package Slic3r::Print; use Moo; use File::Basename qw(basename fileparse); use File::Spec; use List::Util qw(min max first); use Slic3r::ExtrusionPath ':roles'; use Slic3r::Geometry qw(X Y Z X1 Y1 X2 Y2 MIN MAX PI scale unscale move_points chained_path convex_hull); use Slic3r::Geometry::Clipper qw(diff_ex union_ex union_pt intersection_ex intersection offset offset2 union union_pt_chained JT_ROUND JT_SQUARE); use Slic3r::Print::State ':steps'; has 'config' => (is => 'rw', default => sub { Slic3r::Config->new_from_defaults }, trigger => \&init_config); has 'extra_variables' => (is => 'rw', default => sub {{}}); has 'objects' => (is => 'rw', default => sub {[]}); has 'status_cb' => (is => 'rw'); has 'extruders' => (is => 'rw', default => sub {[]}); has 'regions' => (is => 'rw', default => sub {[]}); has 'support_material_flow' => (is => 'rw'); has 'first_layer_support_material_flow' => (is => 'rw'); has 'has_support_material' => (is => 'lazy'); has '_state' => (is => 'ro', default => sub { Slic3r::Print::State->new }); # ordered collection of extrusion paths to build skirt loops has 'skirt' => (is => 'rw', default => sub { Slic3r::ExtrusionPath::Collection->new }); # ordered collection of extrusion paths to build a brim has 'brim' => (is => 'rw', default => sub { Slic3r::ExtrusionPath::Collection->new }); sub BUILD { my $self = shift; # call this manually because the 'default' coderef doesn't trigger the trigger $self->init_config; } # this method needs to be idempotent sub init_config { my $self = shift; # store config in a handy place $Slic3r::Config = $self->config; # legacy with existing config files $self->config->set('first_layer_height', $self->config->layer_height) if !$self->config->first_layer_height; $self->config->set_ifndef('small_perimeter_speed', $self->config->perimeter_speed); $self->config->set_ifndef('bridge_speed', $self->config->infill_speed); $self->config->set_ifndef('solid_infill_speed', $self->config->infill_speed); $self->config->set_ifndef('top_solid_infill_speed', $self->config->solid_infill_speed); $self->config->set_ifndef('top_solid_layers', $self->config->solid_layers); $self->config->set_ifndef('bottom_solid_layers', $self->config->solid_layers); # G-code flavors $self->config->set('extrusion_axis', 'A') if $self->config->gcode_flavor eq 'mach3'; $self->config->set('extrusion_axis', '') if $self->config->gcode_flavor eq 'no-extrusion'; # enforce some settings when spiral_vase is set if ($self->config->spiral_vase) { $self->config->set('perimeters', 1); $self->config->set('fill_density', 0); $self->config->set('top_solid_layers', 0); $self->config->set('support_material', 0); $self->config->set('support_material_enforce_layers', 0); $self->config->set('retract_layer_change', [0]); # TODO: only apply this to the spiral layers } # force all retraction lift values to be the same $self->config->set('retract_lift', [ map $self->config->retract_lift->[0], @{$self->config->retract_lift} ]); } sub apply_config { my ($self, $config) = @_; $self->config->apply($config); $self->init_config; $_->init_config for @{$self->objects}; } sub _build_has_support_material { my $self = shift; return (first { $_->config->support_material } @{$self->objects}) || (first { $_->config->raft_layers > 0 } @{$self->objects}) || (first { $_->config->support_material_enforce_layers > 0 } @{$self->objects}); } # caller is responsible for supplying models whose objects don't collide # and have explicit instance positions sub add_model_object { my $self = shift; my ($object, $obj_idx) = @_; # read the material mapping provided by the model object, if any my %matmap = %{ $object->material_mapping || {} }; $_-- for values %matmap; # extruders in the mapping are 1-indexed but we want 0-indexed my %volumes = (); # region_id => [ volume_id, ... ] foreach my $volume_id (0..$#{$object->volumes}) { my $volume = $object->volumes->[$volume_id]; # determine what region should this volume be mapped to my $region_id; if (defined $volume->material_id) { if (!exists $matmap{ $volume->material_id }) { # there's no mapping between this material and a region $matmap{ $volume->material_id } = scalar(@{ $self->regions }); } $region_id = $matmap{ $volume->material_id }; } else { $region_id = 0; } $volumes{$region_id} //= []; push @{ $volumes{$region_id} }, $volume_id; # instantiate region if it does not exist $self->regions->[$region_id] //= Slic3r::Print::Region->new; } # initialize print object my $o = Slic3r::Print::Object->new( print => $self, model_object => $object, region_volumes => [ map $volumes{$_}, 0..