/******************************************************************************* * * * Author : Angus Johnson * * Version : 6.2.9 * * Date : 16 February 2015 * * Website : http://www.angusj.com * * Copyright : Angus Johnson 2010-2015 * * * * License: * * Use, modification & distribution is subject to Boost Software License Ver 1. * * http://www.boost.org/LICENSE_1_0.txt * * * * Attributions: * * The code in this library is an extension of Bala Vatti's clipping algorithm: * * "A generic solution to polygon clipping" * * Communications of the ACM, Vol 35, Issue 7 (July 1992) pp 56-63. * * http://portal.acm.org/citation.cfm?id=129906 * * * * Computer graphics and geometric modeling: implementation and algorithms * * By Max K. Agoston * * Springer; 1 edition (January 4, 2005) * * http://books.google.com/books?q=vatti+clipping+agoston * * * * See also: * * "Polygon Offsetting by Computing Winding Numbers" * * Paper no. DETC2005-85513 pp. 565-575 * * ASME 2005 International Design Engineering Technical Conferences * * and Computers and Information in Engineering Conference (IDETC/CIE2005) * * September 24-28, 2005 , Long Beach, California, USA * * http://www.me.berkeley.edu/~mcmains/pubs/DAC05OffsetPolygon.pdf * * * *******************************************************************************/ #ifndef clipper_hpp #define clipper_hpp #define CLIPPER_VERSION "6.2.6" //use_int32: When enabled 32bit ints are used instead of 64bit ints. This //improve performance but coordinate values are limited to the range +/- 46340 //#define use_int32 //use_xyz: adds a Z member to IntPoint. Adds a minor cost to perfomance. //#define use_xyz //use_lines: Enables line clipping. Adds a very minor cost to performance. #define use_lines //use_deprecated: Enables temporary support for the obsolete functions //#define use_deprecated #include #include #include #include #include #include #include #include namespace ClipperLib { enum ClipType { ctIntersection, ctUnion, ctDifference, ctXor }; enum PolyType { ptSubject, ptClip }; //By far the most widely used winding rules for polygon filling are //EvenOdd & NonZero (GDI, GDI+, XLib, OpenGL, Cairo, AGG, Quartz, SVG, Gr32) //Others rules include Positive, Negative and ABS_GTR_EQ_TWO (only in OpenGL) //see http://glprogramming.com/red/chapter11.html enum PolyFillType { pftEvenOdd, pftNonZero, pftPositive, pftNegative }; #ifdef use_int32 typedef int cInt; static cInt const loRange = 0x7FFF; static cInt const hiRange = 0x7FFF; #else typedef signed long long cInt; static cInt const loRange = 0x3FFFFFFF; static cInt const hiRange = 0x3FFFFFFFFFFFFFFFLL; typedef signed long long long64; //used by Int128 class typedef unsigned long long ulong64; #endif struct IntPoint { cInt X; cInt Y; #ifdef use_xyz cInt Z; IntPoint(cInt x = 0, cInt y = 0, cInt z = 0): X(x), Y(y), Z(z) {}; #else IntPoint(cInt x = 0, cInt y = 0): X(x), Y(y) {}; #endif friend inline bool operator== (const IntPoint& a, const IntPoint& b) { return a.X == b.X && a.Y == b.Y; } friend inline bool operator!