#include "Point.hpp" #include "Line.hpp" #include namespace Slic3r { bool Point::operator==(const Point& rhs) const { return this->coincides_with(rhs); } void Point::scale(double factor) { this->x *= factor; this->y *= factor; } void Point::translate(double x, double y) { this->x += x; this->y += y; } void Point::rotate(double angle, Point* center) { double cur_x = (double)this->x; double cur_y = (double)this->y; this->x = (coord_t)round( (double)center->x + cos(angle) * (cur_x - (double)center->x) - sin(angle) * (cur_y - (double)center->y) ); this->y = (coord_t)round( (double)center->y + cos(angle) * (cur_y - (double)center->y) + sin(angle) * (cur_x - (double)center->x) ); } bool Point::coincides_with(const Point* point) const { return this->coincides_with(*point); } bool Point::coincides_with(const Point &point) const { return this->x == point.x && this->y == point.y; } int Point::nearest_point_index(Points &points) const { PointPtrs p; p.reserve(points.size()); for (Points::iterator it = points.begin(); it != points.end(); ++it) p.push_back(&*it); return this->nearest_point_index(p); } int Point::nearest_point_index(PointPtrs &points) const { int idx = -1; double distance = -1; // double because long is limited to 2147483647 on some platforms and it's not enough for (PointPtrs::const_iterator it = points.begin(); it != points.end(); ++it) { /* If the X distance of the candidate is > than the total distance of the best previous candidate, we know we don't want it */ double d = pow(this->x - (*it)->x, 2); if (distance != -1 && d > distance) continue; /* If the Y distance of the candidate is > than the total distance of the best previous candidate, we know we don't want it */ d += pow(this->y - (*it)->y, 2); if (distance != -1 && d > distance) continue; idx = it - points.begin(); distance = d; if (distance < EPSILON) break; } return idx; } Point* Point::nearest_point(Points points) const { return &(points.at(this->nearest_point_index(points))); } double Point::distance_to(const Point* point) const { double dx = ((double)point->x - this->x); double dy = ((double)point->y - this->y); return sqrt(dx*dx + dy*dy); } double Point::distance_to(const Line* line) const { return this->distance_to(*line); } double Point::distance_to(const Line &line) const { if (line.a.coincides_with(&line.b)) return this->distance_to(&line.a); double n = (line.b.x - line.a.x) * (line.a.y - this->y) - (line.a.x - this->x) * (line.b.y - line.a.y); return std::abs(n) / line.length(); } /* Three points are a counter-clockwise turn if ccw > 0, clockwise if * ccw < 0, and collinear if ccw = 0 because ccw is a determinant that * gives the signed area of the triangle formed by p1, p2 and this point. * In other words it is the 2D cross product of p1-p2 and p1-this, i.e. * z-component of their 3D cross product. * We return double because it must be big enough to hold 2*max(|coordinate|)^2 */ double Point::ccw(const Point &p1, const Point &p2) const { return (p2.x - p1.x)*(this->y - p1.y) - (p2.y - p1.y)*(this->x - p1.x); } double Point::ccw(const Point* p1, const Point* p2) const { return this->ccw(*p1, *p2); } double Point::ccw(const Line &line) const { return this->ccw(line.a, line.b); } #ifdef SLIC3RXS SV* Point::to_SV_ref() { SV* sv = newSV(0); sv_setref_pv( sv, "Slic3r::Point::Ref", (void*)this ); return sv; } SV* Point::to_SV_clone_ref() const { SV* sv = newSV(0); sv_setref_pv( sv, "Slic3r::Point", new Point(*this) ); return sv; } SV* Point::to_SV_pureperl() const { AV* av = newAV(); av_fill(av, 1); av_store(av, 0, newSViv(this->x)); av_store(av, 1, newSViv(this->y)); return newRV_noinc((SV*)av); } void Point::from_SV(SV* point_sv) { AV* point_av = (AV*)SvRV(point_sv); // get a double from Perl and round it, otherwise // it would get truncated this->x = lrint(SvNV(*av_fetch(point_av, 0, 0))); this->y = lrint(SvNV(*av_fetch(point_av, 1, 0))); } void Point::from_SV_check(SV* point_sv) { if (sv_isobject(point_sv) && (SvTYPE(SvRV(point_sv)) == SVt_PVMG)) { *this = *(Point*)SvIV((SV*)SvRV( point_sv )); } else { this->from_SV(point_sv); } } SV* Pointf::to_SV_pureperl() const { AV* av = newAV(); av_fill(av, 1); av_store(av, 0, newSVnv(this->x)); av_store(av, 1, newSVnv(this->y)); return newRV_noinc((SV*)av); } void Pointf::from_SV(SV* point_sv) { AV* point_av = (AV*)SvRV(point_sv); this->x = SvNV(*av_fetch(point_av, 0, 0)); this->y = SvNV(*av_fetch(point_av, 1, 0)); } #endif void Pointf::scale(double factor) { this->x *= factor; this->y *= factor; } void Pointf::translate(double x, double y) { this->x += x; this->y += y; } void Pointf3::scale(double factor) { Pointf::scale(factor); this->z *= factor; } void Pointf3::translate(double x, double y, double z) { Pointf::translate(x, y); this->z += z; } }