$#{$self->regions} ], copies => [ map Slic3r::Point->new_scale(@{ $_->offset }), @{ $object->instances } ], config_overrides => $object->config, layer_height_ranges => $object->layer_height_ranges, ); if (defined $obj_idx) { splice @{$self->objects}, $obj_idx, 0, $o; } else { push @{$self->objects}, $o; } if (!defined $self->extra_variables->{input_filename}) { if (defined (my $input_file = $object->input_file)) { @{$self->extra_variables}{qw(input_filename input_filename_base)} = parse_filename($input_file); } } $self->_state->invalidate(STEP_SKIRT); $self->_state->invalidate(STEP_BRIM); } sub delete_object { my ($self, $obj_idx) = @_; splice @{$self->objects}, $obj_idx, 1; # TODO: purge unused regions $self->_state->invalidate(STEP_SKIRT); $self->_state->invalidate(STEP_BRIM); } sub delete_all_objects { my ($self) = @_; @{$self->objects} = (); @{$self->regions} = (); $self->_state->invalidate(STEP_SKIRT); $self->_state->invalidate(STEP_BRIM); } sub validate { my $self = shift; if ($Slic3r::Config->complete_objects) { # check horizontal clearance { my @a = (); foreach my $object (@{$self->objects}) { # get convex hulls of all meshes assigned to this print object my @mesh_convex_hulls = map $object->model_object->volumes->[$_]->mesh->convex_hull, map @$_, grep defined $_, @{$object->region_volumes}; # make a single convex hull for all of them my $convex_hull = convex_hull([ map @$_, @mesh_convex_hulls ]); # apply the same transformations we apply to the actual meshes when slicing them $object->model_object->instances->[0]->transform_polygon($convex_hull, 1); # align object to Z = 0 and apply XY shift $convex_hull->translate(@{$object->_copies_shift}); # grow convex hull with the clearance margin ($convex_hull) = @{offset([$convex_hull], scale $self->config->extruder_clearance_radius / 2, 1, JT_ROUND, scale(0.1))}; # now we need that no instance of $convex_hull does not intersect any of the previously checked object instances for my $copy (@{$object->_shifted_copies}) { my $p = $convex_hull->clone; $p->translate(@$copy); if (@{ intersection(\@a, [$p]) }) { die "Some objects are too close; your extruder will collide with them.\n"; } @a = @{union([@a, $p])}; } } } # check vertical clearance { my @object_height = (); foreach my $object (@{$self->objects}) { my $height = $object->size->[Z]; push @object_height, $height for @{$object->copies}; } @object_height = sort { $a <=> $b } @object_height; # ignore the tallest *copy* (this is why we repeat height for all of them): # it will be printed as last one so its height doesn't matter pop @object_height; if (@object_height && max(@object_height) > scale $Slic3r::Config->extruder_clearance_height) { die "Some objects are too tall and cannot be printed without extruder collisions.\n"; } } } if ($Slic3r::Config->spiral_vase) { if ((map @{$_->copies}, @{$self->objects}) > 1) { die "The Spiral Vase option can only be used when printing a single object.\n"; } if (@{$self->regions} > 1) { die "The Spiral Vase option can only be used when printing single material objects.\n"; } } } sub init_extruders { my $self = shift; # map regions to extruders (ghetto mapping for now) my %extruder_mapping = map { $_ => $_ } 0..$#{$self->regions}; # initialize all extruder(s) we need my @used_extruders = ( 0, (map $self->config->get("${_}_extruder")-1, qw(perimeter infill support_material support_material_interface)), (values %extruder_mapping), ); for my $extruder_id (keys %{{ map {$_ => 1} @used_extruders }}) { $self->extruders->[$extruder_id] = Slic3r::Extruder->new( config => $self->config, id => $extruder_id, map { $_ => $self->config->get($_)->[$extruder_id] // $self->config->get($_)->[0] } #/ @{&Slic3r::Extruder::OPTIONS} ); } # calculate regions' flows for my $region_id (0 .. $#{$self->regions}) { my $region = $self->regions->[$region_id]; # per-role