= (const IntPoint& a, const IntPoint& b) { return a.X != b.X || a.Y != b.Y; } }; //------------------------------------------------------------------------------ typedef std::vector< IntPoint > Path; typedef std::vector< Path > Paths; inline Path& operator <<(Path& poly, const IntPoint& p) {poly.push_back(p); return poly;} inline Paths& operator <<(Paths& polys, const Path& p) {polys.push_back(p); return polys;} std::ostream& operator <<(std::ostream &s, const IntPoint &p); std::ostream& operator <<(std::ostream &s, const Path &p); std::ostream& operator <<(std::ostream &s, const Paths &p); struct DoublePoint { double X; double Y; DoublePoint(double x = 0, double y = 0) : X(x), Y(y) {} DoublePoint(IntPoint ip) : X((double)ip.X), Y((double)ip.Y) {} }; //------------------------------------------------------------------------------ #ifdef use_xyz typedef void (*ZFillCallback)(IntPoint& e1bot, IntPoint& e1top, IntPoint& e2bot, IntPoint& e2top, IntPoint& pt); #endif enum InitOptions {ioReverseSolution = 1, ioStrictlySimple = 2, ioPreserveCollinear = 4}; enum JoinType {jtSquare, jtRound, jtMiter}; enum EndType {etClosedPolygon, etClosedLine, etOpenButt, etOpenSquare, etOpenRound}; class PolyNode; typedef std::vector< PolyNode* > PolyNodes; class PolyNode { public: PolyNode() : Childs(), Parent(0), Index(0), m_IsOpen(false) {} virtual ~PolyNode(){}; Path Contour; PolyNodes Childs; PolyNode* Parent; // Traversal of the polygon tree in a depth first fashion. PolyNode* GetNext() const { return Childs.empty() ? GetNextSiblingUp() : Childs.front(); } bool IsHole() const; bool IsOpen() const { return m_IsOpen; } int ChildCount() const { return (int)Childs.size(); } private: unsigned Index; //node index in Parent.Childs bool m_IsOpen; JoinType m_jointype; EndType m_endtype; PolyNode* GetNextSiblingUp() const { return Parent ? ((Index == Parent->Childs.size() - 1) ? Parent->GetNextSiblingUp() : Parent->Childs[Index + 1]) : nullptr; } void AddChild(PolyNode& child); friend class Clipper; //to access Index friend class ClipperOffset; friend class PolyTree; //to implement the PolyTree::move operator }; class PolyTree: public PolyNode { public: PolyTree() {} PolyTree(PolyTree &&src) { *this = std::move(src); } virtual ~PolyTree(){Clear();}; PolyTree& operator=(PolyTree &&src) { AllNodes = std::move(src.AllNodes); Contour = std::move(src.Contour); Childs = std::move(src.Childs); Parent = nullptr; Index = src.Index; m_IsOpen = src.m_IsOpen; m_jointype = src.m_jointype; m_endtype = src.m_endtype; for (size_t i = 0; i < Childs.size(); ++ i) Childs[i]->Parent = this; return *this; } PolyNode* GetFirst() const { return Childs.empty() ? nullptr : Childs.front(); } void Clear() { AllNodes.clear(); Childs.clear(); } int Total() const; private: PolyTree(const PolyTree &src) = delete; PolyTree& operator=(const PolyTree &src) = delete; std::vector AllNodes; friend class Clipper; //to access AllNodes }; double Area(const Path &poly); inline bool Orientation(const Path &poly) { return Area(poly) >= 0; } int PointInPolygon(const IntPoint &pt, const Path &path); void SimplifyPolygon(const Path &in_poly, Paths &out_polys, PolyFillType fillType = pftEvenOdd); void SimplifyPolygons(const Paths &in_polys, Paths &out_polys, PolyFillType fillType = pftEvenOdd); void SimplifyPolygons(Paths &polys, PolyFillType fillType = pftEvenOdd); void CleanPolygon(const Path& in_poly, Path& out_poly, double distance = 1.415); void CleanPolygon(Path& poly, double distance = 1.415); void CleanPolygons(const Paths& in_polys, Paths& out_polys, double distance = 1.415); void CleanPolygons(Paths& polys, double distance = 1.415); void MinkowskiSum(const Path& pattern, const Path& path, Paths& solution, bool pathIsClosed); void MinkowskiSum(const