#include #include #include #include #include #include #include #include #include // Workaround: IGL signed_distance.h will define PI in the igl namespace. #undef PI // HEAVY headers... takes eternity to compile // for concave hull merging decisions #include #include "boost/geometry/index/rtree.hpp" #ifdef _MSC_VER #pragma warning(push) #pragma warning(disable: 4244) #pragma warning(disable: 4267) #endif #include #include #include #include #include #ifdef _MSC_VER #pragma warning(pop) #endif #include #include "ClipperUtils.hpp" namespace Slic3r { namespace sla { // Bring back PI from the igl namespace using igl::PI; /* ************************************************************************** * PointIndex implementation * ************************************************************************** */ class PointIndex::Impl { public: using BoostIndex = boost::geometry::index::rtree< PointIndexEl, boost::geometry::index::rstar<16, 4> /* ? */ >; BoostIndex m_store; }; PointIndex::PointIndex(): m_impl(new Impl()) {} PointIndex::~PointIndex() {} PointIndex::PointIndex(const PointIndex &cpy): m_impl(new Impl(*cpy.m_impl)) {} PointIndex::PointIndex(PointIndex&& cpy): m_impl(std::move(cpy.m_impl)) {} PointIndex& PointIndex::operator=(const PointIndex &cpy) { m_impl.reset(new Impl(*cpy.m_impl)); return *this; } PointIndex& PointIndex::operator=(PointIndex &&cpy) { m_impl.swap(cpy.m_impl); return *this; } void PointIndex::insert(const PointIndexEl &el) { m_impl->m_store.insert(el); } bool PointIndex::remove(const PointIndexEl& el) { return m_impl->m_store.remove(el) == 1; } std::vector PointIndex::query(std::function fn) const { namespace bgi = boost::geometry::index; std::vector ret; m_impl->m_store.query(bgi::satisfies(fn), std::back_inserter(ret)); return ret; } std::vector PointIndex::nearest(const Vec3d &el, unsigned k = 1) const { namespace bgi = boost::geometry::index; std::vector ret; ret.reserve(k); m_impl->m_store.query(bgi::nearest(el, k), std::back_inserter(ret)); return ret; } size_t PointIndex::size() const { return m_impl->m_store.size(); } void PointIndex::foreach(std::function fn) { for(auto& el : m_impl->m_store) fn(el); } void PointIndex::foreach(std::function fn) const { for(const auto &el : m_impl->m_store) fn(el); } /* ************************************************************************** * BoxIndex implementation * ************************************************************************** */ class BoxIndex::Impl { public: using BoostIndex = boost::geometry::index:: rtree /* ? */>; BoostIndex m_store; }; BoxIndex::BoxIndex(): m_impl(new Impl()) {} BoxIndex::~BoxIndex() {} BoxIndex::BoxIndex(const BoxIndex &cpy): m_impl(new Impl(*cpy.m_impl)) {} BoxIndex::BoxIndex(BoxIndex&& cpy): m_impl(std::move(cpy.m_impl)) {} BoxIndex& BoxIndex::operator=(const BoxIndex &cpy) { m_impl.reset(new Impl(*cpy.m_impl)); return *this; } BoxIndex& BoxIndex::operator=(BoxIndex &&cpy) { m_impl.swap(cpy.m_impl); return *this; } void BoxIndex::insert(const BoxIndexEl &el) { m_impl->m_store.insert(el); } bool BoxIndex::remove(const BoxIndexEl& el) { return m_impl->m_store.remove(el) == 1; } std::vector BoxIndex::query(const BoundingBox &qrbb, BoxIndex::QueryType qt) { namespace bgi = boost::geometry::index; std::vector ret; ret.reserve(m_impl->m_store.size()); switch (qt) { case qtIntersects: m_impl->m_store.query(bgi::intersects(qrbb), std::back_inserter(ret)); break; case qtWithin: m_impl->m_store.query(bgi::within(qrbb), std::back_inserter(ret)); } return ret; } size_t BoxIndex::size() const { return m_impl->m_store.size(); } void BoxIndex::foreach(std::function fn) { for(auto& el : m_impl->m_store) fn(el); } /* **************************************************************************** * EigenMesh3D implementation * ****************************************************************************/ class EigenMesh3D::AABBImpl: public igl::AABB { public: #ifdef SLIC3R_SLA_NEEDS_WINDTREE igl::WindingNumberAABB windtree; #endif /* SLIC3R_SLA_NEEDS_WINDTREE */ }; static const constexpr double MESH_EPS = 1e-6; void to_eigen_mesh(const TriangleMesh &tmesh, Eigen::MatrixXd &V, Eigen::MatrixXi &F) { const stl_file& stl = tmesh.stl; V.resize(3*stl.stats.number_of_facets, 3); F.resize(stl.stats.number_of_facets, 3); for (unsigned int i = 0; i < stl.stats.number_of_facets; ++i) { const stl_facet &facet = stl.facet_start[i]; V.block<1, 3>(3 * i + 0, 0) = facet.vertex[0].cast(); V.block<1, 3>(3 * i + 1, 0) = facet.vertex[1].cast(); V.block<1, 3>(3 * i + 2, 0) = facet.vertex[2].cast(); F(i, 0) = int(3*i+0); F(i, 1) = int(3*i+1); F(i, 2) = int(3*i+2); } if (!tmesh.has_shared_vertices()) { Eigen::MatrixXd rV; Eigen::MatrixXi rF; // We will convert this to a proper 3d mesh with no duplicate points. Eigen::VectorXi SVI, SVJ; igl::remove_duplicate_vertices(V, F, MESH_EPS, rV, SVI, SVJ, rF); V = std::move(rV); F = std::move(rF); } } void to_triangle_mesh(const Eigen::MatrixXd &V, const Eigen::MatrixXi &F, TriangleMesh &out) { Pointf3s points(size_t(V.rows())); std::vector facets(size_t(F.rows())); for (Eigen::Index i = 0; i < V.rows(); ++i) points[size_t(i)] = V.row(i); for (Eigen::Index i = 0; i < F.rows(); ++i) facets[size_t(i)] = F.row(i); out = {points, facets}; } EigenMesh3D::EigenMesh3D(const TriangleMesh& tmesh): m_aabb(new AABBImpl()) { auto&& bb = tmesh.bounding_box(); m_ground_level += bb.min(Z); to_eigen_mesh(tmesh, m_V, m_F); // Build the AABB accelaration tree m_aabb->init(m_V, m_F); #ifdef SLIC3R_SLA_NEEDS_WINDTREE m_aabb->windtree.set_mesh(m_V, m_F); #endif /* SLIC3R_SLA_NEEDS_WINDTREE */ } EigenMesh3D::~EigenMesh3D() {} EigenMesh3D::EigenMesh3D(const EigenMesh3D &other): m_V(other.m_V), m_F(other.m_F), m_ground_level(other.m_ground_level), m_aabb( new AABBImpl(*other.m_aabb) ) {} EigenMesh3D::EigenMesh3D(const Contour3D &other) { m_V.resize(Eigen::Index(other.points.size()), 3); m_F.resize(Eigen::Index(other.faces3.size() + 2 * other.faces4.size()), 3); for (Eigen::Index i = 0; i < Eigen::Index(other.points.size()); ++i) m_V.row(i) = other.points[size_t(i)]; for (Eigen::Index i = 0; i < Eigen::Index(other.faces3.size()); ++i) m_F.row(i) = other.faces3[size_t(i)]; size_t N = other.faces3.size() + 2 * other.faces4.size(); for (size_t i = other.faces3.size(); i < N; i += 2) { size_t quad_idx = (i - other.faces3.size()) / 2; auto & quad = other.faces4[quad_idx]; m_F.row(Eigen::Index(i)) = Vec3i{quad(0), quad(1), quad(2)}; m_F.row(Eigen::Index(i + 1)) = Vec3i{quad(2), quad(3), quad(0)}; } } EigenMesh3D &EigenMesh3D::operator=(const EigenMesh3D &other) { m_V = other.m_V; m_F = other.m_F; m_ground_level = other.m_ground_level; m_aabb.reset(new AABBImpl(*other.m_aabb)); return *this; } EigenMesh3D &EigenMesh3D::operator=(EigenMesh3D &&other) = default; EigenMesh3D::EigenMesh3D(EigenMesh3D &&other) = default; EigenMesh3D::hit_result EigenMesh3D::query_ray_hit(const Vec3d &s, const Vec3d &dir) const { assert(is_approx(dir.norm(), 1.)); igl::Hit hit; hit.t = std::numeric_limits::infinity(); if (m_holes.empty()) { m_aabb->intersect_ray(m_V, m_F, s, dir, hit); hit_result ret(*this); ret.m_t = double(hit.t); ret.m_dir = dir; ret.m_source = s; if(!std::isinf(hit.t) && !std::isnan(hit.t)) ret.m_normal = this->normal_by_face_id(hit.id); return ret; } else { // If there are holes, the hit_results will be made by // query_ray_hits (object) and filter_hits (holes): return filter_hits(query_ray_hits(s, dir)); } } std::vector EigenMesh3D::query_ray_hits(const Vec3d &s, const Vec3d &dir) const { std::vector outs; std::vector hits; m_aabb->intersect_ray(m_V, m_F, s, dir, hits); // The sort is necessary, the hits are not always sorted. std::sort(hits.begin(), hits.end(), [](const igl::Hit& a, const igl::Hit& b) { return a.t < b.t; }); // Remove duplicates. They sometimes appear, for example when the ray is cast // along an axis of a cube due to floating-point approximations in igl (?) hits.erase(std::unique(hits.begin(), hits.end(), [](const igl::Hit& a, const igl::Hit& b) { return a.t == b.t; }), hits.end()); // Convert the igl::Hit into hit_result outs.reserve(hits.size()); for (const igl::Hit& hit : hits) { outs.emplace_back(EigenMesh3D::hit_result(*this)); outs.back().m_t = double(hit.t); outs.back().m_dir = dir; outs.back().m_source = s; if(!std::isinf(hit.t) && !std::isnan(hit.t)) outs.back().m_normal = this->normal_by_face_id(hit.id); } return outs; } EigenMesh3D::hit_result EigenMesh3D::filter_hits( const std::vector& object_hits) const { assert(! m_holes.empty()); hit_result out(*this); if (object_hits.empty()) return out; const Vec3d& s = object_hits.front().source(); const Vec3d& dir = object_hits.front().direction(); // A helper struct to save an intersetion with a hole struct HoleHit { HoleHit(float t_p, const Vec3d& normal_p, bool entry_p) : t(t_p), normal(normal_p), entry(entry_p) {} float t; Vec3d normal; bool entry; }; std::vector hole_isects; hole_isects.reserve(m_holes.size()); auto sf = s.cast(); auto dirf = dir.cast(); // Collect hits on all holes, preserve information about entry/exit for (const sla::DrainHole& hole : m_holes) { std::array, 2> isects; if (hole.get_intersections(sf, dirf, isects)) { // Ignore hole hits behind the source if (isects[0].first > 0.f) hole_isects.emplace_back(isects[0].first, isects[0].second, true); if (isects[1].first > 0.f) hole_isects.emplace_back(isects[1].first, isects[1].second, false); } } // Holes can intersect each other, sort the hits by t std::sort(hole_isects.begin(), hole_isects.end(), [](const HoleHit& a, const HoleHit& b) { return a.t < b.t; }); // Now inspect the intersections with object and holes, in the order of // increasing distance. Keep track how deep are we nested in mesh/holes and // pick the correct intersection. // This needs to be done twice - first to find out how deep in the structure // the source is, then to pick the correct intersection. int hole_nested = 0; int object_nested = 0; for (int