extruders and flows for (qw(perimeter infill solid_infill top_infill)) { my $extruder_name = $_; $extruder_name =~ s/^(?:solid|top)_//; $region->extruders->{$_} = ($self->regions_count > 1) ? $self->extruders->[$extruder_mapping{$region_id}] : $self->extruders->[$self->config->get("${extruder_name}_extruder")-1]; $region->flows->{$_} = $region->extruders->{$_}->make_flow( width => $self->config->get("${_}_extrusion_width") || $self->config->extrusion_width, role => $_, ); $region->first_layer_flows->{$_} = $region->extruders->{$_}->make_flow( layer_height => $self->config->get_value('first_layer_height'), width => $self->config->first_layer_extrusion_width, role => $_, ) if $self->config->first_layer_extrusion_width; } } # calculate support material flow # Note: we should calculate a different flow for support material interface if ($self->has_support_material) { my $extruder = $self->extruders->[$self->config->support_material_extruder-1]; $self->support_material_flow($extruder->make_flow( width => $self->config->support_material_extrusion_width || $self->config->extrusion_width, role => 'support_material', )); $self->first_layer_support_material_flow($extruder->make_flow( layer_height => $self->config->get_value('first_layer_height'), width => $self->config->first_layer_extrusion_width, role => 'support_material', )); } # enforce tall skirt if using ooze_prevention # NOTE: this is not idempotent (i.e. switching ooze_prevention off will not revert skirt settings) if ($self->config->ooze_prevention && @{$self->extruders} > 1) { $self->config->set('skirt_height', 9999999999); $self->config->set('skirts', 1) if $self->config->skirts == 0; } } sub layer_count { my $self = shift; return max(map { scalar @{$_->layers} } @{$self->objects}); } sub regions_count { my $self = shift; return scalar @{$self->regions}; } sub bounding_box { my $self = shift; my @points = (); foreach my $object (@{$self->objects}) { foreach my $copy (@{$object->_shifted_copies}) { push @points, [ $copy->[X], $copy->[Y] ], [ $copy->[X] + $object->size->[X], $copy->[Y] + $object->size->[Y] ]; } } return Slic3r::Geometry::BoundingBox->new_from_points([ map Slic3r::Point->new(@$_), @points ]); } sub size { my $self = shift; return $self->bounding_box->size; } sub _simplify_slices { my $self = shift; my ($distance) = @_; foreach my $layer (map @{$_->layers}, @{$self->objects}) { $layer->slices->simplify($distance); $_->slices->simplify($distance) for @{$layer->regions}; } } sub process { my ($self) = @_; my $status_cb = $self->status_cb // sub {}; my $print_step = sub { my ($step, $cb) = @_; if (!$self->_state->done($step)) { $self->_state->set_started($step); $cb->(); ### Re-enable this for step-based slicing: ### $self->_state->set_done($step); } }; my $object_step = sub { my ($step, $cb) = @_; for my $obj_idx (0..$#{$self->objects}) { my $object = $self->objects->[$obj_idx]; if (!$object->_state->done($step)) { $object->_state->set_started($step); $cb->($obj_idx); ### Re-enable this for step-based slicing: ### $object->_state->set_done($step); } } }; # STEP_INIT_EXTRUDERS $print_step->(STEP_INIT_EXTRUDERS, sub { $self->init_extruders; }); # STEP_SLICE # skein the STL into layers # each layer has surfaces with holes $status_cb->(10, "Processing triangulated mesh"); $object_step->(STEP_SLICE, sub { $self->objects->[$_[0]]->slice; }); die "No layers were detected. You might want to repair your STL file(s) or check their size and retry.\n" if !grep @{$_->layers}, @{$self->objects}; # make perimeters # this will add a set of extrusion loops to each layer # as well as generate infill boundaries $status_cb->(20, "Generating perimeters"); $object_step->(STEP_PERIMETERS, sub { $self->objects->[$_[0]]->make_perimeters; }); $status_cb->(30, "Preparing infill"); $object_step->(STEP_PREPARE_INFILL, sub { my $object = $self->objects->[$_[0]]; # this will assign a type (top/bottom/internal) to $layerm->slices # and transform $layerm->fill_surfaces from expolygon # to typed top/bottom/internal surfaces; $object->detect_surfaces_type; # decide what surfaces are to be filled $_->prepare_fill_surfaces for map @{$_->regions}, @{$object->layers}; # this will detect bridges and reverse