#include #include "3DScene.hpp" #include "../../libslic3r/libslic3r.h" #include "../../libslic3r/ExtrusionEntity.hpp" #include "../../libslic3r/ExtrusionEntityCollection.hpp" #include "../../libslic3r/Geometry.hpp" #include "../../libslic3r/Print.hpp" #include "../../libslic3r/Slicing.hpp" //############################################################################################################ #if ENRICO_GCODE_PREVIEW #include "GCode/Analyzer.hpp" #endif // ENRICO_GCODE_PREVIEW //############################################################################################################ #include #include #include #include #include #include #include #include namespace Slic3r { void GLIndexedVertexArray::load_mesh_flat_shading(const TriangleMesh &mesh) { assert(triangle_indices.empty() && vertices_and_normals_interleaved_size == 0); assert(quad_indices.empty() && triangle_indices_size == 0); assert(vertices_and_normals_interleaved.size() % 6 == 0 && quad_indices_size == vertices_and_normals_interleaved.size()); this->vertices_and_normals_interleaved.reserve(this->vertices_and_normals_interleaved.size() + 3 * 3 * 2 * mesh.facets_count()); for (int i = 0; i < mesh.stl.stats.number_of_facets; ++ i) { const stl_facet &facet = mesh.stl.facet_start[i]; for (int j = 0; j < 3; ++ j) this->push_geometry(facet.vertex[j].x, facet.vertex[j].y, facet.vertex[j].z, facet.normal.x, facet.normal.y, facet.normal.z); } } void GLIndexedVertexArray::finalize_geometry(bool use_VBOs) { assert(this->vertices_and_normals_interleaved_VBO_id == 0); assert(this->triangle_indices_VBO_id == 0); assert(this->quad_indices_VBO_id == 0); this->setup_sizes(); if (use_VBOs) { if (! empty()) { glGenBuffers(1, &this->vertices_and_normals_interleaved_VBO_id); glBindBuffer(GL_ARRAY_BUFFER, this->vertices_and_normals_interleaved_VBO_id); glBufferData(GL_ARRAY_BUFFER, this->vertices_and_normals_interleaved.size() * 4, this->vertices_and_normals_interleaved.data(), GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); this->vertices_and_normals_interleaved.clear(); } if (! this->triangle_indices.empty()) { glGenBuffers(1, &this->triangle_indices_VBO_id); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->triangle_indices_VBO_id); glBufferData(GL_ELEMENT_ARRAY_BUFFER, this->triangle_indices.size() * 4, this->triangle_indices.data(), GL_STATIC_DRAW); this->triangle_indices.clear(); } if (! this->quad_indices.empty()) { glGenBuffers(1, &this->quad_indices_VBO_id); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->quad_indices_VBO_id); glBufferData(GL_ELEMENT_ARRAY_BUFFER, this->quad_indices.size() * 4, this->quad_indices.data(), GL_STATIC_DRAW); this->quad_indices.clear(); } glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); } this->shrink_to_fit(); } void GLIndexedVertexArray::release_geometry() { if (this->vertices_and_normals_interleaved_VBO_id) glDeleteBuffers(1, &this->vertices_and_normals_interleaved_VBO_id); if (this->triangle_indices_VBO_id) glDeleteBuffers(1, &this->triangle_indices_VBO_id); if (this->quad_indices_VBO_id) glDeleteBuffers(1, &this->quad_indices_VBO_id); this->clear(); this->shrink_to_fit(); } void GLIndexedVertexArray::render() const { if (this->vertices_and_normals_interleaved_VBO_id) { glBindBuffer(GL_ARRAY_BUFFER, this->vertices_and_normals_interleaved_VBO_id); glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), (const void*)(3 * sizeof(float))); glNormalPointer(GL_FLOAT, 6 * sizeof(float), nullptr); } else { glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), this->vertices_and_normals_interleaved.data() + 3); glNormalPointer(GL_FLOAT, 6 * sizeof(float), this->vertices_and_normals_interleaved.data()); } glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_NORMAL_ARRAY); if (this->indexed()) { if (this->vertices_and_normals_interleaved_VBO_id) { // Render using the Vertex Buffer Objects. if (this->triangle_indices_size > 0) { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->triangle_indices_VBO_id); glDrawElements(GL_TRIANGLES, GLsizei(this->triangle_indices_size), GL_UNSIGNED_INT, nullptr); } if (this->quad_indices_size > 0) { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->quad_indices_VBO_id); glDrawElements(GL_QUADS, GLsizei(this->quad_indices_size), GL_UNSIGNED_INT, nullptr); } glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); } else { // Render in an immediate mode. if (! this->triangle_indices.empty()) glDrawElements(GL_TRIANGLES, GLsizei(this->triangle_indices_size), GL_UNSIGNED_INT, this->triangle_indices.data()); if (! this->quad_indices.empty()) glDrawElements(GL_QUADS, GLsizei(this->quad_indices_size), GL_UNSIGNED_INT, this->quad_indices.data()); } } else glDrawArrays(GL_TRIANGLES, 0, GLsizei(this->vertices_and_normals_interleaved_size / 6)); if (this->vertices_and_normals_interleaved_VBO_id) glBindBuffer(GL_ARRAY_BUFFER, 0); glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_NORMAL_ARRAY); } void GLIndexedVertexArray::render( const std::pair &tverts_range, const std::pair &qverts_range) const { assert(this->indexed()); if (! this->indexed()) return; if (this->vertices_and_normals_interleaved_VBO_id) { // Render using the Vertex Buffer Objects. glBindBuffer(GL_ARRAY_BUFFER, this->vertices_and_normals_interleaved_VBO_id); glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), (const void*)(3 * sizeof(float))); glNormalPointer(GL_FLOAT, 6 * sizeof(float), nullptr); glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_NORMAL_ARRAY); if (this->triangle_indices_size > 0) { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->triangle_indices_VBO_id); glDrawElements(GL_TRIANGLES, GLsizei(std::min(this->triangle_indices_size, tverts_range.second - tverts_range.first)), GL_UNSIGNED_INT, (const void*)(tverts_range.first * 4)); } if (this->quad_indices_size > 0) { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->quad_indices_VBO_id); glDrawElements(GL_QUADS, GLsizei(std::min(this->quad_indices_size, qverts_range.second - qverts_range.first)), GL_UNSIGNED_INT, (const void*)(qverts_range.first * 4)); } glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); } else { // Render in an immediate mode. glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), this->vertices_and_normals_interleaved.data() + 3); glNormalPointer(GL_FLOAT, 6 * sizeof(float), this->vertices_and_normals_interleaved.data()); glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_NORMAL_ARRAY); if (! this->triangle_indices.empty()) glDrawElements(GL_TRIANGLES, GLsizei(std::min(this->triangle_indices_size, tverts_range.second - tverts_range.first)), GL_UNSIGNED_INT, (const void*)(this->triangle_indices.data() + tverts_range.first)); if (! this->quad_indices.empty()) glDrawElements(GL_QUADS, GLsizei(std::min(this->quad_indices_size, qverts_range.second - qverts_range.first)), GL_UNSIGNED_INT, (const void*)(this->quad_indices.data() + qverts_range.first)); } glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_NORMAL_ARRAY); } void GLVolume::set_range(double min_z, double max_z) { this->qverts_range.first = 0; this->qverts_range.second = this->indexed_vertex_array.quad_indices_size; this->tverts_range.first = 0; this->tverts_range.second = this->indexed_vertex_array.triangle_indices_size; if (! this->print_zs.empty()) { // The Z layer range is specified. // First test whether the Z span of this object is not out of (min_z, max_z) completely. if (this->print_zs.front() > max_z || this->print_zs.back() < min_z) { this->qverts_range.second = 0; this->tverts_range.second = 0; } else { // Then find the lowest layer to be displayed. size_t i = 0; for (; i < this->print_zs.size() && this->print_zs[i] < min_z; ++ i); if (i == this->print_zs.size()) { // This shall not happen. this->qverts_range.second = 0; this->tverts_range.second = 0; } else { // Remember start of the layer. this->qverts_range.first = this->offsets[i * 2]; this->tverts_range.first = this->offsets[i * 2 + 1]; // Some layers are above $min_z. Which? for (; i < this->print_zs.size() && this->print_zs[i] <= max_z; ++ i); if (i < this->print_zs.size()) { this->qverts_range.second = this->offsets[i * 2]; this->tverts_range.second = this->offsets[i * 2 + 1]; } } } } } void GLVolume::render() const { glCullFace(GL_BACK); glPushMatrix(); glTranslated(this->origin.x, this->origin.y, this->origin.z); if (this->indexed_vertex_array.indexed()) this->indexed_vertex_array.render(this->tverts_range, this->qverts_range); else this->indexed_vertex_array.render(); glPopMatrix(); } void GLVolume::generate_layer_height_texture(PrintObject *print_object, bool force) { GLTexture *tex = this->layer_height_texture.get(); if (tex == nullptr) // No layer_height_texture is assigned to this GLVolume, therefore the layer height texture cannot be filled. return; // Always try to update the layer height profile. bool update = print_object->update_layer_height_profile(print_object->model_object()->layer_height_profile) || force; // Update if the layer height profile was changed, or when the texture is not valid. if (! update && ! tex->data.empty() && tex->cells > 0) // Texture is valid, don't update. return; if (tex->data.empty()) { tex->width = 1024; tex->height = 1024; tex->levels = 2; tex->data.assign(tex->width * tex->height * 5, 0); } SlicingParameters slicing_params = print_object->slicing_parameters(); bool level_of_detail_2nd_level = true; tex->cells = Slic3r::generate_layer_height_texture( slicing_params, Slic3r::generate_object_layers(slicing_params, print_object->model_object()->layer_height_profile), tex->data.data(), tex->height, tex->width, level_of_detail_2nd_level); } // 512x512 bitmaps are supported everywhere, but that may not be sufficent for super large print volumes. #define LAYER_HEIGHT_TEXTURE_WIDTH 1024 #define LAYER_HEIGHT_TEXTURE_HEIGHT 1024 std::vector GLVolumeCollection::load_object( const ModelObject *model_object, int obj_idx, const std::vector &instance_idxs, const std::string &color_by, const std::string &select_by, const std::string &drag_by, bool use_VBOs) { static float colors[4][4] = { { 1.0f, 1.0f, 0.0f, 1.f }, { 1.0f, 0.5f, 0.5f, 1.f }, { 0.5f, 1.0f, 0.5f, 1.f }, { 0.5f, 0.5f, 1.0f, 1.f } }; // Object will have a single common layer height texture for all volumes. std::shared_ptr layer_height_texture = std::make_shared(); std::vector volumes_idx; for (int volume_idx = 0; volume_idx < int(model_object->volumes.size()); ++ volume_idx) { const ModelVolume *model_volume = model_object->volumes[volume_idx]; for (int instance_idx : instance_idxs) { const ModelInstance *instance = model_object->instances[instance_idx]; TriangleMesh mesh = model_volume->mesh; instance->transform_mesh(&mesh); volumes_idx.push_back(int(this->volumes.size())); float color[4]; memcpy(color, colors[((color_by == "volume") ? volume_idx : obj_idx) % 4], sizeof(float) * 3); color[3] = model_volume->modifier ? 0.5f : 1.f; this->volumes.emplace_back(new GLVolume(color)); GLVolume &v = *this->volumes.back(); v.indexed_vertex_array.load_mesh_flat_shading(mesh); // finalize_geometry() clears the vertex arrays, therefore the bounding box has to be computed before finalize_geometry(). v.bounding_box = v.indexed_vertex_array.bounding_box(); v.indexed_vertex_array.finalize_geometry(use_VBOs); v.composite_id = obj_idx * 1000000 + volume_idx * 1000 + instance_idx; if (select_by == "object") v.select_group_id = obj_idx * 1000000; else if (select_by == "volume") v.select_group_id = obj_idx * 1000000 + volume_idx * 1000; else if (select_by == "instance") v.select_group_id = v.composite_id; if (drag_by == "object") v.drag_group_id = obj_idx * 1000; else if (drag_by == "instance") v.drag_group_id = obj_idx * 1000 + instance_idx; if (! model_volume->modifier) v.layer_height_texture = layer_height_texture; } } return