# Implements pure perl packages # # Slic3r::GUI::3DScene::Base; # Slic3r::GUI::3DScene::Volume; # Slic3r::GUI::3DScene; # # It uses static methods of a C++ class Slic3r::GUI::_3DScene::GLVertexArray # for efficient building of vertex arrays for OpenGL rendering. # # Slic3r::GUI::Plater::3D derives from Slic3r::GUI::3DScene, # Slic3r::GUI::Plater::3DPreview, Slic3r::GUI::Plater::3DToolpaths, # Slic3r::GUI::Plater::ObjectCutDialog and Slic3r::GUI::Plater::ObjectPartsPanel # own $self->{canvas} of the Slic3r::GUI::3DScene type. # # Therefore the 3DScene supports renderng of STLs, extrusions and cutting planes, # and camera manipulation. package Slic3r::GUI::3DScene::Base; use strict; use warnings; use Wx::Event qw(EVT_PAINT EVT_SIZE EVT_ERASE_BACKGROUND EVT_IDLE EVT_MOUSEWHEEL EVT_MOUSE_EVENTS); # must load OpenGL *before* Wx::GLCanvas use OpenGL qw(:glconstants :glfunctions :glufunctions :gluconstants); use base qw(Wx::GLCanvas Class::Accessor); use Math::Trig qw(asin tan); use List::Util qw(reduce min max first); use Slic3r::Geometry qw(X Y Z MIN MAX triangle_normal normalize deg2rad tan scale unscale scaled_epsilon); use Slic3r::Geometry::Clipper qw(offset_ex intersection_pl); use Wx::GLCanvas qw(:all); use Slic3r::Geometry qw(PI); # _dirty: boolean flag indicating, that the screen has to be redrawn on EVT_IDLE. # volumes: reference to vector of Slic3r::GUI::3DScene::Volume. # _camera_type: 'perspective' or 'ortho' __PACKAGE__->mk_accessors( qw(_quat _dirty init enable_picking enable_moving on_viewport_changed on_hover on_select on_double_click on_right_click on_move volumes _sphi _stheta cutting_plane_z cut_lines_vertices bed_shape bed_triangles bed_grid_lines background origin _mouse_pos _hover_volume_idx _drag_volume_idx _drag_start_pos _drag_start_xy _dragged _camera_type _camera_target _camera_distance _zoom ) ); use constant TRACKBALLSIZE => 0.8; use constant TURNTABLE_MODE => 1; use constant GROUND_Z => -0.02; # For mesh selection: Not selected - bright yellow. use constant DEFAULT_COLOR => [1,1,0]; # For mesh selection: Selected - bright green. use constant SELECTED_COLOR => [0,1,0,1]; # For mesh selection: Mouse hovers over the object, but object not selected yet - dark green. use constant HOVER_COLOR => [0.4,0.9,0,1]; # phi / theta angles to orient the camera. use constant VIEW_DEFAULT => [45.0,45.0]; use constant VIEW_LEFT => [90.0,90.0]; use constant VIEW_RIGHT => [-90.0,90.0]; use constant VIEW_TOP => [0.0,0.0]; use constant VIEW_BOTTOM => [0.0,180.0]; use constant VIEW_FRONT => [0.0,90.0]; use constant VIEW_REAR => [180.0,90.0]; # make OpenGL::Array thread-safe { no warnings 'redefine'; *OpenGL::Array::CLONE_SKIP = sub { 1 }; } sub new { my ($class, $parent) = @_; # We can only enable multi sample anti aliasing wih wxWidgets 3.0.3 and with a hacked Wx::GLCanvas, # which exports some new WX_GL_XXX constants, namely WX_GL_SAMPLE_BUFFERS and WX_GL_SAMPLES. my $can_multisample = Wx::wxVERSION >= 3.000003 && defined Wx::GLCanvas->can('WX_GL_SAMPLE_BUFFERS') && defined Wx::GLCanvas->can('WX_GL_SAMPLES'); my $attrib = [WX_GL_RGBA, WX_GL_DOUBLEBUFFER, WX_GL_DEPTH_SIZE, 24]; if ($can_multisample) { # Request a window with multi sampled anti aliasing. This is a new feature in Wx 3.0.3 (backported from 3.1.0). # Use eval to avoid compilation, if the subs WX_GL_SAMPLE_BUFFERS and WX_GL_SAMPLES are missing. eval 'push(@$attrib, (WX_GL_SAMPLE_BUFFERS, 1, WX_GL_SAMPLES, 4));'; } # wxWidgets expect the attrib list to be ended by zero. push(@$attrib, 0); # we request a depth buffer explicitely because it looks like it's not created by # default on Linux, causing transparency issues my $self = $class->SUPER::new($parent, -1, Wx::wxDefaultPosition, Wx::wxDefaultSize, 0, "", $attrib); if (Wx::wxVERSION >= 3.000003) { # Wx 3.0.3 contains an ugly hack to support some advanced OpenGL attributes through the attribute list. # The attribute list is transferred between the wxGLCanvas and wxGLContext constructors using a single static array s_wglContextAttribs. # Immediatelly force creation of the OpenGL context to consume the static variable s_wglContextAttribs. $self->GetContext(); } $self->background(1); $self->_quat((0, 0, 0, 1)); $self->_stheta(45); $self->_sphi(45); $self->_zoom(1); # 3D point in model space $self->_camera_type('ortho'); # $self->_camera_type('perspective'); $self->_camera_target(Slic3r::Pointf3->new(0,0,0)); $self->_camera_distance(0.); $self->reset_objects; EVT_PAINT($self, sub { my $dc = Wx::PaintDC->new($self); $self->Render($dc); }); EVT_SIZE($self, sub { $self->_dirty(1) }); EVT_IDLE($self, sub { return unless $self->_dirty; return if !$self->IsShownOnScreen; $self->Resize( $self->GetSizeWH ); $self->Refresh; }); EVT_MOUSEWHEEL($self, sub { my ($self, $e) = @_; # Calculate the zoom delta and apply it to the current zoom factor my $zoom = $e->GetWheelRotation() / $e->GetWheelDelta(); $zoom = max(min($zoom, 4), -4); $zoom /= 10; $self->_zoom($self->_zoom / (1-$zoom)); # In order to zoom around the mouse point we need to translate # the camera target my $size = Slic3r::Pointf->new($self->GetSizeWH); my $pos = Slic3r::Pointf->new($e->GetX, $size->y - $e->GetY); #- $self->_camera_target->translate( # ($pos - $size/2) represents the vector from the viewport center # to the mouse point. By multiplying it by $zoom we get the new, # transformed, length of such vector. # Since we want that point to stay fixed, we move our camera target # in the opposite direction by the delta of the length of such vector # ($zoom - 1). We then scale everything by 1/$self->_zoom since # $self->_camera_target is expressed in terms of model units. -($pos->x - $size->x/2) * ($zoom) / $self->_zoom, -($pos->y - $size->y/2) * ($zoom) / $self->_zoom, 0, ) if 0; $self->on_viewport_changed->() if $self->on_viewport_changed; $self->_dirty(1); $self->Refresh; }); EVT_MOUSE_EVENTS($self, \&mouse_event); return $self; } sub mouse_event { my ($self, $e) = @_; my $pos = Slic3r::Pointf->new($e->GetPositionXY); if ($e->Entering && &Wx::wxMSW) { # wxMSW needs focus in order to catch mouse wheel events $self->SetFocus; } elsif ($e->LeftDClick) { $self->on_double_click->() if $self->on_double_click; } elsif ($e->LeftDown || $e->RightDown) { # If user pressed left or right button we first check whether this happened # on a volume or not. my $volume_idx = $self->_hover_volume_idx // -1; # select volume in this 3D canvas if ($self->enable_picking) { $self->deselect_volumes; $self->select_volume($volume_idx); if ($volume_idx != -1) { my $group_id = $self->volumes->[$volume_idx]->select_group_id; my @volumes; if ($group_id != -1) { $self->select_volume($_) for grep $self->volumes->[$_]->select_group_id == $group_id, 0..$#{$self->volumes}; } } $self->Refresh; } # propagate event through callback $self->on_select->($volume_idx) if $self->on_select; if ($volume_idx != -1) { if ($e->LeftDown && $self->enable_moving) { $self->_drag_volume_idx($volume_idx); $self->_drag_start_pos($self->mouse_to_3d(@$pos)); } elsif ($e->RightDown) { # if right clicking on volume, propagate event through callback $self->on_right_click->($e->GetPosition) if $self->on_right_click; } } } elsif ($e->Dragging && $e->LeftIsDown && defined($self->_drag_volume_idx)) { # get new position at the same Z of the initial click point my $mouse_ray = $self->mouse_ray($e->GetX, $e->GetY); my $cur_pos = $mouse_ray->intersect_plane($self->_drag_start_pos->z); # calculate the translation vector my $vector = $self->_drag_start_pos->vector_to($cur_pos); # get volume being dragged my $volume = $self->volumes->[$self->_drag_volume_idx]; # get all volumes belonging to the same group, if any my @volumes; if ($volume->drag_group_id == -1) { @volumes = ($volume); } else { @volumes = grep $_->drag_group_id == $volume->drag_group_id, @{$self->volumes}; } # apply new temporary volume origin and ignore Z $_->origin->translate($vector->x, $vector->y, 0) for @volumes; #,, $self->_drag_start_pos($cur_pos); $self->_dragged(1); $self->Refresh; } elsif ($e->Dragging) { if ($e->LeftIsDown) { # if dragging over blank area with left button, rotate if (defined $self->_drag_start_pos) { my $orig = $self->_drag_start_pos; if (TURNTABLE_MODE) { $self->_sphi($self->_sphi + ($pos->x - $orig->x) * TRACKBALLSIZE); $self->_stheta($self->_stheta - ($pos->y - $orig->y) * TRACKBALLSIZE); #- $self->_stheta(150) if $self->_stheta > 150; $self->_stheta(0) if $self->_stheta < 0; } else { my $size = $self->GetClientSize; my @quat = trackball( $orig->x / ($size->width / 2) - 1, 1 - $orig->y / ($size->height / 2), #/ $pos->x / ($size->width / 2) - 1, 1 - $pos->y / ($size->height / 2), #/ ); $self->_quat(mulquats($self->_quat, \@quat)); } $self->on_viewport_changed->() if $self->on_viewport_changed; $self->Refresh; } $self->_drag_start_pos($pos); } elsif ($e->MiddleIsDown || $e->RightIsDown) { # if dragging over blank area with right button, translate if (defined $self->_drag_start_xy) { # get point in model space at Z = 0 my $cur_pos = $self->mouse_ray($e->GetX, $e->GetY)->intersect_plane(0); my $orig = $self->mouse_ray(@{$self->_drag_start_xy})->intersect_plane(0); $self->_camera_target->translate( @{$orig->vector_to($cur_pos)->negative}, ); $self->on_viewport_changed->() if $self->on_viewport_changed; $self->Refresh; } $self->_drag_start_xy($pos); } } elsif ($e->LeftUp || $e->MiddleUp || $e->RightUp) { if ($self->on_move && defined($self->_drag_volume_idx) && $self->_dragged) { # get all volumes belonging to the same group, if any my @volume_idxs; my $group_id = $self->volumes->[$self->_drag_volume_idx]->drag_group_id; if ($group_id == -1) { @volume_idxs = ($self->_drag_volume_idx); } else { @volume_idxs = grep $self->volumes->[$_]->drag_group_id == $group_id, 0..$#{$self->volumes}; } $self->on_move->(@volume_idxs); } $self->_drag_volume_idx(undef); $self->_drag_start_pos(undef); $self->_drag_start_xy(undef); $self->_dragged(undef); } elsif ($e->Moving) { $self->_mouse_pos($pos); $self->Refresh; } else { $e->Skip(); } } # Reset selection. sub reset_objects { my ($self) = @_; $self->volumes([]); $self->_dirty(1); } # Setup camera to view all objects. sub set_viewport_from_scene { my ($self, $scene) = @_; $self->_sphi($scene->_sphi); $self->_stheta($scene->_stheta); $self->_camera_target($scene->_camera_target); $self->_zoom($scene->_zoom); $self->_quat($scene->_quat); $self->_dirty(1); } # Set the camera to a default orientation, # zoom to volumes. sub select_view { my ($self, $direction) = @_; my $dirvec; if (ref($direction)) { $dirvec = $direction; } else { if ($direction eq 'default') { $dirvec = VIEW_DEFAULT; } elsif ($direction eq 'left') { $dirvec = VIEW_LEFT; } elsif ($direction eq 'right') { $dirvec = VIEW_RIGHT; } elsif ($direction eq 'top') { $dirvec = VIEW_TOP; } elsif ($direction eq 'bottom') { $dirvec = VIEW_BOTTOM; } elsif ($direction eq 'front') { $dirvec = VIEW_FRONT; } elsif ($direction eq 'rear') { $dirvec = VIEW_REAR; } } $self->_sphi($dirvec->[0]); $self->_stheta($dirvec->[1]); # Avoid gimball lock. $self->_stheta(150) if $self->_stheta > 150; $self->_stheta(0) if $self->_stheta < 0; # View everything. $self->zoom_to_volumes; $self->on_viewport_changed->() if $self->on_viewport_changed; $self->Refresh; } sub zoom_to_bounding_box { my ($self, $bb) = @_; # calculate the zoom factor needed to adjust viewport to # bounding box