bridges # and rearrange top/bottom/internal surfaces $object->process_external_surfaces; # detect which fill surfaces are near external layers # they will be split in internal and internal-solid surfaces $object->discover_horizontal_shells; $object->clip_fill_surfaces; # the following step needs to be done before combination because it may need # to remove only half of the combined infill $object->bridge_over_infill; # combine fill surfaces to honor the "infill every N layers" option $object->combine_infill; }); # this will generate extrusion paths for each layer $status_cb->(70, "Infilling layers"); $object_step->(STEP_INFILL, sub { my $object = $self->objects->[$_[0]]; Slic3r::parallelize( items => sub { my @items = (); # [layer_id, region_id] for my $region_id (0 .. ($self->regions_count-1)) { push @items, map [$_, $region_id], 0..($object->layer_count-1); } @items; }, thread_cb => sub { my $q = shift; while (defined (my $obj_layer = $q->dequeue)) { my ($layer_id, $region_id) = @$obj_layer; my $layerm = $object->layers->[$layer_id]->regions->[$region_id]; $layerm->fills->append( $object->fill_maker->make_fill($layerm) ); } }, collect_cb => sub {}, no_threads_cb => sub { foreach my $layerm (map @{$_->regions}, @{$object->layers}) { $layerm->fills->append($object->fill_maker->make_fill($layerm)); } }, ); ### we could free memory now, but this would make this step not idempotent ### $_->fill_surfaces->clear for map @{$_->regions}, @{$object->layers}; }); # generate support material $status_cb->(85, "Generating support material") if $self->has_support_material; $object_step->(STEP_SUPPORTMATERIAL, sub { $self->objects->[$_[0]]->generate_support_material; }); # make skirt $status_cb->(88, "Generating skirt"); $print_step->(STEP_SKIRT, sub { $self->make_skirt; }); $status_cb->(88, "Generating skirt"); $print_step->(STEP_BRIM, sub { $self->make_brim; # must come after make_skirt }); # time to make some statistics if (0) { eval "use Devel::Size"; print "MEMORY USAGE:\n"; printf " meshes = %.1fMb\n", List::Util::sum(map Devel::Size::total_size($_->meshes), @{$self->objects})/1024/1024; printf " layer slices = %.1fMb\n", List::Util::sum(map Devel::Size::total_size($_->slices), map @{$_->layers}, @{$self->objects})/1024/1024; printf " region slices = %.1fMb\n", List::Util::sum(map Devel::Size::total_size($_->slices), map @{$_->regions}, map @{$_->layers}, @{$self->objects})/1024/1024; printf " perimeters = %.1fMb\n", List::Util::sum(map Devel::Size::total_size($_->perimeters), map @{$_->regions}, map @{$_->layers}, @{$self->objects})/1024/1024; printf " fills = %.1fMb\n", List::Util::sum(map Devel::Size::total_size($_->fills), map @{$_->regions}, map @{$_->layers}, @{$self->objects})/1024/1024; printf " print object = %.1fMb\n", Devel::Size::total_size($self)/1024/1024; } if (0) { eval "use Slic3r::Test::SectionCut"; Slic3r::Test::SectionCut->new(print => $self)->export_svg("section_cut.svg"); } } sub export_gcode { my $self = shift; my %params = @_; my $status_cb = $self->status_cb // sub {}; # output everything to a G-code file my $output_file = $self->expanded_output_filepath($params{output_file}); $status_cb->(90, "Exporting G-code" . ($output_file ? " to $output_file" : "")); $self->write_gcode($params{output_fh} || $output_file); # run post-processing scripts if (@{$Slic3r::Config->post_process}) { $status_cb->(95, "Running post-processing scripts"); $Slic3r::Config->setenv; for (@{$Slic3r::Config->post_process}) { Slic3r::debugf " '%s' '%s'\n", $_, $output_file; system($_, $output_file); } } } sub export_svg { my $self = shift; my %params = @_; # this shouldn't be needed, but we're currently relying on ->make_surfaces() which # calls ->perimeter_flow $self->init_extruders; $_->slice for @{$self->objects}; my $fh = $params{output_fh}; if (!$fh) { my $output_file = $self->expanded_output_filepath($params{output_file}); $output_file =~ s/\.gcode$/.svg/i; Slic3r::open(\$fh, ">", $output_file) or die "Failed to open $output_file for writing\n"; print "Exporting to $output_file..." unless $params{quiet}; } my $print_size = $self->size; print $fh sprintf <<"EOF", unscale($print_size->[X]), unscale($print_size->[Y]); EOF my $print_polygon = sub { my ($polygon, $type) = @_; printf $fh qq{ \n}, $type, (join ' ', map { join ',', map unscale $_, @$_ } @$polygon), ($type eq 'contour' ? 