Path& pattern, const Paths& paths, Paths& solution, bool pathIsClosed); void MinkowskiDiff(const Path& poly1, const Path& poly2, Paths& solution); void PolyTreeToPaths(const PolyTree& polytree, Paths& paths); void ClosedPathsFromPolyTree(const PolyTree& polytree, Paths& paths); void OpenPathsFromPolyTree(PolyTree& polytree, Paths& paths); void ReversePath(Path& p); void ReversePaths(Paths& p); struct IntRect { cInt left; cInt top; cInt right; cInt bottom; }; //enums that are used internally ... enum EdgeSide { esLeft = 1, esRight = 2}; // namespace Internal { //forward declarations (for stuff used internally) ... struct TEdge { // Bottom point of this edge (with minimum Y). IntPoint Bot; // Current position. IntPoint Curr; // Top point of this edge (with maximum Y). IntPoint Top; // Vector from Bot to Top. IntPoint Delta; // Slope (dx/dy). For horiontal edges, the slope is set to HORIZONTAL (-1.0E+40). double Dx; PolyType PolyTyp; EdgeSide Side; // Winding number delta. 1 or -1 depending on winding direction, 0 for open paths and flat closed paths. int WindDelta; int WindCnt; int WindCnt2; //winding count of the opposite polytype int OutIdx; // Next edge in the input path. TEdge *Next; // Previous edge in the input path. TEdge *Prev; // Next edge in the Local Minima List chain. TEdge *NextInLML; TEdge *NextInAEL; TEdge *PrevInAEL; TEdge *NextInSEL; TEdge *PrevInSEL; }; struct IntersectNode { IntersectNode(TEdge *Edge1, TEdge *Edge2, IntPoint Pt) : Edge1(Edge1), Edge2(Edge2), Pt(Pt) {} TEdge *Edge1; TEdge *Edge2; IntPoint Pt; }; struct LocalMinimum { cInt Y; TEdge *LeftBound; TEdge *RightBound; }; // Point of an output polygon. // 36B on 64bit system with not use_int32 and not use_xyz. struct OutPt { // 4B int Idx; // 8B (if use_int32 and not use_xyz) or 16B (if not use_int32 and not use_xyz) // or 12B (if use_int32 and use_xyz) or 24B (if not use_int32 and use_xyz) IntPoint Pt; // 4B on 32bit system, 8B on 64bit system OutPt *Next; // 4B on 32bit system, 8B on 64bit system OutPt *Prev; }; struct OutRec; struct Join { Join(OutPt *OutPt1, OutPt *OutPt2, IntPoint OffPt) : OutPt1(OutPt1), OutPt2(OutPt2), OffPt(OffPt) {} OutPt *OutPt1; OutPt *OutPt2; IntPoint OffPt; }; // }; // namespace Internal //------------------------------------------------------------------------------ //ClipperBase is the ancestor to the Clipper class. It should not be //instantiated directly. This class simply abstracts the conversion of sets of //polygon coordinates into edge objects that are stored in a LocalMinima list. class ClipperBase { public: ClipperBase() : m_UseFullRange(false), m_HasOpenPaths(false) {} ~ClipperBase() { Clear(); } bool AddPath(const Path &pg, PolyType PolyTyp, bool Closed); bool AddPaths(const Paths &ppg, PolyType PolyTyp, bool Closed); void Clear(); IntRect GetBounds(); // By default, when three or more vertices are collinear in input polygons (subject or clip), the Clipper object removes the 'inner' vertices before clipping. // When enabled the PreserveCollinear property prevents this default behavior to allow these inner vertices to appear in the solution. bool PreserveCollinear() const {return m_PreserveCollinear;}; void PreserveCollinear(bool value) {m_PreserveCollinear = value;}; protected: bool AddPathInternal(const Path &pg, int highI, PolyType PolyTyp, bool Closed, TEdge* edges); TEdge* AddBoundsToLML(TEdge *e, bool