#include <catch2/catch.hpp> #include "libslic3r/Point.hpp" #include "libslic3r/BoundingBox.hpp" #include "libslic3r/Polygon.hpp" #include "libslic3r/Polyline.hpp" #include "libslic3r/Line.hpp" #include "libslic3r/Geometry.hpp" #include "libslic3r/ClipperUtils.hpp" #include "libslic3r/ShortestPath.hpp" using namespace Slic3r; TEST_CASE("Polygon::contains works properly", "[Geometry]"){ // this test was failing on Windows (GH #1950) Slic3r::Polygon polygon(std::vector<Point>({ Point(207802834,-57084522), Point(196528149,-37556190), Point(173626821,-25420928), Point(171285751,-21366123), Point(118673592,-21366123), Point(116332562,-25420928), Point(93431208,-37556191), Point(82156517,-57084523), Point(129714478,-84542120), Point(160244873,-84542120) })); Point point(95706562, -57294774); REQUIRE(polygon.contains(point)); } SCENARIO("Intersections of line segments", "[Geometry]"){ GIVEN("Integer coordinates"){ Line line1(Point(5,15),Point(30,15)); Line line2(Point(10,20), Point(10,10)); THEN("The intersection is valid"){ Point point; line1.intersection(line2,&point); REQUIRE(Point(10,15) == point); } } GIVEN("Scaled coordinates"){ Line line1(Point(73.6310778185108 / 0.00001, 371.74239268924 / 0.00001), Point(73.6310778185108 / 0.00001, 501.74239268924 / 0.00001)); Line line2(Point(75/0.00001, 437.9853/0.00001), Point(62.7484/0.00001, 440.4223/0.00001)); THEN("There is still an intersection"){ Point point; REQUIRE(line1.intersection(line2,&point)); } } } /* Tests for unused methods still written in perl { my $polygon = Slic3r::Polygon->new( [45919000, 515273900], [14726100, 461246400], [14726100, 348753500], [33988700, 315389800], [43749700, 343843000], [45422300, 352251500], [52362100, 362637800], [62748400, 369577600], [75000000, 372014700], [87251500, 369577600], [97637800, 362637800], [104577600, 352251500], [107014700, 340000000], [104577600, 327748400], [97637800, 317362100], [87251500, 310422300], [82789200, 309534700], [69846100, 294726100], [254081000, 294726100], [285273900, 348753500], [285273900, 461246400], [254081000, 515273900], ); # this points belongs to $polyline # note: it's actually a vertex, while we should better check an intermediate point my $point = Slic3r::Point->new(104577600, 327748400); local $Slic3r::Geometry::epsilon = 1E-5; is_deeply Slic3r::Geometry::polygon_segment_having_point($polygon, $point)->pp, [ [107014700, 340000000], [104577600, 327748400] ], 'polygon_segment_having_point'; } { auto point = Point(736310778.185108, 5017423926.8924); auto line = Line(Point((long int) 627484000, (long int) 3695776000), Point((long int) 750000000, (long int)3720147000)); //is Slic3r::Geometry::point_in_segment($point, $line), 0, 'point_in_segment'; } // Possible to delete { //my $p1 = [10, 10]; //my $p2 = [10, 20]; //my $p3 = [10, 30]; //my $p4 = [20, 20]; //my $p5 = [0, 20]; THEN("Points in a line give the correct angles"){ //is Slic3r::Geometry::angle3points($p2, $p3, $p1), PI(), 'angle3points'; //is Slic3r::Geometry::angle3points($p2, $p1, $p3), PI(), 'angle3points'; } THEN("Left turns give the correct angle"){ //is Slic3r::Geometry::angle3points($p2, $p4, $p3), PI()/2, 'angle3points'; //is Slic3r::Geometry::angle3points($p2, $p1, $p4), PI()/2, 'angle3points'; } THEN("Right turns give