'white' : 'black'); }; my @previous_layer_slices = (); for my $layer_id (0..$self->layer_count-1) { my @layers = map $_->layers->[$layer_id], @{$self->objects}; printf $fh qq{ \n}, $layer_id, +(grep defined $_, @layers)[0]->slice_z; my @current_layer_slices = (); for my $obj_idx (0 .. $#{$self->objects}) { my $layer = $self->objects->[$obj_idx]->layers->[$layer_id] or next; # sort slices so that the outermost ones come first my @slices = sort { $a->contour->contains_point($b->contour->first_point) ? 0 : 1 } @{$layer->slices}; foreach my $copy (@{$self->objects->[$obj_idx]->_shifted_copies}) { foreach my $slice (@slices) { my $expolygon = $slice->clone; $expolygon->translate(@$copy); $print_polygon->($expolygon->contour, 'contour'); $print_polygon->($_, 'hole') for @{$expolygon->holes}; push @current_layer_slices, $expolygon; } } } # generate support material if ($self->has_support_material && $layer_id > 0) { my (@supported_slices, @unsupported_slices) = (); foreach my $expolygon (@current_layer_slices) { my $intersection = intersection_ex( [ map @$_, @previous_layer_slices ], $expolygon, ); @$intersection ? push @supported_slices, $expolygon : push @unsupported_slices, $expolygon; } my @supported_points = map @$_, @$_, @supported_slices; foreach my $expolygon (@unsupported_slices) { # look for the nearest point to this island among all # supported points my $contour = $expolygon->contour; my $support_point = $contour->first_point->nearest_point(\@supported_points) or next; my $anchor_point = $support_point->nearest_point([ @$contour ]); printf $fh qq{ \n}, map @$_, $support_point, $anchor_point; } } print $fh qq{ \n}; @previous_layer_slices = @current_layer_slices; } print $fh "\n"; close $fh; print "Done.\n" unless $params{quiet}; } sub make_skirt { my $self = shift; return unless $Slic3r::Config->skirts > 0 || ($Slic3r::Config->ooze_prevention && @{$self->extruders} > 1); $self->skirt->clear; # method must be idempotent # collect points from all layers contained in skirt height my @points = (); foreach my $obj_idx (0 .. $#{$self->objects}) { my $object = $self->objects->[$obj_idx]; my @layers = map $object->layers->[$_], 0..min($Slic3r::Config->skirt_height-1, $#{$object->layers}); my @layer_points = ( (map @$_, map @$_, map @{$_->slices}, @layers), ); if (@{ $object->support_layers }) { my @support_layers = map $object->support_layers->[$_], 0..min($Slic3r::Config->skirt_height-1, $#{$object->support_layers}); push @layer_points, (map @{$_->polyline}, map @{$_->support_fills}, grep $_->support_fills, @support_layers), (map @{$_->polyline}, map @{$_->support_interface_fills}, grep $_->support_interface_fills, @support_layers); } push @points, map move_points($_, @layer_points), @{$object->_shifted_copies}; } return if @points < 3; # at least three points required for a convex hull # find out convex hull my $convex_hull = convex_hull(\@points); my @extruded_length = (); # for each extruder # TODO: use each extruder's own flow my $spacing = $self->objects->[0]->layers->[0]->regions->[0]->perimeter_flow->spacing; my $first_layer_height = $Slic3r::Config->get_value('first_layer_height'); my @extruders_e_per_mm = (); my $extruder_idx = 0; # draw outlines from outside to inside # loop while we have less skirts than required or any extruder hasn't reached the min length if any my $distance = scale $Slic3r::Config->skirt_distance; for (my $i = $Slic3r::Config->skirts; $i > 0; $i--) { $distance += scale $spacing; my $loop = offset([$convex_hull], $distance, 1, JT_ROUND, scale(0.1))->[0]; $self->skirt->append(Slic3r::ExtrusionLoop->new( polygon => Slic3r::Polygon->new(@$loop), role => EXTR_ROLE_SKIRT, flow_spacing => $spacing, )); if ($Slic3r::Config->min_skirt_length > 0) { $extruded_length[$extruder_idx] ||= 0; $extruders_e_per_mm[$extruder_idx] ||= $self->extruders->[$extruder_idx]->e_per_mm($spacing, $first_layer_height); $extruded_length[$extruder_idx] += unscale $loop->length * $extruders_e_per_mm[$extruder_idx]; $i++ if defined first { ($extruded_length[$_] // 0) < $Slic3r::Config->min_skirt_length } 0 .. $#{$self->extruders}; if ($extruded_length[$extruder_idx] >= $Slic3r::Config->min_skirt_length) { if ($extruder_idx < $#{$self->extruders}) { $extruder_idx++; next; } } } } $self->skirt->reverse; } sub make_brim { my $self = shift; return unless $Slic3r::Config->brim_width > 0; $self->brim->clear; # method must be idempotent my $flow = $self->objects->[0]->layers->[0]->regions->[0]->perimeter_flow; my $grow_distance = $flow->scaled_width / 2; my @islands = (); # array of polygons foreach my $obj_idx (0 .. $#{$self->objects}) { my $object = $self->objects->[$obj_idx]; my $layer0 = $object->layers->[0]; my @object_islands = ( (map $_->contour, @{$layer0->slices}), ); if (@{ $object->support_layers }) { my $support_layer0 = $object->support_layers->[0]; push @object_islands, (map @{$_->polyline->grow($grow_distance)}, @{$support_layer0->support_fills}) if $support_layer0->support_fills; push @object_islands, (map @{$_->polyline->grow($grow_distance)}, @{$support_layer0->support_interface_fills}) if $support_layer0->support_interface_fills; } foreach my $copy (@{$object->_shifted_copies}) { push @islands, map { $_->translate(@$copy); $_ } map $_->clone, @object_islands; } } # if brim touches skirt, make it around skirt too # TODO: calculate actual skirt width (using each extruder's flow in multi-extruder setups) if ($Slic3r::Config->skirt_distance + (($Slic3r::Config->skirts - 1) * $flow->spacing) <= $Slic3r::Config->brim_width) { push @islands, map @{$_->split_at_first_point->polyline->grow($grow_distance)}, @{$self->skirt}; } my @loops = (); my $num_loops = sprintf "%.0f", $Slic3r::Config->brim_width / $flow->width; for my $i (reverse 1 .. $num_loops) { # JT_SQUARE ensures no vertex is outside the given offset distance # -0.5 because islands are not represented by their centerlines # (first offset more, then step back - reverse order than the one used for # perimeters because here we're offsetting outwards) push @loops, @{offset2(\@islands, ($i + 0.5) * $flow->scaled_spacing, -1.0 * $flow->scaled_spacing, 100000, JT_SQUARE)}; } $self->brim->append(map Slic3r::ExtrusionLoop->new( polygon => Slic3r::Polygon->new(@$_), role => EXTR_ROLE_SKIRT, flow_spacing => $flow->spacing, ), reverse @{union_pt_chained(\@loops)}); } sub write_gcode { my $self = shift; my ($file) = @_; # open output gcode file if we weren't supplied a file-handle my $fh; if (ref $file eq 'IO::Scalar') { $fh = $file; } else { Slic3r::open(\$fh, ">", $file) or die "Failed to open $file for writing\n"; } # write some information my @lt = localtime; printf $fh "; generated by Slic3r $Slic3r::VERSION on %04d-%02d-%02d at %02d:%02d:%02d\n\n", $lt[5] + 1900, $lt[4]+1, $lt[3], $lt[2], $lt[1], $lt[0]; print $fh "; $_\n" foreach split /\R/, $Slic3r::Config->notes; print $fh "\n" if $Slic3r::Config->notes; for (qw(layer_height perimeters top_solid_layers bottom_solid_layers fill_density perimeter_speed infill_speed travel_speed)) { printf $fh "; %s = %s\n", $_, $Slic3r::Config->$_; } for (qw(nozzle_diameter filament_diameter extrusion_multiplier)) { printf $fh "; %s = %s\n", $_, $Slic3r::Config->$_->[0]; } printf $fh "; perimeters extrusion width = %.2fmm\n", $self->regions->[0]->flows->{perimeter}->width; printf $fh "; infill extrusion width = %.2fmm\n", $self->regions->[0]->flows->{infill}->width; printf $fh "; solid infill extrusion width = %.2fmm\n", $self->regions->[0]->flows->{solid_infill}->width; printf $fh "; top infill extrusion width = %.2fmm\n", $self->regions->[0]->flows->{top_infill}->width; printf $fh "; support material extrusion width = %.2fmm\n", $self->support_material_flow->width if $self->support_material_flow; printf $fh "; first layer extrusion width = %.2fmm\n", $self->regions->[0]->first_layer_flows->{perimeter}->width if $self->regions->[0]->first_layer_flows->{perimeter}; print $fh "\n"; # set up our extruder object my $gcodegen = Slic3r::GCode->new( config => $self->config, extra_variables => $self->extra_variables, extruders => $self->extruders, # we should only pass the *used* extruders (but maintain the Tx indices right!) layer_count => $self->layer_count, ); print $fh "G21 ; set units to millimeters\n" if $Slic3r::Config->gcode_flavor ne 'makerware'; print $fh $gcodegen->set_fan(0, 1) if $Slic3r::Config->cooling && $Slic3r::Config->disable_fan_first_layers; # set bed temperature if ((my $temp = $Slic3r::Config->first_layer_bed_temperature) && $Slic3r::Config->start_gcode !