IsClosed); void Reset(); TEdge* ProcessBound(TEdge* E, bool IsClockwise); TEdge* DescendToMin(TEdge *&E); void AscendToMax(TEdge *&E, bool Appending, bool IsClosed); // Local minima (Y, left edge, right edge) sorted by ascending Y. std::vector m_MinimaList; // True if the input polygons have abs values higher than loRange, but lower than hiRange. // False if the input polygons have abs values lower or equal to loRange. bool m_UseFullRange; // A vector of edges per each input path. std::vector> m_edges; // Don't remove intermediate vertices of a collinear sequence of points. bool m_PreserveCollinear; // Is any of the paths inserted by AddPath() or AddPaths() open? bool m_HasOpenPaths; }; //------------------------------------------------------------------------------ class Clipper : public ClipperBase { public: Clipper(int initOptions = 0); ~Clipper() { Clear(); } void Clear() { ClipperBase::Clear(); DisposeAllOutRecs(); } bool Execute(ClipType clipType, Paths &solution, PolyFillType fillType = pftEvenOdd) { return Execute(clipType, solution, fillType, fillType); } bool Execute(ClipType clipType, Paths &solution, PolyFillType subjFillType, PolyFillType clipFillType); bool Execute(ClipType clipType, PolyTree &polytree, PolyFillType fillType = pftEvenOdd) { return Execute(clipType, polytree, fillType, fillType); } bool Execute(ClipType clipType, PolyTree &polytree, PolyFillType subjFillType, PolyFillType clipFillType); bool ReverseSolution() const { return m_ReverseOutput; }; void ReverseSolution(bool value) {m_ReverseOutput = value;}; bool StrictlySimple() const {return m_StrictSimple;}; void StrictlySimple(bool value) {m_StrictSimple = value;}; //set the callback function for z value filling on intersections (otherwise Z is 0) #ifdef use_xyz void ZFillFunction(ZFillCallback zFillFunc) { m_ZFill = zFillFunc; } #endif protected: void Reset(); virtual bool ExecuteInternal(); private: // Output polygons. std::vector m_PolyOuts; // Output points, allocated by a continuous sets of m_OutPtsChunkSize. std::vector m_OutPts; // List of free output points, to be used before taking a point from m_OutPts or allocating a new chunk. OutPt *m_OutPtsFree; size_t m_OutPtsChunkSize; size_t m_OutPtsChunkLast; std::vector m_Joins; std::vector m_GhostJoins; std::vector m_IntersectList; ClipType m_ClipType; // A priority queue (a binary heap) of Y coordinates. std::priority_queue m_Scanbeam; // Maxima are collected by ProcessEdgesAtTopOfScanbeam(), consumed by ProcessHorizontal(). std::vector m_Maxima; TEdge *m_ActiveEdges; TEdge *m_SortedEdges; PolyFillType m_ClipFillType; PolyFillType m_SubjFillType; bool m_ReverseOutput; // Does the result go to a PolyTree or Paths? bool m_UsingPolyTree; bool m_StrictSimple; #ifdef use_xyz ZFillCallback m_ZFill; //custom callback #endif void SetWindingCount(TEdge& edge) const; bool IsEvenOddFillType(const TEdge& edge) const { return (edge.PolyTyp == ptSubject) ? m_SubjFillType == pftEvenOdd : m_ClipFillType == pftEvenOdd; } bool IsEvenOddAltFillType(const TEdge& edge) const { return (edge.PolyTyp == ptSubject) ? m_ClipFillType == pftEvenOdd : m_SubjFillType == pftEvenOdd; } void InsertLocalMinimaIntoAEL(const cInt botY); void InsertEdgeIntoAEL(TEdge *edge, TEdge* startEdge); void AddEdgeToSEL(TEdge *edge); void CopyAELToSEL(); void DeleteFromSEL(TEdge *e); void DeleteFromAEL(TEdge *e); void UpdateEdgeIntoAEL(TEdge *&e); void