ($self, $x, $y, $z) = @_; my @viewport = glGetIntegerv_p(GL_VIEWPORT); # 4 items my @mview = glGetDoublev_p(GL_MODELVIEW_MATRIX); # 16 items my @proj = glGetDoublev_p(GL_PROJECTION_MATRIX); # 16 items $y = $viewport[3] - $y; $z //= glReadPixels_p($x, $y, 1, 1, GL_DEPTH_COMPONENT, GL_FLOAT); my @projected = gluUnProject_p($x, $y, $z, @mview, @proj, @viewport); return Slic3r::Pointf3->new(@projected); } sub mouse_ray { my ($self, $x, $y) = @_; return Slic3r::Linef3->new( $self->mouse_to_3d($x, $y, 0), $self->mouse_to_3d($x, $y, 1), ); } sub GetContext { my ($self) = @_; if (Wx::wxVERSION >= 2.009) { return $self->{context} ||= Wx::GLContext->new($self); } else { return $self->SUPER::GetContext; } } sub SetCurrent { my ($self, $context) = @_; if (Wx::wxVERSION >= 2.009) { return $self->SUPER::SetCurrent($context); } else { return $self->SUPER::SetCurrent; } } sub Resize { my ($self, $x, $y) = @_; return unless $self->GetContext; $self->_dirty(0); $self->SetCurrent($self->GetContext); glViewport(0, 0, $x, $y); $x /= $self->_zoom; $y /= $self->_zoom; glMatrixMode(GL_PROJECTION); glLoadIdentity(); if ($self->_camera_type eq 'ortho') { #FIXME setting the size of the box 10x larger than necessary # is only a workaround for an incorrectly set camera. # This workaround harms Z-buffer accuracy! # my $depth = 1.05 * $self->max_bounding_box->radius(); my $depth = 10.0 * $self->max_bounding_box->radius(); glOrtho( -$x/2, $x/2, -$y/2, $y/2, -$depth, $depth, ); } else { die "Invalid camera type: ", $self->_camera_type, "\n" if ($self->_camera_type ne 'perspective'); my $bbox_r = $self->max_bounding_box->radius(); my $fov = PI * 45. / 180.; my $fov_tan = tan(0.5 * $fov); my $cam_distance = 0.5 * $bbox_r / $fov_tan; $self->_camera_distance($cam_distance); my $nr = $cam_distance - $bbox_r * 1.1; my $fr = $cam_distance + $bbox_r * 1.1; $nr = 1 if ($nr < 1); $fr = $nr + 1 if ($fr < $nr + 1); my $h2 = $fov_tan * $nr; my $w2 = $h2 * $x / $y; glFrustum(-$w2, $w2, -$h2, $h2, $nr, $fr); } glMatrixMode(GL_MODELVIEW); } sub InitGL { my $self = shift; return if $self->init; return unless $self->GetContext; $self->init(1); my $shader; $shader = $self->{shader} = new Slic3r::GUI::GLShader if (defined($ENV{'SLIC3R_EXPERIMENTAL'}) && $ENV{'SLIC3R_EXPERIMENTAL'} == 1); if ($self->{shader}) { my $info = $shader->Load($self->_fragment_shader, $self->_vertex_shader); print $info if $info; ($self->{layer_preview_z_texture_id}) = glGenTextures_p(1); glBindTexture(GL_TEXTURE_2D, $self->{layer_preview_z_texture_id}); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 1); glBindTexture(GL_TEXTURE_2D, 0); } glClearColor(0, 0, 0, 1); glColor3f(1, 0, 0); glEnable(GL_DEPTH_TEST); glClearDepth(1.0); glDepthFunc(GL_LEQUAL); glEnable(GL_CULL_FACE); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); # Set antialiasing/multisampling glDisable(GL_LINE_SMOOTH); glDisable(GL_POLYGON_SMOOTH); glEnable(GL_MULTISAMPLE); # glHint(GL_MULTISAMPLE_FILTER_HINT_NV, GL_NICEST); # ambient lighting glLightModelfv_p(GL_LIGHT_MODEL_AMBIENT, 0.3, 0.3, 0.3, 1); glEnable(GL_LIGHTING); glEnable(GL_LIGHT0); glEnable(GL_LIGHT1); # light from camera glLightfv_p(GL_LIGHT1, GL_POSITION, 1, 0, 1, 0); glLightfv_p(GL_LIGHT1, GL_SPECULAR, 0.3, 0.3, 0.3, 1); glLightfv_p(GL_LIGHT1, GL_DIFFUSE, 0.2, 0.2, 0.2, 1); # Enables Smooth Color Shading; try GL_FLAT for (lack of) fun. glShadeModel(GL_SMOOTH); glMaterialfv_p(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, 0.5, 0.3, 0.3, 1); glMaterialfv_p(GL_FRONT_AND_BACK, GL_SPECULAR, 1, 1, 1, 1); glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, 50); glMaterialfv_p(GL_FRONT_AND_BACK, GL_EMISSION, 0.1, 0, 0, 0.9); # A handy trick -- have surface material mirror the color. glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE); glEnable(GL_COLOR_MATERIAL); glEnable(GL_MULTISAMPLE); } sub DestroyGL { my $self = shift; if ($self->init && $self->GetContext) { delete $self->{shader}; } } sub Render { my ($self, $dc) = @_; # prevent calling SetCurrent() when window is not shown yet return unless $self->IsShownOnScreen; return unless my $context = $self->GetContext; $self->SetCurrent($context); $self->InitGL; glClearColor(1, 1, 1, 1); glClearDepth(1); glDepthFunc(GL_LESS); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); { # Shift the perspective camera. my $camera_pos = Slic3r::Pointf3->new(0,0,-$self->_camera_distance); glTranslatef(@$camera_pos); } if (TURNTABLE_MODE) { glRotatef(-$self->_stheta, 1, 0, 0); # pitch glRotatef($self->_sphi, 0, 0, 1); # yaw } else { my @rotmat = quat_to_rotmatrix($self->quat); glMultMatrixd_p(@rotmat[0..15]); } glTranslatef(@{ $self->_camera_target->negative }); # light from above glLightfv_p(GL_LIGHT0, GL_POSITION, -0.5, -0.5, 1, 0); glLightfv_p(GL_LIGHT0, GL_SPECULAR, 0.2, 0.2, 0.2, 1); glLightfv_p(GL_LIGHT0, GL_DIFFUSE, 0.5, 0.5, 0.5, 1); # Head light glLightfv_p(GL_LIGHT1, GL_POSITION, 1, 0, 1, 0); if ($self->enable_picking) { # Render the object for picking. # FIXME This cannot possibly work in a multi-sampled context as the color gets mangled by the