~ /M(?:190|140)/i) { printf $fh $gcodegen->set_bed_temperature($temp, 1); } # set extruder(s) temperature before and after start G-code my $print_first_layer_temperature = sub { my ($wait) = @_; return if $Slic3r::Config->start_gcode =~ /M(?:109|104)/i; for my $t (0 .. $#{$self->extruders}) { my $temp = $self->extruders->[$t]->first_layer_temperature; $temp += $self->config->standby_temperature_delta if $self->config->ooze_prevention; printf $fh $gcodegen->set_temperature($temp, $wait, $t) if $temp > 0; } }; $print_first_layer_temperature->(0); printf $fh "%s\n", $gcodegen->replace_variables($Slic3r::Config->start_gcode); $print_first_layer_temperature->(1); # set other general things print $fh "G90 ; use absolute coordinates\n" if $Slic3r::Config->gcode_flavor ne 'makerware'; if ($Slic3r::Config->gcode_flavor =~ /^(?:reprap|teacup)$/) { printf $fh $gcodegen->reset_e; if ($Slic3r::Config->use_relative_e_distances) { print $fh "M83 ; use relative distances for extrusion\n"; } else { print $fh "M82 ; use absolute distances for extrusion\n"; } } # always start with first extruder # TODO: make sure we select the first *used* extruder print $fh $gcodegen->set_extruder($self->extruders->[0]); # initialize a motion planner for object-to-object travel moves if ($Slic3r::Config->avoid_crossing_perimeters) { my $distance_from_objects = 1; # compute the offsetted convex hull for each object and repeat it for each copy. my @islands = (); foreach my $obj_idx (0 .. $#{$self->objects}) { my $convex_hull = convex_hull([ map @{$_->contour}, map @{$_->slices}, @{$self->objects->[$obj_idx]->layers}, ]); # discard layers only containing thin walls (offset would fail on an empty polygon) if (@$convex_hull) { my $expolygon = Slic3r::ExPolygon->new($convex_hull); my @island = @{$expolygon->offset_ex(scale $distance_from_objects, 1, JT_SQUARE)}; foreach my $copy (@{ $self->objects->[$obj_idx]->_shifted_copies }) { push @islands, map { my $c = $_->clone; $c->translate(@$copy); $c } @island; } } } $gcodegen->external_mp(Slic3r::GCode::MotionPlanner->new( islands => union_ex([ map @$_, @islands ]), internal => 0, )); } # calculate wiping points if needed if ($self->config->ooze_prevention) { my $outer_skirt = convex_hull([ map @$_, @{$self->skirt} ]); my @skirts = (); foreach my $extruder (@{$self->extruders}) { push @skirts, my $s = $outer_skirt->clone; $s->translate(map scale($_), @{$extruder->extruder_offset}); } my $convex_hull = convex_hull([ map @$_, @skirts ]); $gcodegen->standby_points([ map $_->clone, map @$_, map $_->subdivide(scale 10), @{offset([$convex_hull], scale 3)} ]); } # prepare the layer processor my $layer_gcode = Slic3r::GCode::Layer->new( print => $self, gcodegen => $gcodegen, ); # do all objects for each layer if ($Slic3r::Config->complete_objects) { # print objects from the smallest to the tallest to avoid collisions # when moving onto next object starting point my @obj_idx = sort { $self->objects->[$a]->size->[Z] <=> $self->objects->[$b]->size->[Z] } 0..$#{$self->objects}; my $finished_objects = 0; for my $obj_idx (@obj_idx) { for my $copy (@{ $self->objects->[$obj_idx]->copies }) { # move to the origin position for the copy we're going to print. # this happens before Z goes down to layer 0 again, so that # no collision happens hopefully. if ($finished_objects > 0) { $gcodegen->set_shift(map unscale $copy->[$_], X,Y); print $fh $gcodegen->retract; print $fh $gcodegen->G0(Slic3r::Point->new(0,0), undef, 0, 'move to origin position for next object'); } my $buffer = Slic3r::GCode::CoolingBuffer->new( config => $Slic3r::Config, gcodegen => $gcodegen, ); my $object = $self->objects->[$obj_idx]; my @layers = sort { $a->print_z <=> $b->print_z } @{$object->layers}, @{$object->support_layers}; for my $layer (@layers) { # if we are printing the bottom layer of an object, and we have already finished # another one, set first layer temperatures. this happens before the Z move # is triggered, so machine has