SwapPositionsInSEL(TEdge *edge1, TEdge *edge2); bool IsContributing(const TEdge& edge) const; bool IsTopHorz(const cInt XPos); void SwapPositionsInAEL(TEdge *edge1, TEdge *edge2); void DoMaxima(TEdge *e); void ProcessHorizontals(); void ProcessHorizontal(TEdge *horzEdge); void AddLocalMaxPoly(TEdge *e1, TEdge *e2, const IntPoint &pt); OutPt* AddLocalMinPoly(TEdge *e1, TEdge *e2, const IntPoint &pt); OutRec* GetOutRec(int idx); void AppendPolygon(TEdge *e1, TEdge *e2) const; void IntersectEdges(TEdge *e1, TEdge *e2, IntPoint &pt); OutRec* CreateOutRec(); OutPt* AddOutPt(TEdge *e, const IntPoint &pt); OutPt* GetLastOutPt(TEdge *e); OutPt* AllocateOutPt(); OutPt* DupOutPt(OutPt* outPt, bool InsertAfter); // Add the point to a list of free points. void DisposeOutPt(OutPt *pt) { pt->Next = m_OutPtsFree; m_OutPtsFree = pt; } void DisposeOutPts(OutPt*& pp) { if (pp != nullptr) { pp->Prev->Next = m_OutPtsFree; m_OutPtsFree = pp; } } void DisposeAllOutRecs(); bool ProcessIntersections(const cInt topY); void BuildIntersectList(const cInt topY); void ProcessEdgesAtTopOfScanbeam(const cInt topY); void BuildResult(Paths& polys); void BuildResult2(PolyTree& polytree); void SetHoleState(TEdge *e, OutRec *outrec) const; bool FixupIntersectionOrder(); void FixupOutPolygon(OutRec &outrec); void FixupOutPolyline(OutRec &outrec); bool FindOwnerFromSplitRecs(OutRec &outRec, OutRec *&currOrfl); void FixHoleLinkage(OutRec &outrec); bool JoinPoints(Join *j, OutRec* outRec1, OutRec* outRec2); bool JoinHorz(OutPt* op1, OutPt* op1b, OutPt* op2, OutPt* op2b, const IntPoint &Pt, bool DiscardLeft); void JoinCommonEdges(); void DoSimplePolygons(); void FixupFirstLefts1(OutRec* OldOutRec, OutRec* NewOutRec) const; void FixupFirstLefts2(OutRec* OldOutRec, OutRec* NewOutRec) const; #ifdef use_xyz void SetZ(IntPoint& pt, TEdge& e1, TEdge& e2); #endif }; //------------------------------------------------------------------------------ class ClipperOffset { public: ClipperOffset(double miterLimit = 2.0, double roundPrecision = 0.25, double shortestEdgeLength = 0.) : MiterLimit(miterLimit), ArcTolerance(roundPrecision), ShortestEdgeLength(shortestEdgeLength), m_lowest(-1, 0) {} ~ClipperOffset() { Clear(); } void AddPath(const Path& path, JoinType joinType, EndType endType); void AddPaths(const Paths& paths, JoinType joinType, EndType endType); void Execute(Paths& solution, double delta); void Execute(PolyTree& solution, double delta); void Clear(); double MiterLimit; double ArcTolerance; double ShortestEdgeLength; private: Paths m_destPolys; Path m_srcPoly; Path m_destPoly; std::vector m_normals; double m_delta, m_sinA, m_sin, m_cos; double m_miterLim, m_StepsPerRad; IntPoint m_lowest; PolyNode m_polyNodes; void FixOrientations(); void DoOffset(double delta); void OffsetPoint(int j, int& k, JoinType jointype); void DoSquare(int j, int k); void DoMiter(int j, int k, double r); void DoRound(int j, int k); }; //------------------------------------------------------------------------------ class clipperException : public std::exception { public: clipperException(const char* description): m_descr(description) {} virtual ~clipperException() throw() {} virtual const char* what() const throw() {return m_descr.c_str();} private: std::string m_descr; }; //------------------------------------------------------------------------------ } //ClipperLib namespace #endif //clipper_hpp