dry_run=1; dry_run>=0; --dry_run) { hole_nested = -hole_nested; object_nested = -object_nested; bool is_hole = false; bool is_entry = false; const HoleHit* next_hole_hit = hole_isects.empty() ? nullptr : &hole_isects.front(); const hit_result* next_mesh_hit = &object_hits.front(); while (next_hole_hit || next_mesh_hit) { if (next_hole_hit && next_mesh_hit) // still have hole and obj hits is_hole = (next_hole_hit->t < next_mesh_hit->m_t); else is_hole = next_hole_hit; // one or the other ran out // Is this entry or exit hit? is_entry = is_hole ? next_hole_hit->entry : ! next_mesh_hit->is_inside(); if (! dry_run) { if (! is_hole && hole_nested == 0) { // This is a valid object hit return *next_mesh_hit; } if (is_hole && ! is_entry && object_nested != 0) { // This holehit is the one we seek out.m_t = next_hole_hit->t; out.m_normal = next_hole_hit->normal; out.m_source = s; out.m_dir = dir; return out; } } // Increase/decrease the counter (is_hole ? hole_nested : object_nested) += (is_entry ? 1 : -1); // Advance the respective pointer if (is_hole && next_hole_hit++ == &hole_isects.back()) next_hole_hit = nullptr; if (! is_hole && next_mesh_hit++ == &object_hits.back()) next_mesh_hit = nullptr; } } // if we got here, the ray ended up in infinity return out; } #ifdef SLIC3R_SLA_NEEDS_WINDTREE EigenMesh3D::si_result EigenMesh3D::signed_distance(const Vec3d &p) const { double sign = 0; double sqdst = 0; int i = 0; Vec3d c; igl::signed_distance_winding_number(*m_aabb, m_V, m_F, m_aabb->windtree, p, sign, sqdst, i, c); return si_result(sign * std::sqrt(sqdst), i, c); } bool EigenMesh3D::inside(const Vec3d &p) const { return m_aabb->windtree.inside(p); } #endif /* SLIC3R_SLA_NEEDS_WINDTREE */ double EigenMesh3D::squared_distance(const Vec3d &p, int& i, Vec3d& c) const { double sqdst = 0; Eigen::Matrix pp = p; Eigen::Matrix cc; sqdst = m_aabb->squared_distance(m_V, m_F, pp, i, cc); c = cc; return sqdst; } /* **************************************************************************** * Misc functions * ****************************************************************************/ namespace { bool point_on_edge(const Vec3d& p, const Vec3d& e1, const Vec3d& e2, double eps = 0.05) { using Line3D = Eigen::ParametrizedLine; auto line = Line3D::Through(e1, e2); double d = line.distance(p); return std::abs(d) < eps; } template double distance(const Vec& pp1, const Vec& pp2) { auto p = pp2 - pp1; return std::sqrt(p.transpose() * p); } } PointSet normals(const PointSet& points, const EigenMesh3D& mesh, double eps, std::function thr, // throw on cancel const std::vector& pt_indices) { if (points.rows() == 0 || mesh.V().rows() == 0 || mesh.F().rows() == 0) return {}; std::vector range = pt_indices; if (range.empty()) { range.resize(size_t(points.rows()), 0); std::iota(range.begin(), range.end(), 0); } PointSet ret(range.size(), 3); // for (size_t ridx = 0; ridx < range.size(); ++ridx) ccr::enumerate( range.begin(), range.end(), [&ret, &mesh, &points, thr, eps](unsigned el, size_t ridx) { thr(); auto eidx = Eigen::Index(el); int faceid = 0; Vec3d p; mesh.squared_distance(points.row(eidx), faceid, p); auto trindex = mesh.F().row(faceid); const Vec3d &p1 = mesh.V().row(trindex(0)); const Vec3d &p2 = mesh.V().row(trindex(1)); const Vec3d &p3 = mesh.V().row(trindex(2)); // We should