my $max_size = max(@{$bb->size}) * 2; my $min_viewport_size = min($self->GetSizeWH); $self->_zoom($min_viewport_size / $max_size); # center view around bounding box center $self->_camera_target($bb->center); $self->on_viewport_changed->() if $self->on_viewport_changed; } sub zoom_to_bed { my ($self) = @_; if ($self->bed_shape) { $self->zoom_to_bounding_box($self->bed_bounding_box); } } sub zoom_to_volume { my ($self, $volume_idx) = @_; my $volume = $self->volumes->[$volume_idx]; my $bb = $volume->transformed_bounding_box; $self->zoom_to_bounding_box($bb); } sub zoom_to_volumes { my ($self) = @_; $self->zoom_to_bounding_box($self->volumes_bounding_box); } sub volumes_bounding_box { my ($self) = @_; my $bb = Slic3r::Geometry::BoundingBoxf3->new; $bb->merge($_->transformed_bounding_box) for @{$self->volumes}; return $bb; } sub bed_bounding_box { my ($self) = @_; my $bb = Slic3r::Geometry::BoundingBoxf3->new; if ($self->bed_shape) { $bb->merge_point(Slic3r::Pointf3->new(@$_, 0)) for @{$self->bed_shape}; } return $bb; } sub max_bounding_box { my ($self) = @_; my $bb = $self->bed_bounding_box; $bb->merge($self->volumes_bounding_box); return $bb; } sub set_auto_bed_shape { my ($self, $bed_shape) = @_; # draw a default square bed around object center my $max_size = max(@{ $self->volumes_bounding_box->size }); my $center = $self->volumes_bounding_box->center; $self->set_bed_shape([ [ $center->x - $max_size, $center->y - $max_size ], #-- [ $center->x + $max_size, $center->y - $max_size ], #-- [ $center->x + $max_size, $center->y + $max_size ], #++ [ $center->x - $max_size, $center->y + $max_size ], #++ ]); $self->origin(Slic3r::Pointf->new(@$center[X,Y])); } sub set_bed_shape { my ($self, $bed_shape) = @_; $self->bed_shape($bed_shape); # triangulate bed my $expolygon = Slic3r::ExPolygon->new([ map [map scale($_), @$_], @$bed_shape ]); my $bed_bb = $expolygon->bounding_box; { my @points = (); foreach my $triangle (@{ $expolygon->triangulate }) { push @points, map {+ unscale($_->x), unscale($_->y), GROUND_Z } @$triangle; #)) } $self->bed_triangles(OpenGL::Array->new_list(GL_FLOAT, @points)); } { my @polylines = (); for (my $x = $bed_bb->x_min; $x <= $bed_bb->x_max; $x += scale 10) { push @polylines, Slic3r::Polyline->new([$x,$bed_bb->y_min], [$x,$bed_bb->y_max]); } for (my $y = $bed_bb->y_min; $y <= $bed_bb->y_max; $y += scale 10) { push @polylines, Slic3r::Polyline->new([$bed_bb->x_min,$y], [$bed_bb->x_max,$y]); } # clip with a slightly grown expolygon because our lines lay on the contours and # may get erroneously clipped my @lines = map Slic3r::Line->new(@$_[0,-1]), @{intersection_pl(\@polylines, [ @{$expolygon->offset(+scaled_epsilon)} ])}; # append bed contours push @lines, map @{$_->lines}, @$expolygon; my @points = (); foreach my $line (@lines) { push @points, map {+ unscale($_->x), unscale($_->y), GROUND_Z } @$line; #)) } $self->bed_grid_lines(OpenGL::Array->new_list(GL_FLOAT, @points)); } $self->origin(Slic3r::Pointf->new(0,0)); } sub deselect_volumes { my ($self) = @_; $_->selected(0) for @{$self->volumes}; } sub select_volume { my ($self, $volume_idx) = @_; $self->volumes->[$volume_idx]->selected(1) if $volume_idx != -1; } sub SetCuttingPlane { my ($self, $z, $expolygons) = @_; $self->cutting_plane_z($z); # grow slices in order to display them better $expolygons = offset_ex([ map @$_, @$expolygons ], scale 0.1); my @verts = (); foreach my $line (map @{$_->lines}, map @$_, @$expolygons) { push @verts, ( unscale($line->a->x), unscale($line->a->y), $z, #)) unscale($line->b->x), unscale($line->b->y), $z, #)) ); } $self->cut_lines_vertices(OpenGL::Array->new_list(GL_FLOAT, @verts)); } # Given an axis and angle, compute quaternion. sub axis_to_quat { my ($ax, $phi) = @_; my $lena = sqrt(reduce { $a + $b } (map { $_ * $_ } @$ax)); my @q = map { $_ * (1 / $lena) } @$ax; @q = map { $_ * sin($phi / 2.0) } @q; $q[$#q + 1] = cos($phi / 2.0); return @q; } # Project a point on the virtual trackball. # If it is inside the sphere, map it to the sphere, if it outside map it # to a hyperbola. sub project_to_sphere { my ($r, $x, $y) = @_; my $d = sqrt($x * $x + $y * $y); if ($d < $r * 0.70710678118654752440) { # Inside sphere return sqrt($r * $r - $d * $d); } else { # On hyperbola my $t = $r / 1.41421356237309504880; return $t * $t / $d; } } sub cross { my ($v1, $v2) = @_; return (@$v1[1] * @$v2[2] - @$v1[2] * @$v2[1], @$v1[2] * @$v2[0] - @$v1[0] * @$v2[2], @$v1[0] * @$v2[1] - @$v1[1] * @$v2[0]); } # Simulate a track-ball. Project the points onto the virtual trackball, # then figure out the axis of rotation, which is the cross product of # P1 P2 and O P1 (O is the center of the ball, 0,0,0) Note: This is a # deformed trackball-- is a trackball in the center, but is deformed # into a hyperbolic sheet of rotation away from the center. # It is assumed that the arguments to this routine are in the range # (-1.0 ... 