anti-aliasing. # Better to use software ray-casting on a bounding-box hierarchy. glDisable(GL_MULTISAMPLE); glDisable(GL_LIGHTING); $self->draw_volumes(1); glFlush(); glFinish(); if (my $pos = $self->_mouse_pos) { my $col = [ glReadPixels_p($pos->x, $self->GetSize->GetHeight - $pos->y, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE) ]; my $volume_idx = $col->[0] + $col->[1]*256 + $col->[2]*256*256; $self->_hover_volume_idx(undef); $_->hover(0) for @{$self->volumes}; if ($volume_idx <= $#{$self->volumes}) { $self->_hover_volume_idx($volume_idx); $self->volumes->[$volume_idx]->hover(1); my $group_id = $self->volumes->[$volume_idx]->select_group_id; if ($group_id != -1) { $_->hover(1) for grep { $_->select_group_id == $group_id } @{$self->volumes}; } $self->on_hover->($volume_idx) if $self->on_hover; } } glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glFlush(); glFinish(); glEnable(GL_LIGHTING); glEnable(GL_MULTISAMPLE); } # draw fixed background if ($self->background) { glDisable(GL_LIGHTING); glPushMatrix(); glLoadIdentity(); glMatrixMode(GL_PROJECTION); glPushMatrix(); glLoadIdentity(); # Draws a bluish bottom to top gradient over the complete screen. glDisable(GL_DEPTH_TEST); glBegin(GL_QUADS); glColor3f(0.0,0.0,0.0); glVertex3f(-1.0,-1.0, 1.0); glVertex3f( 1.0,-1.0, 1.0); glColor3f(10/255,98/255,144/255); glVertex3f( 1.0, 1.0, 1.0); glVertex3f(-1.0, 1.0, 1.0); glEnd(); glPopMatrix(); glEnable(GL_DEPTH_TEST); glMatrixMode(GL_MODELVIEW); glPopMatrix(); glEnable(GL_LIGHTING); } # draw ground and axes glDisable(GL_LIGHTING); # draw ground my $ground_z = GROUND_Z; if ($self->bed_triangles) { glDisable(GL_DEPTH_TEST); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnableClientState(GL_VERTEX_ARRAY); glColor4f(0.8, 0.6, 0.5, 0.4); glNormal3d(0,0,1); glVertexPointer_p(3, $self->bed_triangles); glDrawArrays(GL_TRIANGLES, 0, $self->bed_triangles->elements / 3); glDisableClientState(GL_VERTEX_ARRAY); # we need depth test for grid, otherwise it would disappear when looking # the object from below glEnable(GL_DEPTH_TEST); # draw grid glLineWidth(3); glColor4f(0.2, 0.2, 0.2, 0.4); glEnableClientState(GL_VERTEX_ARRAY); glVertexPointer_p(3, $self->bed_grid_lines); glDrawArrays(GL_LINES, 0, $self->bed_grid_lines->elements / 3); glDisableClientState(GL_VERTEX_ARRAY); glDisable(GL_BLEND); } my $volumes_bb = $self->volumes_bounding_box; { # draw axes # disable depth testing so that axes are not covered by ground glDisable(GL_DEPTH_TEST); my $origin = $self->origin; my $axis_len = max( 0.3 * max(@{ $self->bed_bounding_box->size }), 2 * max(@{ $volumes_bb->size }), ); glLineWidth(2); glBegin(GL_LINES); # draw line for x axis glColor3f(1, 0, 0); glVertex3f(@$origin, $ground_z); glVertex3f($origin->x + $axis_len, $origin->y, $ground_z); #,, # draw line for y axis glColor3f(0, 1, 0); glVertex3f(@$origin, $ground_z); glVertex3f($origin->x, $origin->y + $axis_len, $ground_z); #++ glEnd(); # draw line for Z axis # (re-enable depth test so that axis is correctly shown when objects are behind it) glEnable(GL_DEPTH_TEST); glBegin(GL_LINES); glColor3f(0, 0, 1); glVertex3f(@$origin, $ground_z); glVertex3f(@$origin, $ground_z+$axis_len); glEnd(); } glEnable(GL_LIGHTING); # draw objects $self->draw_volumes; # draw cutting plane if (defined $self->cutting_plane_z) { my $plane_z = $self->cutting_plane_z; my $bb = $volumes_bb; glDisable(GL_CULL_FACE); glDisable(GL_LIGHTING); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glBegin(GL_QUADS); glColor4f(0.8, 0.8, 0.8, 0.5); glVertex3f($bb->x_min-20, $bb->y_min-20, $plane_z); glVertex3f($bb->x_max+20, $bb->y_min-20, $plane_z); glVertex3f($bb->x_max+20, $bb->y_max+20, $plane_z); glVertex3f($bb->x_min-20, $bb->y_max+20, $plane_z); glEnd(); glEnable(GL_CULL_FACE); glDisable(GL_BLEND); } $self->draw_active_object_annotations; $self->SwapBuffers(); # Calling glFinish has a performance penalty, but it seems to fix some OpenGL driver hang-up with extremely large scenes. glFinish(); } sub draw_volumes { # $fakecolor is a boolean indicating, that the objects shall be rendered in a color coding the object index for picking. my ($self, $fakecolor) = @_; glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_NORMAL_ARRAY); # The viewport and camera are set to complete view and glOrtho(-$x/2, $x/2, -$y/2, $y/2, -$depth, $depth), # where x, y is the window size divided by $self->_zoom. my ($cw, $ch) = $self->GetSizeWH; my $bar_width = 70; my ($bar_left, $bar_right) = ((0.5 * $cw - $bar_width)/$self->_zoom, $cw/(2*$self->_zoom)); my ($bar_bottom, $bar_top) = (-$ch/(2*$self->_zoom), $ch/(2*$self->_zoom)); my $mouse_pos = $self->ScreenToClientPoint(Wx::GetMousePosition()); my $z_cursor_relative = ($mouse_pos->x < $cw - $bar_width) ? -1000. : ($ch - $mouse_pos->y - 1.) / ($ch - 1); foreach my $volume_idx (0..