check if the point lies on an edge of the hosting // triangle. If it does then all the other triangles using the // same two points have to be searched and the final normal should // be some kind of aggregation of the participating triangle // normals. We should also consider the cases where the support // point lies right on a vertex of its triangle. The procedure is // the same, get the neighbor triangles and calculate an average // normal. // mark the vertex indices of the edge. ia and ib marks and edge // ic will mark a single vertex. int ia = -1, ib = -1, ic = -1; if (std::abs(distance(p, p1)) < eps) { ic = trindex(0); } else if (std::abs(distance(p, p2)) < eps) { ic = trindex(1); } else if (std::abs(distance(p, p3)) < eps) { ic = trindex(2); } else if (point_on_edge(p, p1, p2, eps)) { ia = trindex(0); ib = trindex(1); } else if (point_on_edge(p, p2, p3, eps)) { ia = trindex(1); ib = trindex(2); } else if (point_on_edge(p, p1, p3, eps)) { ia = trindex(0); ib = trindex(2); } // vector for the neigboring triangles including the detected one. std::vector neigh; if (ic >= 0) { // The point is right on a vertex of the triangle for (int n = 0; n < mesh.F().rows(); ++n) { thr(); Vec3i ni = mesh.F().row(n); if ((ni(X) == ic || ni(Y) == ic || ni(Z) == ic)) neigh.emplace_back(ni); } } else if (ia >= 0 && ib >= 0) { // the point is on and edge // now get all the neigboring triangles for (int n = 0; n < mesh.F().rows(); ++n) { thr(); Vec3i ni = mesh.F().row(n); if ((ni(X) == ia || ni(Y) == ia || ni(Z) == ia) && (ni(X) == ib || ni(Y) == ib || ni(Z) == ib)) neigh.emplace_back(ni); } } // Calculate the normals for the neighboring triangles std::vector neighnorms; neighnorms.reserve(neigh.size()); for (const Vec3i &tri : neigh) { const Vec3d & pt1 = mesh.V().row(tri(0)); const Vec3d & pt2 = mesh.V().row(tri(1)); const Vec3d & pt3 = mesh.V().row(tri(2)); Eigen::Vector3d U = pt2 - pt1; Eigen::Vector3d V = pt3 - pt1; neighnorms.emplace_back(U.cross(V).normalized()); } // Throw out duplicates. They would cause trouble with summing. We // will use std::unique which works on sorted ranges. We will sort // by the coefficient-wise sum of the normals. It should force the // same elements to be consecutive. std::sort(neighnorms.begin(), neighnorms.end(), [](const Vec3d &v1, const Vec3d &v2) { return v1.sum() < v2.sum(); }); auto lend = std::unique(neighnorms.begin(), neighnorms.end(), [](const Vec3d &n1, const Vec3d &n2) { // Compare normals for equivalence. // This is controvers stuff. auto deq = [](double a, double b) { return std::abs(a - b) < 1e-3; }; return deq(n1(X), n2(X)) && deq(n1(Y), n2(Y)) && deq(n1(Z), n2(Z)); }); if (!neighnorms.empty()) { // there were neighbors to count with // sum up the normals and then normalize the result again. // This unification seems to be enough. Vec3d sumnorm(0, 0, 0); sumnorm = std::accumulate(neighnorms.begin(), lend, sumnorm); sumnorm.normalize(); ret.row(long(ridx)) = sumnorm; } else { // point lies safely within its triangle Eigen::Vector3d U = p2 - p1; Eigen::Vector3d V = p3 - p1; ret.row(long(ridx)) = U.cross(V).normalized(); } }); return ret; } namespace bgi = boost::geometry::index; using Index3D = bgi::rtree< PointIndexEl, bgi::rstar<16, 4> /* ? */ >; namespace { bool cmp_ptidx_elements(const PointIndexEl& e1, const