1.0). sub trackball { my ($p1x, $p1y, $p2x, $p2y) = @_; if ($p1x == $p2x && $p1y == $p2y) { # zero rotation return (0.0, 0.0, 0.0, 1.0); } # First, figure out z-coordinates for projection of P1 and P2 to # deformed sphere my @p1 = ($p1x, $p1y, project_to_sphere(TRACKBALLSIZE, $p1x, $p1y)); my @p2 = ($p2x, $p2y, project_to_sphere(TRACKBALLSIZE, $p2x, $p2y)); # axis of rotation (cross product of P1 and P2) my @a = cross(\@p2, \@p1); # Figure out how much to rotate around that axis. my @d = map { $_ * $_ } (map { $p1[$_] - $p2[$_] } 0 .. $#p1); my $t = sqrt(reduce { $a + $b } @d) / (2.0 * TRACKBALLSIZE); # Avoid problems with out-of-control values... $t = 1.0 if ($t > 1.0); $t = -1.0 if ($t < -1.0); my $phi = 2.0 * asin($t); return axis_to_quat(\@a, $phi); } # Build a rotation matrix, given a quaternion rotation. sub quat_to_rotmatrix { my ($q) = @_; my @m = (); $m[0] = 1.0 - 2.0 * (@$q[1] * @$q[1] + @$q[2] * @$q[2]); $m[1] = 2.0 * (@$q[0] * @$q[1] - @$q[2] * @$q[3]); $m[2] = 2.0 * (@$q[2] * @$q[0] + @$q[1] * @$q[3]); $m[3] = 0.0; $m[4] = 2.0 * (@$q[0] * @$q[1] + @$q[2] * @$q[3]); $m[5] = 1.0 - 2.0 * (@$q[2] * @$q[2] + @$q[0] * @$q[0]); $m[6] = 2.0 * (@$q[1] * @$q[2] - @$q[0] * @$q[3]); $m[7] = 0.0; $m[8] = 2.0 * (@$q[2] * @$q[0] - @$q[1] * @$q[3]); $m[9] = 2.0 * (@$q[1] * @$q[2] + @$q[0] * @$q[3]); $m[10] = 1.0 - 2.0 * (@$q[1] * @$q[1] + @$q[0] * @$q[0]); $m[11] = 0.0; $m[12] = 0.0; $m[13] = 0.0; $m[14] = 0.0; $m[15] = 1.0; return @m; } sub mulquats { my ($q1, $rq) = @_; return (@$q1[3] * @$rq[0] + @$q1[0] * @$rq[3] + @$q1[1] * @$rq[2] - @$q1[2] * @$rq[1], @$q1[3] * @$rq[1] + @$q1[1] * @$rq[3] + @$q1[2] * @$rq[0] - @$q1[0] * @$rq[2], @$q1[3] * @$rq[2] + @$q1[2] * @$rq[3] + @$q1[0] * @$rq[1] - @$q1[1] * @$rq[0], @$q1[3] * @$rq[3] - @$q1[0] * @$rq[0] - @$q1[1] * @$rq[1] - @$q1[2] * @$rq[2]) } sub mouse_to_3d { my ($self, $x, $y, $z) = @_; my @viewport = glGetIntegerv_p(GL_VIEWPORT); # 4 items my @mview = glGetDoublev_p(GL_MODELVIEW_MATRIX); # 16 items my @proj = glGetDoublev_p(GL_PROJECTION_MATRIX); # 16 items $y = $viewport[3] - $y; $z //= glReadPixels_p($x, $y, 1, 1, GL_DEPTH_COMPONENT, GL_FLOAT); my @projected = gluUnProject_p($x, $y, $z, @mview, @proj, @viewport); return Slic3r::Pointf3->new(@projected); } sub mouse_ray { my ($self, $x, $y) = @_; return Slic3r::Linef3->new( $self->mouse_to_3d($x, $y, 0), $self->mouse_to_3d($x, $y, 1), ); } sub GetContext { my ($self) = @_; if (Wx::wxVERSION >= 2.009) { return $self->{context} ||= Wx::GLContext->new($self); } else { return $self->SUPER::GetContext; } } sub SetCurrent { my ($self, $context) = @_; if (Wx::wxVERSION >= 2.009) { return $self->SUPER::SetCurrent($context); } else { return $self->SUPER::SetCurrent; } } sub Resize { my ($self, $x, $y) = @_; return unless $self->GetContext; $self->_dirty(0); $self->SetCurrent($self->GetContext); glViewport(0, 0, $x, $y); $x /= $self->_zoom; $y /= $self->_zoom; glMatrixMode(GL_PROJECTION); glLoadIdentity(); if ($self->_camera_type eq 'ortho') { #FIXME setting the size of the box 10x larger than necessary # is only a workaround for an incorrectly set camera. # This workaround harms Z-buffer accuracy! # my $depth = 1.05 * $self->max_bounding_box->radius(); my $depth = 10.0 * $self->max_bounding_box->radius(); glOrtho( -$x/2, $x/2, -$y/2, $y/2, -$depth, $depth, ); } else { die "Invalid camera type: ", $self->_camera_type, "\n" if ($self->_camera_type ne 'perspective'); my $bbox_r = $self->max_bounding_box->radius(); my $fov = PI * 45. / 180.; my $fov_tan = tan(0.5 * $fov); my $cam_distance = 0.5 * $bbox_r / $fov_tan; $self->_camera_distance($cam_distance); my $nr = $cam_distance - $bbox_r * 1.1; my $fr = $cam_distance + $bbox_r * 1.1; $nr = 1 if ($nr < 1); $fr = $nr + 1 if ($fr < $nr + 1); my $h2 = $fov_tan * $nr; my $w2 = $h2 * $x / $y; glFrustum(-$w2, $w2, -$h2, $h2, $nr, $fr); } glMatrixMode(GL_MODELVIEW); } sub InitGL { my $self = shift; return if $self->init; return unless $self->GetContext; $self->init(1); glClearColor(0, 0, 0, 1); glColor3f(1, 0, 0); glEnable(GL_DEPTH_TEST); glClearDepth(1.0); glDepthFunc(GL_LEQUAL); glEnable(GL_CULL_FACE); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); # Set antialiasing/multisampling glDisable(GL_LINE_SMOOTH); glDisable(GL_POLYGON_SMOOTH); glEnable(GL_MULTISAMPLE); # glHint(GL_MULTISAMPLE_FILTER_HINT_NV, GL_NICEST); # ambient lighting glLightModelfv_p(GL_LIGHT_MODEL_AMBIENT, 0.3, 0.3, 0.3, 1); glEnable(GL_LIGHTING); glEnable(GL_LIGHT0); glEnable(GL_LIGHT1); # light from camera glLightfv_p(GL_LIGHT1, GL_POSITION, 1, 0, 1, 0); glLightfv_p(GL_LIGHT1, GL_SPECULAR, 0.3, 0.3, 0.3, 1); glLightfv_p(GL_LIGHT1, GL_DIFFUSE, 0.2, 0.2, 0.2, 1); # Enables Smooth Color Shading; try GL_FLAT for (lack of) fun. glShadeModel(GL_SMOOTH); glMaterialfv_p(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, 0.5, 0.3, 0.3, 1); glMaterialfv_p(GL_FRONT_AND_BACK, GL_SPECULAR, 1, 1, 1, 1); glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, 50); glMaterialfv_p(GL_FRONT_AND_BACK, GL_EMISSION, 0.1, 0, 0, 0.9); # A handy trick -- have surface material mirror the color. glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE); glEnable(GL_COLOR_MATERIAL); glEnable(GL_MULTISAMPLE); } sub Render { my ($self, $dc) = @_; # prevent calling SetCurrent() when window is not shown yet return unless $self->IsShownOnScreen; return unless my $context = $self->GetContext; $self->SetCurrent($context); $self->InitGL; glClearColor(1, 1, 1, 1); glClearDepth(1); glDepthFunc(GL_LESS); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); { # Shift the perspective camera. my $camera_pos = Slic3r::Pointf3->new(0,0,-$self->_camera_distance); glTranslatef(@$camera_pos); } if (TURNTABLE_MODE) { glRotatef(-$self->_stheta, 1, 0, 0); # pitch glRotatef($self->_sphi, 0, 0, 1); # yaw } else { my @rotmat = quat_to_rotmatrix($self->quat); glMultMatrixd_p(@rotmat[0..15]); } glTranslatef(@{ $self->_camera_target->negative }); # light from above glLightfv_p(GL_LIGHT0, GL_POSITION, -0.5, -0.5, 1, 0); glLightfv_p(GL_LIGHT0, GL_SPECULAR, 0.2, 0.2, 0.2, 1); glLightfv_p(GL_LIGHT0, GL_DIFFUSE, 0.5, 0.5, 0.5, 1); if ($self->enable_picking) { # Render the object for picking. # FIXME This cannot possibly work in a multi-sampled context as the color gets mangled by the anti-aliasing. # Better to use software ray-casting on a bounding-box hierarchy. glDisable(GL_LIGHTING); $self->draw_volumes(1); glFlush(); glFinish(); if (my $pos = $self->_mouse_pos) { my $col = [ glReadPixels_p($pos->x, $self->GetSize->GetHeight - $pos->y, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE) ]; my $volume_idx = $col->[0] + $col->[1]*256 + $col->[2]*256*256; $self->_hover_volume_idx(undef); $_->hover(0) for @{$self->volumes}; if ($volume_idx <= $#{$self->volumes}) { $self->_hover_volume_idx($volume_idx); $self->volumes->[$volume_idx]->hover(1); my $group_id = $self->volumes->[$volume_idx]->select_group_id; if ($group_id != -1) { $_->hover(1) for grep { $_->select_group_id == $group_id } @{$self->volumes}; } $self->on_hover->($volume_idx) if $self->on_hover; } } glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glFlush(); glFinish(); glEnable(GL_LIGHTING); } # draw fixed background if ($self->background) { glDisable(GL_LIGHTING); glPushMatrix(); glLoadIdentity(); glMatrixMode(GL_PROJECTION); glPushMatrix(); glLoadIdentity(); # Draws a bluish bottom to top gradient over the complete screen. glDisable(GL_DEPTH_TEST); glBegin(GL_QUADS); glColor3f(0.0,0.0,0.0); glVertex3f(-1.0,-1.0, 1.0); glVertex3f( 1.0,-1.0, 1.0); glColor3f(10/255,98/255,144/255); glVertex3f( 1.0, 1.0, 1.0); glVertex3f(-1.0, 1.0, 1.0); glEnd(); glPopMatrix(); glEnable(GL_DEPTH_TEST); glMatrixMode(GL_MODELVIEW); glPopMatrix(); glEnable(GL_LIGHTING); } # draw ground and axes glDisable(GL_LIGHTING); # draw ground my $ground_z = GROUND_Z; if ($self->bed_triangles) { glDisable(GL_DEPTH_TEST); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnableClientState(GL_VERTEX_ARRAY); glColor4f(0.8, 0.6, 0.5, 0.4); glNormal3d(0,0,1); glVertexPointer_p(3, $self->bed_triangles); glDrawArrays(GL_TRIANGLES, 0, $self->bed_triangles->elements / 3); glDisableClientState(GL_VERTEX_ARRAY); # we need depth test for grid, otherwise it would disappear when looking # the object from below glEnable(GL_DEPTH_TEST); # draw grid glLineWidth(3); glColor4f(0.2, 0.2, 0.2, 0.4); glEnableClientState(GL_VERTEX_ARRAY); glVertexPointer_p(3, $self->bed_grid_lines); glDrawArrays(GL_LINES, 0, $self->bed_grid_lines->elements / 3); glDisableClientState(GL_VERTEX_ARRAY); glDisable(GL_BLEND); } my $volumes_bb = $self->volumes_bounding_box; { # draw axes # disable depth testing so that axes are not covered by ground glDisable(GL_DEPTH_TEST); my $origin = $self->origin; my $axis_len = max( 0.3 * max(@{ $self->bed_bounding_box->size }), 2 * max(@{ $volumes_bb->size }), ); glLineWidth(2); glBegin(GL_LINES); # draw line for x axis glColor3f(1, 0, 0); glVertex3f(@$origin, $ground_z); glVertex3f($origin->x + $axis_len, $origin->y, $ground_z); #,, # draw line for y axis glColor3f(0, 1, 0); glVertex3f(@$origin, $ground_z); glVertex3f($origin->x, $origin->y + $axis_len, $ground_z); #++ glEnd(); # draw line for Z axis # (re-enable depth test so that axis is correctly shown when objects are behind it) glEnable(GL_DEPTH_TEST); glBegin(GL_LINES); glColor3f(0, 0, 1); glVertex3f(@$origin, $ground_z); glVertex3f(@$origin, $ground_z+$axis_len); glEnd(); } glEnable(GL_LIGHTING); # draw objects $self->draw_volumes; # draw cutting plane if (defined $self->cutting_plane_z) { my $plane_z = $self->cutting_plane_z; my $bb = $volumes_bb; glDisable(GL_CULL_FACE); glDisable(GL_LIGHTING); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glBegin(GL_QUADS); glColor4f(0.8, 0.8, 0.8, 0.5); glVertex3f($bb->x_min-20, $bb->y_min-20, $plane_z); glVertex3f($bb->x_max+20, $bb->y_min-20, $plane_z); glVertex3f($bb->x_max+20, $bb->y_max+20, $plane_z); glVertex3f($bb->x_min-20, $bb->y_max+20, $plane_z); glEnd(); glEnable(GL_CULL_FACE); glDisable(GL_BLEND); } glFlush(); $self->SwapBuffers(); } sub draw_volumes { # $fakecolor is a boolean indicating, that the objects shall be rendered in a color coding the object index for picking. my ($self, $fakecolor) = @_; glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_NORMAL_ARRAY); foreach my $volume_idx (0..$#{$self->volumes}) { my $volume = $self->volumes->[$volume_idx]; if ($fakecolor) { # Object picking mode. Render the object with a color encoding the object index. my $r = ($volume_idx & 0x000000FF) >> 0; my $g = ($volume_idx & 0x0000FF00) >> 8; my $b = ($volume_idx & 0x00FF0000) >> 16; glColor4f($r/255.0, $g/255.0, $b/255.0, 1); } elsif ($volume->selected) { glColor4f(@{ &SELECTED_COLOR }); } elsif ($volume->hover) { glColor4f(@{ &HOVER_COLOR }); } else { glColor4f(@{ $volume->color }); } my $qverts_begin = 0; my $qverts_end = defined($volume->qverts) ? $volume->qverts->size() : 0; my $tverts_begin = 0; my $tverts_end = defined($volume->tverts) ? $volume->tverts->size() : 0; if ($volume->range && $volume->offsets && @{$volume->offsets}) { # The Z layer range is specified. # First test whether the Z span of this object is not out of ($min_z, $max_z) completely. my ($min_z, $max_z) = @{$volume->range}; next if ($volume->offsets->[0] > $max_z || $volume->offsets->[-3] < $min_z); # Then find the lowest layer to be displayed. my $i = 0; while ($i < @{$volume->offsets} && $volume->offsets->[$i] < $min_z) { $i += 3; } # This shall not happen. next if ($i == @{$volume->offsets}); # Remember start of the layer. if ($i >= 3) { # Get end of the preceding layer, which is the start of the current layer. $qverts_begin = $volume->offsets->[$i-2]; $tverts_begin = $volume->offsets->[$i-1]; } # Some layers are above $min_z. Which? while ($i < @{$volume->offsets} && $volume->offsets->[$i] <= $max_z) { $i += 3; } if ($i < @{$volume->offsets}) { $qverts_end = $volume->offsets->[$i+1]; $tverts_end = $volume->offsets->[$i+2]; } } glPushMatrix(); glTranslatef(@{$volume->origin}); glCullFace(GL_BACK); if ($qverts_begin < $qverts_end) { glVertexPointer_c(3, GL_FLOAT, 0, $volume->qverts->verts_ptr); glNormalPointer_c(GL_FLOAT, 