$#{$self->volumes}) { my $volume = $self->volumes->[$volume_idx]; my $shader_active = 0; if ($self->layer_editing_enabled && ! $fakecolor && $volume->selected && $self->{shader} && $volume->{layer_height_texture_data} && $volume->{layer_height_texture_cells}) { $self->{shader}->Enable; my $z_to_texture_row_id = $self->{shader}->Map('z_to_texture_row'); my $z_texture_row_to_normalized_id = $self->{shader}->Map('z_texture_row_to_normalized'); my $z_cursor_id = $self->{shader}->Map('z_cursor'); my $z_cursor_band_width_id = $self->{shader}->Map('z_cursor_band_width'); die if ! defined($z_to_texture_row_id); die if ! defined($z_texture_row_to_normalized_id); die if ! defined($z_cursor_id); die if ! defined($z_cursor_band_width_id); my $ncells = $volume->{layer_height_texture_cells}; my $z_max = $volume->{bounding_box}->z_max; glUniform1fARB($z_to_texture_row_id, ($ncells - 1) / ($self->{layer_preview_z_texture_width} * $z_max)); glUniform1fARB($z_texture_row_to_normalized_id, 1. / $self->{layer_preview_z_texture_height}); glUniform1fARB($z_cursor_id, $z_max * $z_cursor_relative); glUniform1fARB($z_cursor_band_width_id, $self->{layer_height_edit_band_width}); glBindTexture(GL_TEXTURE_2D, $self->{layer_preview_z_texture_id}); # glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_LEVEL, 0); # glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 1); if (1) { glTexImage2D_c(GL_TEXTURE_2D, 0, GL_RGBA8, $self->{layer_preview_z_texture_width}, $self->{layer_preview_z_texture_height}, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0); glTexImage2D_c(GL_TEXTURE_2D, 1, GL_RGBA8, $self->{layer_preview_z_texture_width} / 2, $self->{layer_preview_z_texture_height} / 2, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0); # glPixelStorei(GL_UNPACK_ALIGNMENT, 1); # glPixelStorei(GL_UNPACK_ROW_LENGTH, $self->{layer_preview_z_texture_width}); glTexSubImage2D_c(GL_TEXTURE_2D, 0, 0, 0, $self->{layer_preview_z_texture_width}, $self->{layer_preview_z_texture_height}, GL_RGBA, GL_UNSIGNED_BYTE, $volume->{layer_height_texture_data}->ptr); glTexSubImage2D_c(GL_TEXTURE_2D, 1, 0, 0, $self->{layer_preview_z_texture_width} / 2, $self->{layer_preview_z_texture_height} / 2, GL_RGBA, GL_UNSIGNED_BYTE, $volume->{layer_height_texture_data}->offset($self->{layer_preview_z_texture_width} * $self->{layer_preview_z_texture_height} * 4)); } else { glTexImage2D_c(GL_TEXTURE_2D, 0, GL_RGBA8, $self->{layer_preview_z_texture_width}, $self->{layer_preview_z_texture_height}, 0, GL_RGBA, GL_UNSIGNED_BYTE, $volume->{layer_height_texture_data}->ptr); glTexImage2D_c(GL_TEXTURE_2D, 1, GL_RGBA8, $self->{layer_preview_z_texture_width}/2, $self->{layer_preview_z_texture_height}/2, 0, GL_RGBA, GL_UNSIGNED_BYTE, $volume->{layer_height_texture_data}->ptr + $self->{layer_preview_z_texture_width} * $self->{layer_preview_z_texture_height} * 4); } # my $nlines = ceil($ncells / ($self->{layer_preview_z_texture_width} - 1)); $shader_active = 1; } elsif ($fakecolor) { # Object picking mode. Render the object with a color encoding the object index. my $r = ($volume_idx & 0x000000FF) >> 0; my $g = ($volume_idx & 0x0000FF00) >> 8; my $b = ($volume_idx & 0x00FF0000) >> 16; glColor4f($r/255.0, $g/255.0, $b/255.0, 1); } elsif ($volume->selected) { glColor4f(@{ &SELECTED_COLOR }); } elsif ($volume->hover) { glColor4f(@{ &HOVER_COLOR }); } else { glColor4f(@{ $volume->color }); } my $qverts_begin = 0; my $qverts_end = defined($volume->qverts) ? $volume->qverts->size() : 0; my $tverts_begin = 0; my $tverts_end = defined($volume->tverts) ? $volume->tverts->size() : 0; my $n_offsets = ($volume->range && $volume->offsets) ? scalar(@{$volume->offsets}) : 0; if ($n_offsets) { # The Z layer range is specified. # First test whether the Z span of this object is not out of ($min_z, $max_z) completely. my ($min_z, $max_z) = @{$volume->range}; next if ($volume->offsets->[0] > $max_z || $volume->offsets->[-3] < $min_z); # Then find the lowest layer to be displayed. my $i = 0; while ($i < $n_offsets && $volume->offsets->[$i] < $min_z) { $i += 3; } # This shall not happen. next if ($i == $n_offsets); # Remember start of the layer. $qverts_begin = $volume->offsets->[$i+1]; $tverts_begin = $volume->offsets->[$i+2]; # Some layers are above $min_z. Which? while ($i < $n_offsets && $volume->offsets->[$i] <= $max_z) { $i += 3; } if ($i < $n_offsets) { $qverts_end = $volume->offsets->[$i+1]; $tverts_end = $volume->offsets->[$i+2]; } } glPushMatrix(); glTranslatef(@{$volume->origin}); glCullFace(GL_BACK); if ($qverts_begin < $qverts_end) { glVertexPointer_c(3, GL_FLOAT, 0, $volume->qverts->verts_ptr); glNormalPointer_c(GL_FLOAT, 0, $volume->qverts->norms_ptr); $qverts_begin /= 3; $qverts_end /= 3; my $nvertices = $qverts_end-$qverts_begin; while ($nvertices > 0) { my $nvertices_this = ($nvertices > 4096) ? 4096 : $nvertices; glDrawArrays(GL_QUADS, $qverts_begin, $nvertices_this); $qverts_begin += $nvertices_this; $nvertices -= $nvertices_this; } } if ($tverts_begin < $tverts_end) { glVertexPointer_c(3, GL_FLOAT, 0, $volume->tverts->verts_ptr); glNormalPointer_c(GL_FLOAT, 0, $volume->tverts->norms_ptr); $tverts_begin /= 3; $tverts_end /= 3; my $nvertices = $tverts_end-$tverts_begin; while ($nvertices > 0) { my $nvertices_this = ($nvertices > 4095) ? 