the correct angle"){ //is Slic3r::Geometry::angle3points($p2, $p3, $p4), PI()/2*3, 'angle3points'; //is Slic3r::Geometry::angle3points($p2, $p1, $p5), PI()/2*3, 'angle3points'; } //my $p1 = [30, 30]; //my $p2 = [20, 20]; //my $p3 = [10, 10]; //my $p4 = [30, 10]; //is Slic3r::Geometry::angle3points($p2, $p1, $p3), PI(), 'angle3points'; //is Slic3r::Geometry::angle3points($p2, $p1, $p4), PI()/2*3, 'angle3points'; //is Slic3r::Geometry::angle3points($p2, $p1, $p1), 2*PI(), 'angle3points'; } SCENARIO("polygon_is_convex works"){ GIVEN("A square of dimension 10"){ //my $cw_square = [ [0,0], [0,10], [10,10], [10,0] ]; THEN("It is not convex clockwise"){ //is polygon_is_convex($cw_square), 0, 'cw square is not convex'; } THEN("It is convex counter-clockwise"){ //is polygon_is_convex([ reverse @$cw_square ]), 1, 'ccw square is convex'; } } GIVEN("A concave polygon"){ //my $convex1 = [ [0,0], [10,0], [10,10], [0,10], [0,6], [4,6], [4,4], [0,4] ]; THEN("It is concave"){ //is polygon_is_convex($convex1), 0, 'concave polygon'; } } }*/ TEST_CASE("Creating a polyline generates the obvious lines", "[Geometry]"){ Slic3r::Polyline polyline; polyline.points = std::vector<Point>({Point(0, 0), Point(10, 0), Point(20, 0)}); REQUIRE(polyline.lines().at(0).a == Point(0,0)); REQUIRE(polyline.lines().at(0).b == Point(10,0)); REQUIRE(polyline.lines().at(1).a == Point(10,0)); REQUIRE(polyline.lines().at(1).b == Point(20,0)); } TEST_CASE("Splitting a Polygon generates a polyline correctly", "[Geometry]"){ Slic3r::Polygon polygon(std::vector<Point>({Point(0, 0), Point(10, 0), Point(5, 5)})); Slic3r::Polyline split = polygon.split_at_index(1); REQUIRE(split.points[0]==Point(10,0)); REQUIRE(split.points[1]==Point(5,5)); REQUIRE(split.points[2]==Point(0,0)); REQUIRE(split.points[3]==Point(10,0)); } TEST_CASE("Bounding boxes are scaled appropriately", "[Geometry]"){ BoundingBox bb(std::vector<Point>({Point(0, 1), Point(10, 2), Point(20, 2)})); bb.scale(2); REQUIRE(bb.min == Point(0,2)); REQUIRE(bb.max == Point(40,4)); } TEST_CASE("Offseting a line generates a polygon correctly", "[Geometry]"){ Slic3r::Polyline tmp = { Point(10,10), Point(20,10) }; Slic3r::Polygon area = offset(tmp,5).at(0); REQUIRE(area.area() == Slic3r::Polygon(std::vector<Point>({Point(10,5),Point(20,5),Point(20,15),Point(10,15)})).area()); } SCENARIO("Circle Fit, TaubinFit with Newton's method", "[Geometry]") { GIVEN("A vector of Vec2ds arranged in a half-circle with approximately the same distance R from some point") { Vec2d expected_center(-6, 0); Vec2ds sample {Vec2d(6.0, 0), Vec2d(5.1961524, 3), Vec2d(3 ,5.1961524), Vec2d(0, 6.0), Vec2d(3, 5.1961524), Vec2d(-5.1961524, 3), Vec2d(-6.0, 0)}; std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Vec2d& a) { return a + expected_center;}); WHEN("Circle fit is called on the entire array") { Vec2d result_center(0,0); result_center = Geometry::circle_center_taubin_newton(sample); THEN("A center point of -6,0 is returned.") { REQUIRE(is_approx(result_center, expected_center)); } } WHEN("Circle fit is called on the first four points") { Vec2d result_center(0,0); result_center = Geometry::circle_center_taubin_newton(sample.cbegin(), sample.cbegin()+4); THEN("A center point of -6,0 is