0, $volume->qverts->norms_ptr); glDrawArrays(GL_QUADS, $qverts_begin / 3, ($qverts_end-$qverts_begin) / 3); } if ($tverts_begin < $tverts_end) { glVertexPointer_c(3, GL_FLOAT, 0, $volume->tverts->verts_ptr); glNormalPointer_c(GL_FLOAT, 0, $volume->tverts->norms_ptr); glDrawArrays(GL_TRIANGLES, $tverts_begin / 3, ($tverts_end-$tverts_begin) / 3); } glPopMatrix(); } glDisableClientState(GL_NORMAL_ARRAY); glDisable(GL_BLEND); if (defined $self->cutting_plane_z) { glLineWidth(2); glColor3f(0, 0, 0); glVertexPointer_p(3, $self->cut_lines_vertices); glDrawArrays(GL_LINES, 0, $self->cut_lines_vertices->elements / 3); } glDisableClientState(GL_VERTEX_ARRAY); } sub _report_opengl_state { my ($self, $comment) = @_; my $err = glGetError(); return 0 if ($err == 0); # gluErrorString() hangs. Don't use it. # my $errorstr = gluErrorString(); my $errorstr = ''; if ($err == 0x0500) { $errorstr = 'GL_INVALID_ENUM'; } elsif ($err == GL_INVALID_VALUE) { $errorstr = 'GL_INVALID_VALUE'; } elsif ($err == GL_INVALID_OPERATION) { $errorstr = 'GL_INVALID_OPERATION'; } elsif ($err == GL_STACK_OVERFLOW) { $errorstr = 'GL_STACK_OVERFLOW'; } elsif ($err == GL_OUT_OF_MEMORY) { $errorstr = 'GL_OUT_OF_MEMORY'; } else { $errorstr = 'unknown'; } if (defined($comment)) { printf("OpenGL error at %s, nr %d (0x%x): %s\n", $comment, $err, $err, $errorstr); } else { printf("OpenGL error nr %d (0x%x): %s\n", $err, $err, $errorstr); } } # Container for object geometry and selection status. package Slic3r::GUI::3DScene::Volume; use Moo; has 'bounding_box' => (is => 'ro', required => 1); has 'origin' => (is => 'rw', default => sub { Slic3r::Pointf3->new(0,0,0) }); has 'color' => (is => 'ro', required => 1); # An ID for group selection. It may be the same for all meshes of all object instances, or for just a single object instance. has 'select_group_id' => (is => 'rw', default => sub { -1 }); # An ID for group dragging. It may be the same for all meshes of all object instances, or for just a single object instance. has 'drag_group_id' => (is => 'rw', default => sub { -1 }); # Boolean: Is this object selected? has 'selected' => (is => 'rw', default => sub { 0 }); # Boolean: Is mouse over this object? has 'hover' => (is => 'rw', default => sub { 0 }); # Vector of two values: a span in the Z axis. Meaningful for a display of layers. has 'range' => (is => 'rw'); # Geometric data. # Quads: GLVertexArray object: C++ class maintaining an std::vector for coords and normals. has 'qverts' => (is => 'rw'); # Triangles: GLVertexArray object has 'tverts' => (is => 'rw'); # If the qverts or tverts contain thick extrusions, then offsets keeps pointers of the starts # of the extrusions per layer. # The offsets stores tripples of (z_top, qverts_idx, tverts_idx) in a linear array. has 'offsets' => (is => 'rw'); sub transformed_bounding_box { my ($self) = @_; my $bb = $self->bounding_box; $bb->translate(@{$self->origin}); return $bb; } # The 3D canvas to display objects and tool paths. package Slic3r::GUI::3DScene; use base qw(Slic3r::GUI::3DScene::Base); use OpenGL qw(:glconstants :gluconstants :glufunctions); use List::Util qw(first min max); use Slic3r::Geometry qw(scale unscale epsilon); use Slic3r::Print::State ':steps'; # Perimeter: yellow, Infill: redish, Suport: greenish, last: blueish, use constant COLORS => [ [1,1,0,1], [1,0.5,0.5,1], [0.5,1,0.5,1], [0.5,0.5,1,1] ]; __PACKAGE__->mk_accessors(qw( color_by select_by drag_by volumes_by_object _objects_by_volumes )); sub new { my $class = shift; my $self = $class->SUPER::new(@_); $self->color_by('volume'); # object | volume $self->select_by('object'); # object | volume | instance $self->drag_by('instance'); # object | instance $self->volumes_by_object({}); # obj_idx => [ volume_idx, volume_idx ... ] $self->_objects_by_volumes({}); # volume_idx => [ obj_idx, instance_idx ] return $self; } sub load_object { my ($self, $model, $obj_idx, $instance_idxs) = @_; my $model_object; if ($model->isa('Slic3r::Model::Object')) { $model_object = $model; $model = $model_object->model; $obj_idx = 0; } else { $model_object = $model->get_object($obj_idx); } $instance_idxs ||= [0..$#{$model_object->instances}]; my @volumes_idx = (); foreach my $volume_idx (0..$#{$model_object->volumes}) { my $volume = $model_object->volumes->[$volume_idx]; foreach my $instance_idx (@$instance_idxs) { my $instance = $model_object->instances->[$instance_idx]; my $mesh = $volume->mesh->clone; $instance->transform_mesh($mesh); my $color_idx; if ($self->color_by eq 'volume') { $color_idx = $volume_idx; } elsif ($self->color_by eq 'object') { $color_idx = $obj_idx; } # Using the colors 'yellowish', 'greenish', 'blueish' for both the extrusion paths # and the volumes of a single multi-color object. #FIXME so for 4 or more color print, there will be only 3 colors displayed, which will # not correspond to the color of the filament. my $color = [ @{COLORS->[ $color_idx % scalar(@{&COLORS}) ]} ]; $color->[3] = $volume->modifier ? 