4095 : $nvertices; glDrawArrays(GL_TRIANGLES, $tverts_begin, $nvertices_this); $tverts_begin += $nvertices_this; $nvertices -= $nvertices_this; } } glVertexPointer_c(3, GL_FLOAT, 0, 0); glNormalPointer_c(GL_FLOAT, 0, 0); glPopMatrix(); if ($shader_active) { glBindTexture(GL_TEXTURE_2D, 0); $self->{shader}->Disable; } } glDisableClientState(GL_NORMAL_ARRAY); glDisable(GL_BLEND); if (defined $self->cutting_plane_z) { glLineWidth(2); glColor3f(0, 0, 0); glVertexPointer_p(3, $self->cut_lines_vertices); glDrawArrays(GL_LINES, 0, $self->cut_lines_vertices->elements / 3); glVertexPointer_c(3, GL_FLOAT, 0, 0); } glDisableClientState(GL_VERTEX_ARRAY); } sub draw_active_object_annotations { # $fakecolor is a boolean indicating, that the objects shall be rendered in a color coding the object index for picking. my ($self) = @_; return if (! $self->{shader} || ! $self->layer_editing_enabled); my $volume; foreach my $volume_idx (0..$#{$self->volumes}) { my $v = $self->volumes->[$volume_idx]; if ($v->selected && $v->{layer_height_texture_data} && $v->{layer_height_texture_cells}) { $volume = $v; last; } } return if (! $volume); # The viewport and camera are set to complete view and glOrtho(-$x/2, $x/2, -$y/2, $y/2, -$depth, $depth), # where x, y is the window size divided by $self->_zoom. my ($cw, $ch) = $self->GetSizeWH; my $bar_width = 70; my ($bar_left, $bar_right) = ((0.5 * $cw - $bar_width)/$self->_zoom, $cw/(2*$self->_zoom)); my ($bar_bottom, $bar_top) = (-$ch/(2*$self->_zoom), $ch/(2*$self->_zoom)); my $mouse_pos = $self->ScreenToClientPoint(Wx::GetMousePosition()); my $z_cursor_relative = ($mouse_pos->x < $cw - $bar_width) ? -1000. : ($ch - $mouse_pos->y - 1.) / ($ch - 1); $self->{shader}->Enable; my $z_to_texture_row_id = $self->{shader}->Map('z_to_texture_row'); my $z_texture_row_to_normalized_id = $self->{shader}->Map('z_texture_row_to_normalized'); my $z_cursor_id = $self->{shader}->Map('z_cursor'); my $ncells = $volume->{layer_height_texture_cells}; my $z_max = $volume->{bounding_box}->z_max; glUniform1fARB($z_to_texture_row_id, ($ncells - 1) / ($self->{layer_preview_z_texture_width} * $z_max)); glUniform1fARB($z_texture_row_to_normalized_id, 1. / $self->{layer_preview_z_texture_height}); glUniform1fARB($z_cursor_id, $z_max * $z_cursor_relative); glBindTexture(GL_TEXTURE_2D, $self->{layer_preview_z_texture_id}); glTexImage2D_c(GL_TEXTURE_2D, 0, GL_RGBA8, $self->{layer_preview_z_texture_width}, $self->{layer_preview_z_texture_height}, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0); glTexImage2D_c(GL_TEXTURE_2D, 1, GL_RGBA8, $self->{layer_preview_z_texture_width} / 2, $self->{layer_preview_z_texture_height} / 2, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0); glTexSubImage2D_c(GL_TEXTURE_2D, 0, 0, 0, $self->{layer_preview_z_texture_width}, $self->{layer_preview_z_texture_height}, GL_RGBA, GL_UNSIGNED_BYTE, $volume->{layer_height_texture_data}->ptr); glTexSubImage2D_c(GL_TEXTURE_2D, 1, 0, 0, $self->{layer_preview_z_texture_width} / 2, $self->{layer_preview_z_texture_height} / 2, GL_RGBA, GL_UNSIGNED_BYTE, $volume->{layer_height_texture_data}->offset($self->{layer_preview_z_texture_width} * $self->{layer_preview_z_texture_height} * 4)); # Render the color bar. glDisable(GL_DEPTH_TEST); # The viewport and camera are set to complete view and glOrtho(-$x/2, $x/2, -$y/2, $y/2, -$depth, $depth), # where x, y is the window size divided by $self->_zoom. glPushMatrix(); glLoadIdentity(); # Paint the overlay. glBegin(GL_QUADS); glVertex3f($bar_left, $bar_bottom, 0); glVertex3f($bar_right, $bar_bottom, 0); glVertex3f($bar_right, $bar_top, $volume->{bounding_box}->z_max); glVertex3f($bar_left, $bar_top, $volume->{bounding_box}->z_max); glEnd(); glBindTexture(GL_TEXTURE_2D, 0); $self->{shader}->Disable; # Paint the graph. my $object_idx = int($volume->select_group_id / 1000000); my $print_object = $self->{print}->get_object($object_idx); my $max_z = unscale($print_object->size->z); my $profile = $print_object->layer_height_profile; my $layer_height = $print_object->config->get('layer_height'); # Baseline glColor3f(0., 0., 0.); glBegin(GL_LINE_STRIP); glVertex2f($bar_left + $layer_height * ($bar_right - $bar_left) / 0.45, $bar_bottom); glVertex2f($bar_left + $layer_height * ($bar_right - $bar_left) / 0.45, $bar_top); glEnd(); # Curve glColor3f(0., 0., 1.); glBegin(GL_LINE_STRIP); for (my $i = 0; $i < int(@{$profile}); $i += 2) { my $z = $profile->[$i]; my $h = $profile->[$i+1]; glVertex3f($bar_left + $h * ($bar_right - $bar_left) / 0.45, $bar_bottom + $z * ($bar_top - $bar_bottom) / $max_z, $z); } glEnd(); # Revert the matrices. glPopMatrix(); glEnable(GL_DEPTH_TEST); } sub _report_opengl_state { my ($self, $comment) = @_; my $err = glGetError(); return 0 if ($err == 0); # gluErrorString() hangs. Don't use it. # my $errorstr = gluErrorString(); my $errorstr = ''; if ($err == 0x0500) { $errorstr = 'GL_INVALID_ENUM'; } elsif ($err == GL_INVALID_VALUE) { $errorstr = 'GL_INVALID_VALUE'; } elsif ($err == GL_INVALID_OPERATION) { $errorstr = 'GL_INVALID_OPERATION'; } elsif ($err == GL_STACK_OVERFLOW) { $errorstr = 