#include "libslic3r/libslic3r.h" #include "Camera.hpp" #include "3DScene.hpp" #include static const float GIMBALL_LOCK_THETA_MAX = 180.0f; // phi / theta angles to orient the camera. static const float VIEW_DEFAULT[2] = { 45.0f, 45.0f }; static const float VIEW_LEFT[2] = { 90.0f, 90.0f }; static const float VIEW_RIGHT[2] = { -90.0f, 90.0f }; static const float VIEW_TOP[2] = { 0.0f, 0.0f }; static const float VIEW_BOTTOM[2] = { 0.0f, 180.0f }; static const float VIEW_FRONT[2] = { 0.0f, 90.0f }; static const float VIEW_REAR[2] = { 180.0f, 90.0f }; namespace Slic3r { namespace GUI { Camera::Camera() : type(Ortho) , zoom(1.0f) , phi(45.0f) // , distance(0.0f) , requires_zoom_to_bed(false) , inverted_phi(false) , m_theta(45.0f) , m_target(Vec3d::Zero()) , m_view_matrix(Transform3d::Identity()) , m_projection_matrix(Transform3d::Identity()) { } std::string Camera::get_type_as_string() const { switch (type) { default: case Unknown: return "unknown"; // case Perspective: // return "perspective"; case Ortho: return "ortho"; }; } void Camera::set_target(const Vec3d& target) { m_target = target; m_target(0) = clamp(m_scene_box.min(0), m_scene_box.max(0), m_target(0)); m_target(1) = clamp(m_scene_box.min(1), m_scene_box.max(1), m_target(1)); m_target(2) = clamp(m_scene_box.min(2), m_scene_box.max(2), m_target(2)); } void Camera::set_theta(float theta, bool apply_limit) { if (apply_limit) m_theta = clamp(0.0f, GIMBALL_LOCK_THETA_MAX, theta); else { m_theta = fmod(theta, 360.0f); if (m_theta < 0.0f) m_theta += 360.0f; } } bool Camera::select_view(const std::string& direction) { const float* dir_vec = nullptr; if (direction == "iso") dir_vec = VIEW_DEFAULT; else if (direction == "left") dir_vec = VIEW_LEFT; else if (direction == "right") dir_vec = VIEW_RIGHT; else if (direction == "top") dir_vec = VIEW_TOP; else if (direction == "bottom") dir_vec = VIEW_BOTTOM; else if (direction == "front") dir_vec = VIEW_FRONT; else if (direction == "rear") dir_vec = VIEW_REAR; if (dir_vec != nullptr) { phi = dir_vec[0]; set_theta(dir_vec[1], false); return true; } else return false; } void Camera::apply_viewport(int x, int y, unsigned int w, unsigned int h) const { glsafe(::glViewport(0, 0, w, h)); glsafe(::glGetIntegerv(GL_VIEWPORT, m_viewport.data())); } void Camera::apply_view_matrix() const { glsafe(::glMatrixMode(GL_MODELVIEW)); glsafe(::glLoadIdentity()); glsafe(::glRotatef(-m_theta, 1.0f, 0.0f, 0.0f)); // pitch glsafe(::glRotatef(phi, 0.0f, 0.0f, 1.0f)); // yaw glsafe(::glTranslated(-m_target(0), -m_target(1), -m_target(2))); // target to origin glsafe(::glGetDoublev(GL_MODELVIEW_MATRIX, m_view_matrix.data())); } void Camera::apply_projection(const BoundingBoxf3& box) const { switch (type) { case Ortho: { double w2 = (double)m_viewport[2]; double h2 = (double)m_viewport[3]; double two_zoom = 2.0 * zoom; if (two_zoom != 0.0) { double inv_two_zoom = 1.0 / two_zoom; w2 *= inv_two_zoom; h2 *= inv_two_zoom; } // FIXME: calculate a tighter value for depth will improve z-fighting // Set at least some minimum depth in case the bounding box is empty to avoid an OpenGL driver error. double depth = std::max(1.0, 5.0 * box.max_size()); apply_ortho_projection(-w2, w2, -h2, h2, -depth, depth); break; } // case Perspective: // { // } } } void Camera::apply_ortho_projection(double x_min, double x_max, double y_min, double y_max, double z_min, double z_max) const { glsafe(::glMatrixMode(GL_PROJECTION)); glsafe(::glLoadIdentity()); glsafe(::glOrtho(x_min, x_max, y_min, y_max, z_min, z_max)); glsafe(::glGetDoublev(GL_PROJECTION_MATRIX, m_projection_matrix.data())); glsafe(::glMatrixMode(GL_MODELVIEW)); } } // GUI } // Slic3r