0.5 : 1; push @{$self->volumes}, my $v = Slic3r::GUI::3DScene::Volume->new( bounding_box => $mesh->bounding_box, color => $color, ); if ($self->select_by eq 'object') { $v->select_group_id($obj_idx*1000000); } elsif ($self->select_by eq 'volume') { $v->select_group_id($obj_idx*1000000 + $volume_idx*1000); } elsif ($self->select_by eq 'instance') { $v->select_group_id($obj_idx*1000000 + $volume_idx*1000 + $instance_idx); } if ($self->drag_by eq 'object') { $v->drag_group_id($obj_idx*1000); } elsif ($self->drag_by eq 'instance') { $v->drag_group_id($obj_idx*1000 + $instance_idx); } push @volumes_idx, my $scene_volume_idx = $#{$self->volumes}; $self->_objects_by_volumes->{$scene_volume_idx} = [ $obj_idx, $volume_idx, $instance_idx ]; my $verts = Slic3r::GUI::_3DScene::GLVertexArray->new; $verts->load_mesh($mesh); $v->tverts($verts); } } $self->volumes_by_object->{$obj_idx} = [@volumes_idx]; return @volumes_idx; } # Called possibly by utils/view-toolpaths.pl, likely broken. sub load_print_object_slices { my ($self, $object) = @_; my @verts = (); my @norms = (); my @quad_verts = (); my @quad_norms = (); foreach my $layer (@{$object->layers}) { my $gap = 0; my $top_z = $layer->print_z; my $bottom_z = $layer->print_z - $layer->height + $gap; foreach my $copy (@{ $object->_shifted_copies }) { { my @expolygons = map $_->clone, @{$layer->slices}; $_->translate(@$copy) for @expolygons; $self->_expolygons_to_verts(\@expolygons, $layer->print_z, \@verts, \@norms); } foreach my $slice (@{$layer->slices}) { foreach my $polygon (@$slice) { foreach my $line (@{$polygon->lines}) { $line->translate(@$copy); push @quad_norms, (0,0,-1), (0,0,-1); push @quad_verts, (map unscale($_), @{$line->a}), $bottom_z; push @quad_verts, (map unscale($_), @{$line->b}), $bottom_z; push @quad_norms, (0,0,1), (0,0,1); push @quad_verts, (map unscale($_), @{$line->b}), $top_z; push @quad_verts, (map unscale($_), @{$line->a}), $top_z; # We'll use this for the middle normal when using 4 quads: #my $xy_normal = $line->normal; #$_xynormal->scale(1/$line->length); } } } } } my $obb = $object->bounding_box; my $bb = Slic3r::Geometry::BoundingBoxf3->new; $bb->merge_point(Slic3r::Pointf3->new_unscale(@{$obb->min_point}, 0)); $bb->merge_point(Slic3r::Pointf3->new_unscale(@{$obb->max_point}, $object->size->z)); push @{$self->volumes}, my $v = Slic3r::GUI::3DScene::Volume->new( bounding_box => $bb, color => COLORS->[0], verts => OpenGL::Array->new_list(GL_FLOAT, @verts), norms => OpenGL::Array->new_list(GL_FLOAT, @norms), quad_verts => OpenGL::Array->new_list(GL_FLOAT, @quad_verts), quad_norms => OpenGL::Array->new_list(GL_FLOAT, @quad_norms), ); } # Create 3D thick extrusion lines for a skirt and brim. # Adds a new Slic3r::GUI::3DScene::Volume to $self->volumes. sub load_print_toolpaths { my ($self, $print) = @_; return if !$print->step_done(STEP_SKIRT); return if !$print->step_done(STEP_BRIM); return if !$print->has_skirt && $print->config->brim_width == 0; my $qverts = Slic3r::GUI::_3DScene::GLVertexArray->new; my $tverts = Slic3r::GUI::_3DScene::GLVertexArray->new; my $offsets = []; # triples stored in a linear array, sorted by print_z: print_z, qverts, tverts my $skirt_height = 0; # number of layers if ($print->has_infinite_skirt) { $skirt_height = $print->total_layer_count; } else { $skirt_height = min($print->config->skirt_height, $print->total_layer_count); } $skirt_height ||= 1 if $print->config->brim_width > 0; # get first $skirt_height layers (maybe this should be moved to a PrintObject method?) my $object0 = $print->get_object(0); my @layers = (); push @layers, map $object0->get_layer($_-1), 1..min($skirt_height, $object0->layer_count); push @layers, map $object0->get_support_layer($_-1), 1..min($skirt_height, $object0->support_layer_count); @layers = sort { $a->print_z <=> $b->print_z } @layers; @layers = @layers[0..($skirt_height-1)]; foreach my $i (0..($skirt_height-1)) { my $top_z = $layers[$i]->print_z; push @$offsets, ($top_z, $qverts->size, $tverts->size); if ($i == 0) { $self->_extrusionentity_to_verts($print->brim, $top_z, Slic3r::Point->new(0,0), $qverts, $tverts); } $self->_extrusionentity_to_verts($print->skirt, $top_z, Slic3r::Point->new(0,0), $qverts, $tverts); } my $bb = Slic3r::Geometry::BoundingBoxf3->new; { my $pbb = $print->bounding_box; $bb->merge_point(Slic3r::Pointf3->new_unscale(@{$pbb->min_point})); $bb->merge_point(Slic3r::Pointf3->new_unscale(@{$pbb->max_point})); } push @{$self->volumes}, Slic3r::GUI::3DScene::Volume->new( bounding_box => $bb, color => COLORS->[2], qverts => $qverts, tverts => $tverts, offsets => $offsets, ); } # Create 3D thick extrusion lines for object forming extrusions. # Adds a new Slic3r::GUI::3DScene::Volume to $self->volumes, # one for perimeters, one for infill and one for supports. sub load_print_object_toolpaths { my ($self, $object) = @_; my $perim_qverts = Slic3r::GUI::_3DScene::GLVertexArray->new; my $perim_tverts = Slic3r::GUI::_3DScene::GLVertexArray->new; my $infill_qverts = Slic3r::GUI::_3DScene::GLVertexArray->new; my $infill_tverts = Slic3r::GUI::_3DScene::GLVertexArray->new; my $support_qverts = Slic3r::GUI::_3DScene::GLVertexArray->new; my $support_tverts = Slic3r::GUI::_3DScene::GLVertexArray->new; my $perim_offsets = []; # triples of (print_z, qverts, tverts), stored linearly, sorted by print_z my $infill_offsets = []; my $support_offsets = []; # order layers by print_z my @layers = sort { $a->print_z <=> $b->print_z } @{$object->layers}, @{$object->support_layers}; # Bounding box of the object and its copies. my $bb = Slic3r::Geometry::BoundingBoxf3->new; { my $obb = $object->bounding_box; foreach my $copy (@{ $object->_shifted_copies }) { my $cbb = $obb->clone; $cbb->translate(@$copy); $bb->merge_point(Slic3r::Pointf3->new_unscale(@{$cbb->min_point}, 0)); $bb->merge_point(Slic3r::Pointf3->new_unscale(@{$cbb->max_point}, $object->size->z)); } } # Maximum size of an allocation block: 32MB / sizeof(float) my $alloc_size_max = 32 * 1048576 / 4; foreach my $layer (@layers) { my $top_z = $layer->print_z; push @$perim_offsets, ($top_z, $perim_qverts->size, $perim_tverts->size) if (!@$perim_offsets || $perim_offsets->[-3] != $top_z); push @$infill_offsets, ($top_z, $infill_qverts->size, $infill_tverts->size) if (!@$infill_offsets || $infill_offsets->[-3] != $top_z); push @$support_offsets, ($top_z, $support_qverts->size, $support_tverts->size) if (!