'GL_STACK_OVERFLOW'; } elsif ($err == GL_OUT_OF_MEMORY) { $errorstr = 'GL_OUT_OF_MEMORY'; } else { $errorstr = 'unknown'; } if (defined($comment)) { printf("OpenGL error at %s, nr %d (0x%x): %s\n", $comment, $err, $err, $errorstr); } else { printf("OpenGL error nr %d (0x%x): %s\n", $err, $err, $errorstr); } } sub _vertex_shader { return <<'VERTEX'; #version 110 #define LIGHT_TOP_DIR 0., 1., 0. #define LIGHT_TOP_DIFFUSE 0.2 #define LIGHT_TOP_SPECULAR 0.3 #define LIGHT_FRONT_DIR 0., 0., 1. #define LIGHT_FRONT_DIFFUSE 0.5 #define LIGHT_FRONT_SPECULAR 0.3 #define INTENSITY_AMBIENT 0.1 uniform float z_to_texture_row; varying float intensity_specular; varying float intensity_tainted; varying float object_z; void main() { vec3 eye, normal, lightDir, viewVector, halfVector; float NdotL, NdotHV; // eye = gl_ModelViewMatrixInverse[3].xyz; eye = vec3(0., 0., 1.); // First transform the normal into eye space and normalize the result. normal = normalize(gl_NormalMatrix * gl_Normal); // Now normalize the light's direction. Note that according to the OpenGL specification, the light is stored in eye space. // Also since we're talking about a directional light, the position field is actually direction. lightDir = vec3(LIGHT_TOP_DIR); halfVector = normalize(lightDir + eye); // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex. // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range. NdotL = max(dot(normal, lightDir), 0.0); intensity_tainted = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE; intensity_specular = 0.; // if (NdotL > 0.0) // intensity_specular = LIGHT_TOP_SPECULAR * pow(max(dot(normal, halfVector), 0.0), gl_FrontMaterial.shininess); // Perform the same lighting calculation for the 2nd light source. lightDir = vec3(LIGHT_FRONT_DIR); halfVector = normalize(lightDir + eye); NdotL = max(dot(normal, lightDir), 0.0); intensity_tainted += NdotL * LIGHT_FRONT_DIFFUSE; // compute the specular term if NdotL is larger than zero if (NdotL > 0.0) intensity_specular += LIGHT_FRONT_SPECULAR * pow(max(dot(normal, halfVector), 0.0), gl_FrontMaterial.shininess); // Scaled to widths of the Z texture. object_z = gl_Vertex.z / gl_Vertex.w; gl_Position = ftransform(); } VERTEX } sub _fragment_shader { return <<'FRAGMENT'; #version 110 #define M_PI 3.1415926535897932384626433832795 // 2D texture (1D texture split by the rows) of color along the object Z axis. uniform sampler2D z_texture; // Scaling from the Z texture rows coordinate to the normalized texture row coordinate. uniform float z_to_texture_row; uniform float z_texture_row_to_normalized; varying float intensity_specular; varying float intensity_tainted; varying float object_z; uniform float z_cursor; uniform float z_cursor_band_width; void main() { float object_z_row = z_to_texture_row * object_z; // Index of the row in the texture. float z_texture_row = floor(object_z_row); // Normalized coordinate from 0. to 1. float z_texture_col = object_z_row - z_texture_row; // float z_blend = 0.5 + 0.5 * cos(min(M_PI, abs(M_PI * (object_z - z_cursor) / 3.))); // float z_blend = 0.5 * cos(min(M_PI, abs(M_PI * (object_z - z_cursor)))) + 0.5; float z_blend = 0.25 * cos(min(M_PI, abs(M_PI * (object_z - z_cursor) * 1.8 / z_cursor_band_width))) + 0.25; // Scale z_texture_row to normalized coordinates. // Sample the Z texture. gl_FragColor = vec4(intensity_specular, intensity_specular, intensity_specular, 1.) + // intensity_tainted * texture2D(z_texture, vec2(z_texture_col, z_texture_row_to_normalized * (z_texture_row + 0.5)), -2.5); (1. - z_blend) * intensity_tainted * texture2D(z_texture, vec2(z_texture_col, z_texture_row_to_normalized * (z_texture_row + 0.5)), -200.) + z_blend * vec4(1., 1., 0., 0.); // and reset the transparency. gl_FragColor.a = 1.; } FRAGMENT } # Container for object geometry and selection status. package Slic3r::GUI::3DScene::Volume; use Moo; has 'bounding_box' => (is => 'ro', required => 1); has 'origin' => (is => 'rw', default => sub { Slic3r::Pointf3->new(0,0,0) }); has 'color' => (is => 'ro', required => 1); # An ID containing the object ID, volume ID and instance ID. has 'composite_id' => (is => 'rw', default => sub { -1 }); # An ID for group selection. It may be the same for all meshes of all object instances, or for just a single object instance. has 'select_group_id' => (is => 'rw', default => sub { -1 }); # An ID for group dragging. It may be the same for all meshes of all object instances, or for just a single object instance. has 'drag_group_id' => (is => 'rw', default => sub { -1 }); # Boolean: Is this object selected? has 'selected' => (is => 'rw', default => sub { 0 }); # Boolean: Is mouse over this object? has 'hover' => (is => 'rw', default => sub { 0 }); # Vector of two values: a span in the Z axis. Meaningful for a display of layers. has 'range' => (is => 'rw'); # Geometric data. # Quads: GLVertexArray object: C++ class maintaining an std::vector for coords and normals. has 'qverts' => (is => 'rw'); # Triangles: GLVertexArray object has 'tverts' => (is => 'rw'); # If the qverts or tverts contain