PointIndexEl& e2) { return e1.second < e2.second; }; ClusteredPoints cluster(Index3D &sindex, unsigned max_points, std::function( const Index3D &, const PointIndexEl &)> qfn) { using Elems = std::vector; // Recursive function for visiting all the points in a given distance to // each other std::function group = [&sindex, &group, max_points, qfn](Elems& pts, Elems& cluster) { for(auto& p : pts) { std::vector tmp = qfn(sindex, p); std::sort(tmp.begin(), tmp.end(), cmp_ptidx_elements); Elems newpts; std::set_difference(tmp.begin(), tmp.end(), cluster.begin(), cluster.end(), std::back_inserter(newpts), cmp_ptidx_elements); int c = max_points && newpts.size() + cluster.size() > max_points? int(max_points - cluster.size()) : int(newpts.size()); cluster.insert(cluster.end(), newpts.begin(), newpts.begin() + c); std::sort(cluster.begin(), cluster.end(), cmp_ptidx_elements); if(!newpts.empty() && (!max_points || cluster.size() < max_points)) group(newpts, cluster); } }; std::vector clusters; for(auto it = sindex.begin(); it != sindex.end();) { Elems cluster = {}; Elems pts = {*it}; group(pts, cluster); for(auto& c : cluster) sindex.remove(c); it = sindex.begin(); clusters.emplace_back(cluster); } ClusteredPoints result; for(auto& cluster : clusters) { result.emplace_back(); for(auto c : cluster) result.back().emplace_back(c.second); } return result; } std::vector distance_queryfn(const Index3D& sindex, const PointIndexEl& p, double dist, unsigned max_points) { std::vector tmp; tmp.reserve(max_points); sindex.query( bgi::nearest(p.first, max_points), std::back_inserter(tmp) ); for(auto it = tmp.begin(); it < tmp.end(); ++it) if(distance(p.first, it->first) > dist) it = tmp.erase(it); return tmp; } } // namespace // Clustering a set of points by the given criteria ClusteredPoints cluster( const std::vector& indices, std::function pointfn, double dist, unsigned max_points) { // A spatial index for querying the nearest points Index3D sindex; // Build the index for(auto idx : indices) sindex.insert( std::make_pair(pointfn(idx), idx)); return cluster(sindex, max_points, [dist, max_points](const Index3D& sidx, const PointIndexEl& p) { return distance_queryfn(sidx, p, dist, max_points); }); } // Clustering a set of points by the given criteria ClusteredPoints cluster( const std::vector& indices, std::function pointfn, std::function predicate, unsigned max_points) { // A spatial index for querying the nearest points Index3D sindex; // Build the index for(auto idx : indices) sindex.insert( std::make_pair(pointfn(idx), idx)); return cluster(sindex, max_points, [max_points, predicate](const Index3D& sidx, const PointIndexEl& p) { std::vector tmp; tmp.reserve(max_points); sidx.query(bgi::satisfies([p, predicate](const PointIndexEl& e){ return predicate(p, e); }), std::back_inserter(tmp)); return tmp; }); } ClusteredPoints cluster(const PointSet& pts, double dist, unsigned max_points) { // A spatial index for querying the nearest points Index3D sindex; // Build the index for(Eigen::Index i = 0; i < pts.rows(); i++) sindex.insert(std::make_pair(Vec3d(pts.row(i)), unsigned(i))); return cluster(sindex, max_points, [dist, max_points](const Index3D& sidx, const PointIndexEl& p) { return distance_queryfn(sidx, p, dist, max_points); }); } } // namespace sla } // namespace Slic3r