returned.") { REQUIRE(is_approx(result_center, expected_center)); } } WHEN("Circle fit is called on the middle four points") { Vec2d result_center(0,0); result_center = Geometry::circle_center_taubin_newton(sample.cbegin()+2, sample.cbegin()+6); THEN("A center point of -6,0 is returned.") { REQUIRE(is_approx(result_center, expected_center)); } } } GIVEN("A vector of Vec2ds arranged in a half-circle with approximately the same distance R from some point") { Vec2d expected_center(-3, 9); Vec2ds sample {Vec2d(6.0, 0), Vec2d(5.1961524, 3), Vec2d(3 ,5.1961524), Vec2d(0, 6.0), Vec2d(3, 5.1961524), Vec2d(-5.1961524, 3), Vec2d(-6.0, 0)}; std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Vec2d& a) { return a + expected_center;}); WHEN("Circle fit is called on the entire array") { Vec2d result_center(0,0); result_center = Geometry::circle_center_taubin_newton(sample); THEN("A center point of 3,9 is returned.") { REQUIRE(is_approx(result_center, expected_center)); } } WHEN("Circle fit is called on the first four points") { Vec2d result_center(0,0); result_center = Geometry::circle_center_taubin_newton(sample.cbegin(), sample.cbegin()+4); THEN("A center point of 3,9 is returned.") { REQUIRE(is_approx(result_center, expected_center)); } } WHEN("Circle fit is called on the middle four points") { Vec2d result_center(0,0); result_center = Geometry::circle_center_taubin_newton(sample.cbegin()+2, sample.cbegin()+6); THEN("A center point of 3,9 is returned.") { REQUIRE(is_approx(result_center, expected_center)); } } } GIVEN("A vector of Points arranged in a half-circle with approximately the same distance R from some point") { Point expected_center { Point::new_scale(-3, 9)}; Points sample {Point::new_scale(6.0, 0), Point::new_scale(5.1961524, 3), Point::new_scale(3 ,5.1961524), Point::new_scale(0, 6.0), Point::new_scale(3, 5.1961524), Point::new_scale(-5.1961524, 3), Point::new_scale(-6.0, 0)}; std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Point& a) { return a + expected_center;}); WHEN("Circle fit is called on the entire array") { Point result_center(0,0); result_center = Geometry::circle_center_taubin_newton(sample); THEN("A center point of scaled 3,9 is returned.") { REQUIRE(is_approx(result_center, expected_center)); } } WHEN("Circle fit is called on the first four points") { Point result_center(0,0); result_center = Geometry::circle_center_taubin_newton(sample.cbegin(), sample.cbegin()+4); THEN("A center point of scaled 3,9 is returned.") { REQUIRE(is_approx(result_center, expected_center)); } } WHEN("Circle fit is called on the middle four points") { Point result_center(0,0); result_center = Geometry::circle_center_taubin_newton(sample.cbegin()+2, sample.cbegin()+6); THEN("A center point of scaled 3,9 is returned.") { REQUIRE(is_approx(result_center, expected_center)); } } } } SCENARIO("Path chaining", "[Geometry]") { GIVEN("A path") { std::vector<Point> points = { Point(26,26),Point(52,26),Point(0,26),Point(26,52),Point(26,0),Point(0,52),Point(52,52),Point(52,0) }; THEN("Chained with no diagonals (thus 26 units long)") { std::vector<Points::size_type> indices = chain_points(points); for (Points::size_type i = 0; i + 1 < indices.size(); ++ i) { double dist = (points.at(indices.at(i)).cast<double>() - points.at(indices.at(i+1)).cast<double>()).norm(); REQUIRE(std::abs(dist-26) <= EPSILON); } } } GIVEN("Gyroid