thick extrusions, then offsets keeps pointers of the starts # of the extrusions per layer. # The offsets stores tripples of (z_top, qverts_idx, tverts_idx) in a linear array. has 'offsets' => (is => 'rw'); # RGBA texture along the Z axis of an object, to visualize layers by stripes colored by their height. has 'layer_height_texture_data' => (is => 'rw'); # Number of texture cells. has 'layer_height_texture_cells' => (is => 'rw'); sub object_idx { my ($self) = @_; return $self->composite_id / 1000000; } sub volume_idx { my ($self) = @_; return ($self->composite_id / 1000) % 1000; } sub instance_idx { my ($self) = @_; return $self->composite_id % 1000; } sub transformed_bounding_box { my ($self) = @_; my $bb = $self->bounding_box; $bb->translate(@{$self->origin}); return $bb; } # The 3D canvas to display objects and tool paths. package Slic3r::GUI::3DScene; use base qw(Slic3r::GUI::3DScene::Base); use OpenGL qw(:glconstants :gluconstants :glufunctions); use List::Util qw(first min max); use Slic3r::Geometry qw(scale unscale epsilon); use Slic3r::Print::State ':steps'; # Perimeter: yellow, Infill: redish, Suport: greenish, last: blueish, use constant COLORS => [ [1,1,0,1], [1,0.5,0.5,1], [0.5,1,0.5,1], [0.5,0.5,1,1] ]; __PACKAGE__->mk_accessors(qw( color_by select_by drag_by )); sub new { my $class = shift; my $self = $class->SUPER::new(@_); $self->color_by('volume'); # object | volume $self->select_by('object'); # object | volume | instance $self->drag_by('instance'); # object | instance return $self; } sub load_object { my ($self, $model, $print, $obj_idx, $instance_idxs) = @_; my $model_object; if ($model->isa('Slic3r::Model::Object')) { $model_object = $model; $model = $model_object->model; $obj_idx = 0; } else { $model_object = $model->get_object($obj_idx); } $instance_idxs ||= [0..$#{$model_object->instances}]; # Object will have a single common layer height texture for all volumes. my $layer_height_texture_data; my $layer_height_texture_cells; if ($print && $obj_idx < $print->object_count) { # Generate the layer height texture. Allocate data for the 0th and 1st mipmap levels. $layer_height_texture_data = OpenGL::Array->new($self->{layer_preview_z_texture_width}*$self->{layer_preview_z_texture_height}*5, GL_UNSIGNED_BYTE); # $print->get_object($obj_idx)->update_layer_height_profile_from_ranges(); $layer_height_texture_cells = $print->get_object($obj_idx)->generate_layer_height_texture( $layer_height_texture_data->ptr, $self->{layer_preview_z_texture_height}, $self->{layer_preview_z_texture_width}); } my @volumes_idx = (); foreach my $volume_idx (0..$#{$model_object->volumes}) { my $volume = $model_object->volumes->[$volume_idx]; foreach my $instance_idx (@$instance_idxs) { my $instance = $model_object->instances->[$instance_idx]; my $mesh = $volume->mesh->clone; $instance->transform_mesh($mesh); my $color_idx; if ($self->color_by eq 'volume') { $color_idx = $volume_idx; } elsif ($self->color_by eq 'object') { $color_idx = $obj_idx; } # Using the colors 'yellowish', 'greenish', 'blueish' for both the extrusion paths # and the volumes of a single multi-color object. #FIXME so for 4 or more color print, there will be only 3 colors displayed, which will # not correspond to the color of the filament. my $color = [ @{COLORS->[ $color_idx % scalar(@{&COLORS}) ]} ]; $color->[3] = $volume->modifier ? 0.5 : 1; print "Reloading object $volume_idx, $instance_idx\n"; push @{$self->volumes}, my $v = Slic3r::GUI::3DScene::Volume->new( bounding_box => $mesh->bounding_box, color => $color, ); $v->composite_id($obj_idx*1000000 + $volume_idx*1000 + $instance_idx); if ($self->select_by eq 'object') { $v->select_group_id($obj_idx*1000000); } elsif ($self->select_by eq 'volume') { $v->select_group_id($obj_idx*1000000 + $volume_idx*1000); } elsif ($self->select_by eq 'instance') { $v->select_group_id($v->composite_id); } if ($self->drag_by eq 'object') { $v->drag_group_id($obj_idx*1000); } elsif ($self->drag_by eq 'instance') { $v->drag_group_id($obj_idx*1000 + $instance_idx); } push @volumes_idx, my $scene_volume_idx = $#{$self->volumes}; my $verts = Slic3r::GUI::_3DScene::GLVertexArray->new; $verts->load_mesh($mesh); $v->tverts($verts); if (! $volume->modifier) { $v->layer_height_texture_data($layer_height_texture_data); $v->layer_height_texture_cells($layer_height_texture_cells); } } } return @volumes_idx; } # Called possibly by utils/view-toolpaths.pl, likely broken. sub load_print_object_slices { my ($self, $object) = @_; my @verts = (); my @norms = (); my @quad_verts = (); my @quad_norms = (); foreach my $layer (@{$object->layers}) { my $gap = 0; my $top_z = $layer->print_z; my $bottom_z = $layer->print_z - $layer->height + $gap; foreach my $copy (@{ $object->_shifted_copies }) { { my @expolygons = map $_->clone, @{$layer->slices}; $_->translate(@$copy) for @expolygons; $self->_expolygons_to_verts(\@expolygons, $layer->print_z, \@verts, \@norms); } foreach my $slice (@{$layer->slices}) { foreach my $polygon (@$slice) { foreach my $line (@{$polygon->lines}) { $line->translate(@$copy); push @quad_norms, (0,0,-1), (0,0,-1); push @quad_verts, (map unscale($_), @{$line->a}), $bottom_z; push @quad_verts, (map unscale($_), @{$line->b}), $bottom_z; push @quad_norms, (0,0,1), (0,0,1); push @quad_verts, (map unscale($_), @{$line->b}), $top_z; push @quad_verts, (map unscale($_), @{$line->a}), $top_z; # We'll use this for the middle normal when using 4 quads: #my $xy_normal = $line->normal; #$_xynormal->scale(1/$line->length); } } } } } my $obb = $object->bounding_box; my $bb = Slic3r::Geometry::BoundingBoxf3->new; $bb->merge_point(Slic3r::Pointf3->new_unscale(@{$obb->min_point}, 0)); $bb->merge_point(Slic3r::Pointf3->new_unscale(@{$obb->max_point}, $object->size->z)); push @{$self->volumes}, my $v = Slic3r::GUI::3DScene::Volume->new( bounding_box => $bb, color => COLORS->[0], verts => OpenGL::Array->new_list(GL_FLOAT, @verts), norms => OpenGL::Array->new_list(GL_FLOAT, @norms), quad_verts => OpenGL::Array->new_list(GL_FLOAT, @quad_verts), quad_norms => OpenGL::Array->new_list(GL_FLOAT, @quad_norms), ); } # Create 3D thick extrusion lines for a skirt and brim. # Adds a new Slic3r::GUI::3DScene::Volume to $self->volumes. sub load_print_toolpaths { my ($self, $print) = @_; return if !$print->step_done(STEP_SKIRT); return if !$print->step_done(STEP_BRIM); return if !$print->has_skirt && $print->config->brim_width == 0; my $qverts = Slic3r::GUI::_3DScene::GLVertexArray->new; my $tverts = Slic3r::GUI::_3DScene::GLVertexArray->new; my $offsets = []; # triples stored in a linear array, sorted by print_z: print_z, qverts, tverts my $skirt_height = 0; # number of layers if ($print->has_infinite_skirt) { $skirt_height = $print->total_layer_count; } else { $skirt_height = min($print->config->skirt_height, $print->total_layer_count); } $skirt_height ||= 1 if $print->config->brim_width > 0; # get first $skirt_height layers (maybe this should be moved to a PrintObject method?) my $object0 = $print->get_object(0); my @layers = (); push @layers, map $object0->get_layer($_-1), 1..min($skirt_height, $object0->layer_count); push @layers, map $object0->get_support_layer($_-1), 1..min($skirt_height, $object0->support_layer_count); @layers = sort { $a->print_z <=> $b->print_z } @layers; @layers = @layers[0..($skirt_height-1)]; foreach my $i (0..($skirt_height-1)) { my $top_z = $layers[$i]->print_z; push @$offsets, ($top_z, $qverts->size, $tverts->size); if ($i == 0) { $self->_extrusionentity_to_verts($print->brim, $top_z, Slic3r::Point->new(0,0), $qverts, $tverts); } $self->_extrusionentity_to_verts($print->skirt, $top_z, Slic3r::Point->new(0,0), $qverts, $tverts); } my $bb = Slic3r::Geometry::BoundingBoxf3->new; { my $pbb = $print->bounding_box; $bb->merge_point(Slic3r::Pointf3->new_unscale(@{$pbb->min_point})); $bb->merge_point(Slic3r::Pointf3->new_unscale(@{$pbb->max_point})); } push @{$self->volumes}, Slic3r::GUI::3DScene::Volume->new( bounding_box => $bb, color => COLORS->[2], qverts => $qverts, tverts => $tverts, offsets => $offsets, ); } # Create 3D thick extrusion lines for object forming extrusions. # Adds a new Slic3r::GUI::3DScene::Volume to $self->volumes, # one for perimeters, one for infill and one for supports. sub load_print_object_toolpaths { my ($self, $object) = @_; my $perim_qverts = Slic3r::GUI::_3DScene::GLVertexArray->new; my $perim_tverts = Slic3r::GUI::_3DScene::GLVertexArray->new; my $infill_qverts = Slic3r::GUI::_3DScene::GLVertexArray->new; my $infill_tverts = Slic3r::GUI::_3DScene::GLVertexArray->new; my $support_qverts = Slic3r::GUI::_3DScene::GLVertexArray->new; my $support_tverts = Slic3r::GUI::_3DScene::GLVertexArray->new; my $perim_offsets = []; # triples of (print_z, qverts, tverts), stored linearly, sorted by print_z my $infill_offsets = []; my $support_offsets = []; # order layers by print_z my @layers = sort { $a->print_z <=> $b->print_z } @{$object->layers}, @{$object->support_layers}; # Bounding box of the object and its copies. my $bb = Slic3r::Geometry::BoundingBoxf3->new; { my $obb = $object->bounding_box; foreach my $copy (@{ $object->_shifted_copies }) { my $cbb = $obb->clone; $cbb->translate(@$copy); $bb->merge_point(Slic3r::Pointf3->new_unscale(@{$cbb->min_point}, 0)); $bb->merge_point(Slic3r::Pointf3->new_unscale(@{$cbb->max_point}, $object->size->z)); } } # Maximum size of an allocation block: 32MB / sizeof(float) my $alloc_size_max = 32 * 1048576 / 4; foreach my $layer (@layers) { my $top_z = $layer->print_z; push @$perim_offsets, ($top_z, $perim_qverts->size, $perim_tverts->size) if (!@$perim_offsets || $perim_offsets->[-3] != $top_z); push @$infill_offsets, ($top_z, $infill_qverts->size, $infill_tverts->size) if (!@$infill_offsets || $infill_offsets->[-3] != $top_z); push @$support_offsets, ($top_z, $support_qverts->size, $support_tverts->size) if (!