@$support_offsets || $support_offsets->[-3] != $top_z); foreach my $copy (@{ $object->_shifted_copies }) { foreach my $layerm (@{$layer->regions}) { if ($object->step_done(STEP_PERIMETERS)) { $self->_extrusionentity_to_verts($layerm->perimeters, $top_z, $copy, $perim_qverts, $perim_tverts); } if ($object->step_done(STEP_INFILL)) { $self->_extrusionentity_to_verts($layerm->fills, $top_z, $copy, $infill_qverts, $infill_tverts); } } if ($layer->isa('Slic3r::Layer::Support') && $object->step_done(STEP_SUPPORTMATERIAL)) { $self->_extrusionentity_to_verts($layer->support_fills, $top_z, $copy, $support_qverts, $support_tverts); $self->_extrusionentity_to_verts($layer->support_interface_fills, $top_z, $copy, $support_qverts, $support_tverts); } } if ($perim_qverts->size() > $alloc_size_max || $perim_tverts->size() > $alloc_size_max) { # Store the vertex arrays and restart their containers. push @{$self->volumes}, Slic3r::GUI::3DScene::Volume->new( bounding_box => $bb, color => COLORS->[0], qverts => $perim_qverts, tverts => $perim_tverts, offsets => $perim_offsets, ); $perim_qverts = Slic3r::GUI::_3DScene::GLVertexArray->new; $perim_tverts = Slic3r::GUI::_3DScene::GLVertexArray->new; $perim_offsets = []; } if ($infill_qverts->size() > $alloc_size_max || $infill_tverts->size() > $alloc_size_max) { # Store the vertex arrays and restart their containers. push @{$self->volumes}, Slic3r::GUI::3DScene::Volume->new( bounding_box => $bb, color => COLORS->[1], qverts => $infill_qverts, tverts => $infill_tverts, offsets => $infill_offsets, ); $infill_qverts = Slic3r::GUI::_3DScene::GLVertexArray->new; $infill_tverts = Slic3r::GUI::_3DScene::GLVertexArray->new; $infill_offsets = []; } if ($support_qverts->size() > $alloc_size_max || $support_tverts->size() > $alloc_size_max) { # Store the vertex arrays and restart their containers. push @{$self->volumes}, Slic3r::GUI::3DScene::Volume->new( bounding_box => $bb, color => COLORS->[2], qverts => $support_qverts, tverts => $support_tverts, offsets => $support_offsets, ); $support_qverts = Slic3r::GUI::_3DScene::GLVertexArray->new; $support_tverts = Slic3r::GUI::_3DScene::GLVertexArray->new; $support_offsets = []; } } if ($perim_qverts->size() > 0 || $perim_tverts->size() > 0) { push @{$self->volumes}, Slic3r::GUI::3DScene::Volume->new( bounding_box => $bb, color => COLORS->[0], qverts => $perim_qverts, tverts => $perim_tverts, offsets => $perim_offsets, ); } if ($infill_qverts->size() > 0 || $infill_tverts->size() > 0) { push @{$self->volumes}, Slic3r::GUI::3DScene::Volume->new( bounding_box => $bb, color => COLORS->[1], qverts => $infill_qverts, tverts => $infill_tverts, offsets => $infill_offsets, ); } if ($support_qverts->size() > 0 || $support_tverts->size() > 0) { push @{$self->volumes}, Slic3r::GUI::3DScene::Volume->new( bounding_box => $bb, color => COLORS->[2], qverts => $support_qverts, tverts => $support_tverts, offsets => $support_offsets, ); } } sub set_toolpaths_range { my ($self, $min_z, $max_z) = @_; foreach my $volume (@{$self->volumes}) { $volume->range([ $min_z, $max_z ]); } } # called by load_print_object_slices, probably not used. sub _expolygons_to_verts { my ($self, $expolygons, $z, $verts, $norms) = @_; my $tess = gluNewTess(); gluTessCallback($tess, GLU_TESS_BEGIN, 'DEFAULT'); gluTessCallback($tess, GLU_TESS_END, 'DEFAULT'); gluTessCallback($tess, GLU_TESS_VERTEX, sub { my ($x, $y, $z) = @_; push @$verts, $x, $y, $z; push @$norms, (0,0,1), (0,0,1), (0,0,1); }); gluTessCallback($tess, GLU_TESS_COMBINE, 'DEFAULT'); gluTessCallback($tess, GLU_TESS_ERROR, 'DEFAULT'); gluTessCallback($tess, GLU_TESS_EDGE_FLAG, 'DEFAULT'); foreach my $expolygon (@$expolygons) { gluTessBeginPolygon($tess); foreach my $polygon (@$expolygon) { gluTessBeginContour($tess); gluTessVertex_p($tess, (map unscale($_), @$_), $z) for @$polygon; gluTessEndContour($tess); } gluTessEndPolygon($tess); } gluDeleteTess($tess); } # Fill in the $qverts and $tverts with quads and triangles # for the extrusion $entity. sub _extrusionentity_to_verts { my ($self, $entity, $top_z, $copy, $qverts, $tverts) = @_; my ($lines, $widths, $heights, $closed); if ($entity->isa('Slic3r::ExtrusionPath::Collection')) { $self->_extrusionentity_to_verts($_, $top_z, $copy, $qverts, $tverts) for @$entity; return; } elsif ($entity->isa('Slic3r::ExtrusionPath')) { my $polyline = $entity->polyline->clone; $polyline->remove_duplicate_points; $polyline->translate(@$copy); $lines = $polyline->lines; $widths = [ map $entity->width, 0..$#$lines ]; $heights = [ map $entity->height, 0..$#$lines ]; $closed = 0; } else { $lines = []; $widths = []; $heights = []; $closed = 1; foreach my $path (@$entity) { my $polyline = $path->polyline->clone; $polyline->remove_duplicate_points; $polyline->translate(@$copy); my $path_lines = $polyline->lines; push @$lines, @$path_lines; push @$widths, map $path->width, 0..$#$path_lines; push @$heights, map $path->height, 0..$#$path_lines; } } # Calling the C++ implementation Slic3r::_3DScene::_extrusionentity_to_verts_do() # This adds new vertices to the $qverts and $tverts. Slic3r::GUI::_3DScene::_extrusionentity_to_verts_do($lines, $widths, $heights, $closed, # Top height of the extrusion. $top_z, # $copy is not used here. $copy, # GLVertexArray object: C++ class maintaining an std::vector for coords and normals. $qverts, $tverts); } sub object_idx { my ($self, $volume_idx) = @_; return $self->_objects_by_volumes->{$volume_idx}[0]; } sub volume_idx { my ($self, $volume_idx) = @_; return $self->_objects_by_volumes->{$volume_idx}[1]; } sub instance_idx { my ($self, $volume_idx) = @_; return $self->_objects_by_volumes->{$volume_idx}[2]; } 1;