infill end points") { Polylines polylines = { { {28122608, 3221037}, {27919139, 56036027} }, { {33642863, 3400772}, {30875220, 56450360} }, { {34579315, 3599827}, {35049758, 55971572} }, { {26483070, 3374004}, {23971830, 55763598} }, { {38931405, 4678879}, {38740053, 55077714} }, { {20311895, 5015778}, {20079051, 54551952} }, { {16463068, 6773342}, {18823514, 53992958} }, { {44433771, 7424951}, {42629462, 53346059} }, { {15697614, 7329492}, {15350896, 52089991} }, { {48085792, 10147132}, {46435427, 50792118} }, { {48828819, 10972330}, {49126582, 48368374} }, { {9654526, 12656711}, {10264020, 47691584} }, { {5726905, 18648632}, {8070762, 45082416} }, { {54818187, 39579970}, {52974912, 43271272} }, { {4464342, 37371742}, {5027890, 39106220} }, { {54139746, 18417661}, {55177987, 38472580} }, { {56527590, 32058461}, {56316456, 34067185} }, { {3303988, 29215290}, {3569863, 32985633} }, { {56255666, 25025857}, {56478310, 27144087} }, { {4300034, 22805361}, {3667946, 25752601} }, { {8266122, 14250611}, {6244813, 17751595} }, { {12177955, 9886741}, {10703348, 11491900} } }; Polylines chained = chain_polylines(polylines); THEN("Chained taking the shortest path") { double connection_length = 0.; for (size_t i = 1; i < chained.size(); ++i) { const Polyline &pl1 = chained[i - 1]; const Polyline &pl2 = chained[i]; connection_length += (pl2.first_point() - pl1.last_point()).cast<double>().norm(); } REQUIRE(connection_length < 85206000.); } } GIVEN("Loop pieces") { Point a { 2185796, 19058485 }; Point b { 3957902, 18149382 }; Point c { 2912841, 18790564 }; Point d { 2831848, 18832390 }; Point e { 3179601, 18627769 }; Point f { 3137952, 18653370 }; Polylines polylines = { { a, b }, { c, d }, { e, f }, { d, a }, { f, c }, { b, e } }; Polylines chained = chain_polylines(polylines, &a); THEN("Connected without a gap") { for (size_t i = 0; i < chained.size(); ++i) { const Polyline &pl1 = (i == 0) ? chained.back() : chained[i - 1]; const Polyline &pl2 = chained[i]; REQUIRE(pl1.points.back() == pl2.points.front()); } } } } SCENARIO("Line distances", "[Geometry]"){ GIVEN("A line"){ Line line(Point(0, 0), Point(20, 0)); THEN("Points on the line segment have 0 distance"){ REQUIRE(line.distance_to(Point(0, 0)) == 0); REQUIRE(line.distance_to(Point(20, 0)) == 0); REQUIRE(line.distance_to(Point(10, 0)) == 0); } THEN("Points off the line have the appropriate distance"){ REQUIRE(line.distance_to(Point(10, 10)) == 10); REQUIRE(line.distance_to(Point(50, 0)) == 30); } } } SCENARIO("Polygon convex/concave detection", "[Geometry]"){ GIVEN(("A Square with dimension 100")){ auto square = Slic3r::Polygon /*new_scale*/(std::vector<Point>({ Point(100,100), Point(200,100), Point(200,200), Point(100,200)})); THEN("It has 4 convex points counterclockwise"){ REQUIRE(square.concave_points(PI*4/3).size() == 0); REQUIRE(square.convex_points(PI*2/3).size() == 4); } THEN("It has 4 concave points clockwise"){ square.make_clockwise(); REQUIRE(square.concave_points(PI*4/3).size() == 4); REQUIRE(square.convex_points(PI*2/3).size() == 0); } } GIVEN("A Square with an extra colinearvertex"){ auto square = Slic3r::Polygon /*new_scale*/(std::vector<Point>({ Point(150,100), Point(200,100), Point(200,200), Point(100,200), Point(100,100)})); THEN("It has 4 convex points counterclockwise"){ REQUIRE(square.concave_points(PI*4/3).size() == 0); REQUIRE(square.convex_points(PI*2/3).size() == 4); } } GIVEN("A Square with an extra collinear vertex in different order"){ auto square = Slic3r::Polygon /*new_scale*/(std::vector<Point>({ Point(200,200), Point(100,200), Point(100,100), Point(150,100), Point(200,100)})); THEN("It has 4 convex points counterclockwise"){ REQUIRE(square.concave_points(PI*4/3).size() == 0); REQUIRE(square.convex_points(PI*2/3).size() == 4); } } GIVEN("A triangle"){ auto triangle = Slic3r::Polygon(std::vector<Point>({ Point(16000170,26257364), Point(714223,461012), Point(31286371,461008) })); THEN("it has three convex vertices"){ REQUIRE(triangle.concave_points(PI*4/3).size() == 0); REQUIRE(triangle.convex_points(PI*2/3).size() == 3); } } GIVEN("A triangle with an extra collinear point"){ auto triangle = Slic3r::Polygon(std::vector<Point>({ Point(16000170,26257364), Point(714223,461012), Point(20000000,461012), Point(31286371,461012) })); THEN("it has three convex vertices"){ REQUIRE(triangle.concave_points(PI*4/3).size() == 0); REQUIRE(triangle.convex_points(PI*2/3).size() == 3); } } GIVEN("A polygon with concave vertices with angles of specifically 4/3pi"){ // Two concave vertices of this polygon have angle = PI*4/3, so this test fails // if epsilon is not used. auto polygon = Slic3r::Polygon(std::vector<Point>({ Point(60246458,14802768),Point(64477191,12360001), Point(63727343,11060995),Point(64086449,10853608), Point(66393722,14850069),Point(66034704,15057334), Point(65284646,13758387),Point(61053864,16200839), Point(69200258,30310849),Point(62172547,42483120), Point(61137680,41850279),Point(67799985,30310848), Point(51399866,1905506),Point(38092663,1905506), Point(38092663,692699),Point(52100125,692699) })); THEN("the correct number of points are detected"){ REQUIRE(polygon.concave_points(PI*4/3).size() == 6); REQUIRE(polygon.convex_points(PI*2/3).size() == 10); } } } TEST_CASE("Triangle Simplification does not result in less than 3 points", "[Geometry]"){ auto triangle = Slic3r::Polygon(std::vector<Point>({ Point(16000170,26257364), Point(714223,461012), Point(31286371,461008) })); REQUIRE(triangle.simplify(250000).at(0).points.size() == 3); } SCENARIO("Ported from xs/t/14_geometry.t", "[Geometry]"){ GIVEN(("square")){ Slic3r::Points points { { 100, 100 }, {100, 200 }, { 200, 200 }, { 200, 100 }, { 150, 150 } }; Slic3r::Polygon hull = Slic3r::Geometry::convex_hull(points); SECTION("convex hull returns the correct number of points") { REQUIRE(hull.points.size() == 4); } } SECTION("arrange returns expected number of positions") { Pointfs positions; Slic3r::Geometry::arrange(4, Vec2d(20, 20), 5, nullptr, positions); REQUIRE(positions.size() == 4); } SECTION("directions_parallel") { REQUIRE(Slic3r::Geometry::directions_parallel(0, 0, 0)); REQUIRE(Slic3r::Geometry::directions_parallel(0, M_PI, 0)); REQUIRE(Slic3r::Geometry::directions_parallel(0, 0, M_PI / 180)); REQUIRE(Slic3r::Geometry::directions_parallel(0, M_PI, M_PI / 180)); REQUIRE(! Slic3r::Geometry::directions_parallel(M_PI /2, M_PI, 0)); REQUIRE(! Slic3r::Geometry::directions_parallel(M_PI /2, PI, M_PI /180)); } }