@$support_offsets || $support_offsets->[-3] != $top_z); foreach my $copy (@{ $object->_shifted_copies }) { foreach my $layerm (@{$layer->regions}) { if ($object->step_done(STEP_PERIMETERS)) { $self->_extrusionentity_to_verts($layerm->perimeters, $top_z, $copy, $perim_qverts, $perim_tverts); } if ($object->step_done(STEP_INFILL)) { $self->_extrusionentity_to_verts($layerm->fills, $top_z, $copy, $infill_qverts, $infill_tverts); } } if ($layer->isa('Slic3r::Layer::Support') && $object->step_done(STEP_SUPPORTMATERIAL)) { $self->_extrusionentity_to_verts($layer->support_fills, $top_z, $copy, $support_qverts, $support_tverts); $self->_extrusionentity_to_verts($layer->support_interface_fills, $top_z, $copy, $support_qverts, $support_tverts); } } if ($perim_qverts->size() > $alloc_size_max || $perim_tverts->size() > $alloc_size_max) { # Store the vertex arrays and restart their containers. push @{$self->volumes}, Slic3r::GUI::3DScene::Volume->new( bounding_box => $bb, color => COLORS->[0], qverts => $perim_qverts, tverts => $perim_tverts, offsets => $perim_offsets, ); $perim_qverts = Slic3r::GUI::_3DScene::GLVertexArray->new; $perim_tverts = Slic3r::GUI::_3DScene::GLVertexArray->new; $perim_offsets = []; } if ($infill_qverts->size() > $alloc_size_max || $infill_tverts->size() > $alloc_size_max) { # Store the vertex arrays and restart their containers. push @{$self->volumes}, Slic3r::GUI::3DScene::Volume->new( bounding_box => $bb, color => COLORS->[1], qverts => $infill_qverts, tverts => $infill_tverts, offsets => $infill_offsets, ); $infill_qverts = Slic3r::GUI::_3DScene::GLVertexArray->new; $infill_tverts = Slic3r::GUI::_3DScene::GLVertexArray->new; $infill_offsets = []; } if ($support_qverts->size() > $alloc_size_max || $support_tverts->size() > $alloc_size_max) { # Store the vertex arrays and restart their containers. push @{$self->volumes}, Slic3r::GUI::3DScene::Volume->new( bounding_box => $bb, color => COLORS->[2], qverts => $support_qverts, tverts => $support_tverts, offsets => $support_offsets, ); $support_qverts = Slic3r::GUI::_3DScene::GLVertexArray->new; $support_tverts = Slic3r::GUI::_3DScene::GLVertexArray->new; $support_offsets = []; } } if ($perim_qverts->size() > 0 || $perim_tverts->size() > 0) { push @{$self->volumes}, Slic3r::GUI::3DScene::Volume->new( bounding_box => $bb, color => COLORS->[0], qverts => $perim_qverts, tverts => $perim_tverts, offsets => $perim_offsets, ); } if ($infill_qverts->size() > 0 || $infill_tverts->size() > 0) { push @{$self->volumes}, Slic3r::GUI::3DScene::Volume->new( bounding_box => $bb, color => COLORS->[1], qverts => $infill_qverts, tverts => $infill_tverts, offsets => $infill_offsets, ); } if ($support_qverts->size() > 0 || $support_tverts->size() > 0) { push @{$self->volumes}, Slic3r::GUI::3DScene::Volume->new( bounding_box => $bb, color => COLORS->[2], qverts => $support_qverts, tverts => $support_tverts, offsets => $support_offsets, ); } } sub set_toolpaths_range { my ($self, $min_z, $max_z) = @_; foreach my $volume (@{$self->volumes}) { $volume->range([ $min_z, $max_z ]); } } # called by load_print_object_slices, probably not used. sub _expolygons_to_verts { my ($self, $expolygons, $z, $verts, $norms) = @_; my $tess = gluNewTess(); gluTessCallback($tess, GLU_TESS_BEGIN, 'DEFAULT'); gluTessCallback($tess, GLU_TESS_END, 'DEFAULT'); gluTessCallback($tess, GLU_TESS_VERTEX, sub { my ($x, $y, $z) = @_; push @$verts, $x, $y, $z; push @$norms, (0,0,1), (0,0,1), (0,0,1); }); gluTessCallback($tess, GLU_TESS_COMBINE, 'DEFAULT'); gluTessCallback($tess, GLU_TESS_ERROR, 'DEFAULT'); gluTessCallback($tess, GLU_TESS_EDGE_FLAG, 'DEFAULT'); foreach my $expolygon (@$expolygons) { gluTessBeginPolygon($tess); foreach my $polygon (@$expolygon) { gluTessBeginContour($tess); gluTessVertex_p($tess, (map unscale($_), @$_), $z) for @$polygon; gluTessEndContour($tess); } gluTessEndPolygon($tess); } gluDeleteTess($tess); } # Fill in the $qverts and $tverts with quads and triangles # for the extrusion $entity. sub _extrusionentity_to_verts { my ($self, $entity, $top_z, $copy, $qverts, $tverts) = @_; my ($lines, $widths, $heights, $closed); if ($entity->isa('Slic3r::ExtrusionPath::Collection')) { $self->_extrusionentity_to_verts($_, $top_z, $copy, $qverts, $tverts) for @$entity; return; } elsif ($entity->isa('Slic3r::ExtrusionPath')) { my $polyline = $entity->polyline->clone; $polyline->remove_duplicate_points; $polyline->translate(@$copy); $lines = $polyline->lines; $widths = [ map $entity->width, 0..$#$lines ]; $heights = [ map $entity->height, 0..$#$lines ]; $closed = 0; } else { $lines = []; $widths = []; $heights = []; $closed = 1; foreach my $path (@$entity) { my $polyline = $path->polyline->clone; $polyline->remove_duplicate_points; $polyline->translate(@$copy); my $path_lines = $polyline->lines; push @$lines, @$path_lines; push @$widths, map $path->width, 0..$#$path_lines; push @$heights, map $path->height, 0..$#$path_lines; } } # Calling the C++ implementation Slic3r::_3DScene::_extrusionentity_to_verts_do() # This adds new vertices to the $qverts and $tverts. Slic3r::GUI::_3DScene::_extrusionentity_to_verts_do($lines, $widths, $heights, $closed, # Top height of the extrusion. $top_z, # $copy is not used here. $copy, # GLVertexArray object: C++ class maintaining an std::vector for coords and normals. $qverts, $tverts); } 1;