#include "Geometry.hpp" #include "Line.hpp" #include "PolylineCollection.hpp" #include "clipper.hpp" #include #include #include #include #include #ifdef SLIC3R_DEBUG #include "SVG.hpp" #endif using namespace boost::polygon; // provides also high() and low() namespace Slic3r { namespace Geometry { static bool sort_points (Point a, Point b) { return (a.x < b.x) || (a.x == b.x && a.y < b.y); } /* This implementation is based on Andrew's monotone chain 2D convex hull algorithm */ void convex_hull(Points &points, Polygon* hull) { assert(points.size() >= 3); // sort input points std::sort(points.begin(), points.end(), sort_points); int n = points.size(), k = 0; hull->points.resize(2*n); // Build lower hull for (int i = 0; i < n; i++) { while (k >= 2 && points[i].ccw(hull->points[k-2], hull->points[k-1]) <= 0) k--; hull->points[k++] = points[i]; } // Build upper hull for (int i = n-2, t = k+1; i >= 0; i--) { while (k >= t && points[i].ccw(hull->points[k-2], hull->points[k-1]) <= 0) k--; hull->points[k++] = points[i]; } hull->points.resize(k); assert( hull->points.front().coincides_with(hull->points.back()) ); hull->points.pop_back(); } /* accepts an arrayref of points and returns a list of indices according to a nearest-neighbor walk */ void chained_path(Points &points, std::vector &retval, Point start_near) { PointPtrs my_points; std::map indices; my_points.reserve(points.size()); for (Points::iterator it = points.begin(); it != points.end(); ++it) { my_points.push_back(&*it); indices[&*it] = it - points.begin(); } retval.reserve(points.size()); while (!my_points.empty()) { Points::size_type idx = start_near.nearest_point_index(my_points); start_near = *my_points[idx]; retval.push_back(indices[ my_points[idx] ]); my_points.erase(my_points.begin() + idx); } } void chained_path(Points &points, std::vector &retval) { if (points.empty()) return; // can't call front() on empty vector chained_path(points, retval, points.front()); } /* retval and items must be different containers */ template void chained_path_items(Points &points, T &items, T &retval) { std::vector indices; chained_path(points, indices); for (std::vector::const_iterator it = indices.begin(); it != indices.end(); ++it) retval.push_back(items[*it]); } template void chained_path_items(Points &points, ClipperLib::PolyNodes &items, ClipperLib::PolyNodes &retval); Line MedialAxis::edge_to_line(const VD::edge_type &edge) { Line line; line.a.x = edge.vertex0()->x(); line.a.y = edge.vertex0()->y(); line.b.x = edge.vertex1()->x(); line.b.y = edge.vertex1()->y(); return line; } void MedialAxis::build(Polylines* polylines) { /* // build bounding box (we use it for clipping infinite segments) // --> we have no infinite segments this->bb = BoundingBox(this->lines); */ construct_voronoi(this->lines.begin(), this->lines.end(), &this->vd); // collect valid edges (i.e. prune those not belonging to MAT) // note: this keeps twins, so it contains twice the number of the valid edges this->edges.clear(); for (VD::const_edge_iterator edge = this->vd.edges().begin(); edge != this->vd.edges().end(); ++edge) { if (this->is_valid_edge(*edge)) this->edges.insert(&*edge); } // count valid segments for each vertex std::map< const VD::vertex_type*,std::list > vertex_edges; std::list entry_nodes; for (VD::const_vertex_iterator vertex = this->vd.vertices().begin(); vertex != this->vd.vertices().end(); ++vertex) { // get a reference to the list of valid edges originating from this vertex std::list& edges = vertex_edges[&*vertex]; // get one random edge originating from this vertex const VD::edge_type* edge = vertex->incident_edge(); do { if (this->edges.count(edge) > 0) // only count valid edges edges.push_back(edge); edge = edge->rot_next(); // next edge originating from this vertex } while (edge != vertex->incident_edge()); // if there's only one edge starting at this vertex then it's a leaf if (edges.size() == 1) entry_nodes.push_back(&*vertex); } // iterate through the leafs to prune short branches for (std::list::const_iterator vertex = entry_nodes.begin(); vertex != entry_nodes.end(); ++vertex) { const VD::vertex_type* v = *vertex; // start a polyline from this vertex Polyline polyline; polyline.points.push_back(Point(v->x(), v->y())); // keep track of visited edges to prevent infinite loops std::set visited_edges; do { // get edge starting from v const VD::edge_type* edge = vertex_edges[v].front(); // if