more time to reach such temperatures if ($layer->id == 0 && $finished_objects > 0) { printf $fh $gcodegen->set_bed_temperature($Slic3r::Config->first_layer_bed_temperature), if $Slic3r::Config->first_layer_bed_temperature; $print_first_layer_temperature->(); } print $fh $buffer->append( $layer_gcode->process_layer($layer, [$copy]), $layer->object."", $layer->id, $layer->print_z, ); } print $fh $buffer->flush; $finished_objects++; } } } else { # order objects using a nearest neighbor search my @obj_idx = @{chained_path([ map Slic3r::Point->new(@{$_->_shifted_copies->[0]}), @{$self->objects} ])}; # sort layers by Z my %layers = (); # print_z => [ [layers], [layers], [layers] ] by obj_idx foreach my $obj_idx (0 .. $#{$self->objects}) { my $object = $self->objects->[$obj_idx]; foreach my $layer (@{$object->layers}, @{$object->support_layers}) { $layers{ $layer->print_z } ||= []; $layers{ $layer->print_z }[$obj_idx] ||= []; push @{$layers{ $layer->print_z }[$obj_idx]}, $layer; } } my $buffer = Slic3r::GCode::CoolingBuffer->new( config => $Slic3r::Config, gcodegen => $gcodegen, ); foreach my $print_z (sort { $a <=> $b } keys %layers) { foreach my $obj_idx (@obj_idx) { foreach my $layer (@{ $layers{$print_z}[$obj_idx] // [] }) { print $fh $buffer->append( $layer_gcode->process_layer($layer, $layer->object->_shifted_copies), $layer->object . ref($layer), # differentiate $obj_id between normal layers and support layers $layer->id, $layer->print_z, ); } } } print $fh $buffer->flush; } # write end commands to file print $fh $gcodegen->retract if $gcodegen->extruder; # empty prints don't even set an extruder print $fh $gcodegen->set_fan(0); printf $fh "%s\n", $gcodegen->replace_variables($Slic3r::Config->end_gcode); foreach my $extruder (@{$self->extruders}) { printf $fh "; filament used = %.1fmm (%.1fcm3)\n", $extruder->absolute_E, $extruder->extruded_volume/1000; } if ($self->config->gcode_comments) { # append full config print $fh "\n"; foreach my $opt_key (sort @{$self->config->get_keys}) { next if $Slic3r::Config::Options->{$opt_key}{shortcut}; next if $Slic3r::Config::Options->{$opt_key}{gui_only}; printf $fh "; %s = %s\n", $opt_key, $self->config->serialize($opt_key); } } # close our gcode file close $fh; } # this method will return the supplied input file path after expanding its # format variables with their values sub expanded_output_filepath { my $self = shift; my ($path, $input_file) = @_; my $extra_variables = {}; if ($input_file) { @$extra_variables{qw(input_filename input_filename_base)} = parse_filename($input_file); } else { # if no input file was supplied, take the first one from our objects $input_file = $self->objects->[0]->model_object->input_file // return undef; } if ($path && -d $path) { # if output path is an existing directory, we take that and append # the specified filename format $path = File::Spec->join($path, $self->config->output_filename_format); } elsif (!$path) { # if no explicit output file was defined, we take the input # file directory and append the specified filename format $path = (fileparse($input_file))[1] . $self->config->output_filename_format; } else { # path is a full path to a file so we use it as it is } return $self->config->replace_options($path, { %{$self->extra_variables}, %$extra_variables }); } # given the path to a file, this function returns its filename with and without extension sub parse_filename { my ($path) = @_; my $filename = my $filename_base = basename($path); $filename_base =~ s/\.[^.]+$//; return ($filename, $filename_base); } sub apply_extra_variables { my ($self, $extra) = @_; $self->extra_variables->{$_} = $extra->{$_} for keys %$extra; } sub invalidate_step { my ($self, $step, $obj_idx) = @_; # invalidate $step in the correct state object if ($Slic3r::Print::State::print_step->{$step}) { $self->_state->invalidate($step); } else { # object step if (defined $obj_idx) { $self->objects->[$obj_idx]->_state->invalidate($step); } else { $_->_state->invalidate($step) for @{$self->objects}; } } # recursively invalidate steps depending on $step $self->invalidate_step($_) for grep { grep { $_ == $step } @{$Slic3r::Print::State::prereqs{$_}} } keys %Slic3r::Print::State::prereqs; } 1;