we picked the edge going backwards (thus the twin of the previous edge) if (visited_edges.count(edge->twin()) > 0) { edge = vertex_edges[v].back(); } // avoid getting twice on the same edge if (visited_edges.count(edge) > 0) break; visited_edges.insert(edge); // get ending vertex for this edge and append it to the polyline v = edge->vertex1(); polyline.points.push_back(Point( v->x(), v->y() )); // if two edges start at this vertex (one forward one backwards) then // it's not branching and we can go on } while (vertex_edges[v].size() == 2); // if this branch is too short, invalidate all of its edges so that // they will be ignored when building actual polylines in the loop below if (polyline.length() < this->width) { for (std::set::const_iterator edge = visited_edges.begin(); edge != visited_edges.end(); ++edge) { (void)this->edges.erase(*edge); (void)this->edges.erase((*edge)->twin()); } } } // iterate through the valid edges to build polylines while (!this->edges.empty()) { const VD::edge_type& edge = **this->edges.begin(); // start a polyline Polyline polyline; polyline.points.push_back(Point( edge.vertex0()->x(), edge.vertex0()->y() )); polyline.points.push_back(Point( edge.vertex1()->x(), edge.vertex1()->y() )); // remove this edge and its twin from the available edges (void)this->edges.erase(&edge); (void)this->edges.erase(edge.twin()); // get next points this->process_edge_neighbors(edge, &polyline.points); // get previous points Points pp; this->process_edge_neighbors(*edge.twin(), &pp); polyline.points.insert(polyline.points.begin(), pp.rbegin(), pp.rend()); // append polyline to result polylines->push_back(polyline); } } void MedialAxis::process_edge_neighbors(const VD::edge_type& edge, Points* points) { // Since rot_next() works on the edge starting point but we want // to find neighbors on the ending point, we just swap edge with // its twin. const VD::edge_type& twin = *edge.twin(); // count neighbors for this edge std::vector neighbors; for (const VD::edge_type* neighbor = twin.rot_next(); neighbor != &twin; neighbor = neighbor->rot_next()) { if (this->edges.count(neighbor) > 0) neighbors.push_back(neighbor); } // if we have a single neighbor then we can continue recursively if (neighbors.size() == 1) { const VD::edge_type& neighbor = *neighbors.front(); points->push_back(Point( neighbor.vertex1()->x(), neighbor.vertex1()->y() )); (void)this->edges.erase(&neighbor); (void)this->edges.erase(neighbor.twin()); this->process_edge_neighbors(neighbor, points); } } bool MedialAxis::is_valid_edge(const VD::edge_type& edge) const { // if we only process segments representing closed loops, none if the // infinite edges (if any) would be part of our MAT anyway if (edge.is_secondary() || edge.is_infinite()) return false; /* If the cells sharing this edge have a common vertex, we're not interested in this edge. Why? Because it means that the edge lies on the bisector of two contiguous input lines and it was included in the Voronoi graph because it's the locus of centers of circles tangent to both vertices. Due to the "thin" nature of our input, these edges will be very short and not part of our wanted output. The best way would be to just filter out the edges that are not the locus of the maximally inscribed disks (requirement of MAT) but I don't know how to do it. Maybe we could check the relative angle of the two segments (we are only interested in facing segments). */ const VD::cell_type &cell1 = *edge.cell(); const VD::cell_type &cell2 = *edge.twin()->cell(); if (cell1.contains_segment() && cell2.contains_segment()) { Line segment1 = this->retrieve_segment(cell1); Line segment2 = this->retrieve_segment(cell2); if (segment1.a == segment2.b || segment1.b == segment2.a) return false; if (fabs(segment1.atan2_() - segment2.atan2_()) < PI/3) return false; // we can assume that distance between any of the vertices and any of the cell segments // is about the same Point p0( edge.vertex0()->x(), edge.vertex0()->y() ); double dist = p0.distance_to(segment1); // if distance between this edge and the thin area boundary is greater // than half the max width, then it's not a true medial axis segment if (dist > this->width/2) return false; } return true; } Line MedialAxis::retrieve_segment(const VD::cell_type& cell) const { VD::cell_type::source_index_type index = cell.source_index() - this->points.size(); return this->lines[index]; } } }