volumes_idx; } int GLVolumeCollection::load_wipe_tower_preview( int obj_idx, float pos_x, float pos_y, float width, float depth, float height, bool use_VBOs) { float color[4] = { 1.0f, 1.0f, 0.0f, 0.5f }; this->volumes.emplace_back(new GLVolume(color)); GLVolume &v = *this->volumes.back(); auto mesh = make_cube(width, depth, height); v.indexed_vertex_array.load_mesh_flat_shading(mesh); v.origin = Pointf3(pos_x, pos_y, 0.); // finalize_geometry() clears the vertex arrays, therefore the bounding box has to be computed before finalize_geometry(). v.bounding_box = v.indexed_vertex_array.bounding_box(); v.indexed_vertex_array.finalize_geometry(use_VBOs); v.composite_id = obj_idx * 1000000; v.select_group_id = obj_idx * 1000000; v.drag_group_id = obj_idx * 1000; return int(this->volumes.size() - 1); } void GLVolumeCollection::render_VBOs() const { // glEnable(GL_BLEND); // glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glCullFace(GL_BACK); glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_NORMAL_ARRAY); GLint current_program_id; glGetIntegerv(GL_CURRENT_PROGRAM, ¤t_program_id); GLint color_id = (current_program_id > 0) ? glGetUniformLocation(current_program_id, "uniform_color") : -1; for (GLVolume *volume : this->volumes) { if (! volume->indexed_vertex_array.vertices_and_normals_interleaved_VBO_id) continue; GLsizei n_triangles = GLsizei(std::min(volume->indexed_vertex_array.triangle_indices_size, volume->tverts_range.second - volume->tverts_range.first)); GLsizei n_quads = GLsizei(std::min(volume->indexed_vertex_array.quad_indices_size, volume->qverts_range.second - volume->qverts_range.first)); if (n_triangles + n_quads == 0) continue; if (color_id >= 0) glUniform4fv(color_id, 1, (const GLfloat*)volume->color); else glColor4f(volume->color[0], volume->color[1], volume->color[2], volume->color[3]); glBindBuffer(GL_ARRAY_BUFFER, volume->indexed_vertex_array.vertices_and_normals_interleaved_VBO_id); glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), (const void*)(3 * sizeof(float))); glNormalPointer(GL_FLOAT, 6 * sizeof(float), nullptr); if (n_triangles > 0) { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, volume->indexed_vertex_array.triangle_indices_VBO_id); glDrawElements(GL_TRIANGLES, n_triangles, GL_UNSIGNED_INT, (const void*)(volume->tverts_range.first * 4)); } if (n_quads > 0) { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, volume->indexed_vertex_array.quad_indices_VBO_id); glDrawElements(GL_QUADS, n_quads, GL_UNSIGNED_INT, (const void*)(volume->qverts_range.first * 4)); } } glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_NORMAL_ARRAY); // glDisable(GL_BLEND); } void GLVolumeCollection::render_legacy() const { glCullFace(GL_BACK); glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_NORMAL_ARRAY); for (GLVolume *volume : this->volumes) { assert(! volume->indexed_vertex_array.vertices_and_normals_interleaved_VBO_id); GLsizei n_triangles = GLsizei(std::min(volume->indexed_vertex_array.triangle_indices_size, volume->tverts_range.second - volume->tverts_range.first)); GLsizei n_quads = GLsizei(std::min(volume->indexed_vertex_array.quad_indices_size, volume->qverts_range.second - volume->qverts_range.first)); if (n_triangles + n_quads == 0) continue; glColor4f(volume->color[0], volume->color[1], volume->color[2], volume->color[3]); glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), volume->indexed_vertex_array.vertices_and_normals_interleaved.data() + 3); glNormalPointer(GL_FLOAT, 6 * sizeof(float), volume->indexed_vertex_array.vertices_and_normals_interleaved.data()); bool has_offset = volume->origin.x != 0 || volume->origin.y != 0 || volume->origin.z != 0; if (has_offset) { glPushMatrix(); glTranslated(volume->origin.x, volume->origin.y, volume->origin.z); } if (n_triangles > 0) glDrawElements(GL_TRIANGLES, n_triangles, GL_UNSIGNED_INT, volume->indexed_vertex_array.triangle_indices.data() + volume->tverts_range.first); if (n_quads > 0) glDrawElements(GL_QUADS, n_quads, GL_UNSIGNED_INT, volume->indexed_vertex_array.quad_indices.data() + volume->qverts_range.first); if (has_offset) glPushMatrix(); } glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_NORMAL_ARRAY); } // caller is responsible for supplying NO lines with zero length static void thick_lines_to_indexed_vertex_array( const Lines &lines, const std::vector &widths, const std::vector &heights, bool closed, double top_z, GLIndexedVertexArray &volume) { assert(! lines.empty()); if (lines.empty()) return; #define LEFT 0 #define RIGHT 1 #define TOP 2 #define BOTTOM 3 Line prev_line; // right, left, top, bottom int idx_prev[4] = { -1, -1, -1, -1 }; double bottom_z_prev = 0.; Pointf b1_prev; Pointf b2_prev; Vectorf v_prev; int idx_initial[4] = { -1, -1, -1, -1 }; double width_initial = 0.; // loop once more in case of closed loops size_t lines_end = closed ? (lines.size() + 1) : lines.size(); for (size_t ii = 0; ii < lines_end; ++ ii) { size_t i = (ii == lines.size()) ? 0 : ii; const Line &line = lines[i]; double len = unscale(line.length()); double bottom_z = top_z - heights[i]; double middle_z = (top_z + bottom_z) / 2.; double width = widths[i]; Vectorf v = Vectorf::new_unscale(line.vector()); v.scale(1. / len); Pointf a = Pointf::new_unscale(line.a); Pointf b = Pointf::new_unscale(line.b); Pointf a1 = a; Pointf a2 = a; Pointf b1 = b; Pointf b2 = b; { double dist = width / 2.; // scaled a1.translate(+dist*v.y, -dist*v.x); a2.translate(-dist*v.y, +dist*v.x); b1.translate(+dist*v.y, -dist*v.x); b2.translate(-dist*v.y, +dist*v.x); } // calculate new XY normals Vector n = line.normal(); Vectorf3 xy_right_normal = Vectorf3::new_unscale(n.x, n.y, 0); xy_right_normal.scale(1.f / len); int idx_a[4]; int idx_b[4]; int idx_last = int(volume.vertices_and_normals_interleaved.size() / 6); bool bottom_z_different = bottom_z_prev != bottom_z; bottom_z_prev = bottom_z; // Share top / bottom vertices if possible. if (ii == 0) { idx_a[TOP] = idx_last ++; volume.push_geometry(a.x, a.y, top_z , 0., 0., 1.); } else { idx_a[TOP] = idx_prev[TOP]; } if (ii == 0 || bottom_z_different) { // Start of the 1st line segment or a change of the layer thickness while maintaining the print_z. idx_a[BOTTOM] = idx_last ++; volume.push_geometry(a.x, a.y, bottom_z, 0., 0., -1.); idx_a[LEFT ] = idx_last ++; volume.push_geometry(a2.x, a2.y, middle_z, -xy_right_normal.x, -xy_right_normal.y, -xy_right_normal.z); idx_a[RIGHT] = idx_last ++; volume.push_geometry(a1.x, a1.y, middle_z, xy_right_normal.x, xy_right_normal.y, xy_right_normal.z); } else { idx_a[BOTTOM] = idx_prev[BOTTOM]; } if (ii == 0) { // Start of the 1st line segment. width_initial = width; memcpy(idx_initial, idx_a, sizeof(int) * 4); } else { // Continuing a previous segment. // Share left / right vertices if possible. double v_dot = dot(v_prev, v); bool sharp = v_dot < 0.707; // sin(45 degrees) if (sharp) { // Allocate new left / right points for the start of this segment as these points will receive their own normals to indicate a sharp turn. idx_a[RIGHT] = idx_last ++; volume.push_geometry(a1.x, a1.y, middle_z, xy_right_normal.x, xy_right_normal.y, xy_right_normal.z); idx_a[LEFT ] = idx_last ++; volume.push_geometry(a2.x, a2.y, middle_z, -xy_right_normal.x, -xy_right_normal.y, -xy_right_normal.z); } if (v_dot > 0.9) { // The two successive segments are nearly collinear. idx_a[LEFT ] = idx_prev[LEFT]; idx_a[RIGHT] = idx_prev[RIGHT]; } else if (! sharp) { // Create a sharp corner with an overshot and average the left / right normals. // At the crease angle of 45 degrees, the overshot at the corner will be less than (1-1/cos(PI/8)) = 8.2% over an arc. Pointf intersection; Geometry::ray_ray_intersection(b1_prev, v_prev, a1, v, intersection); a1 = intersection; a2 = 2. * a - intersection; assert(length(a1.vector_to(a)) < width); assert(length(a2.vector_to(a)) < width); float *n_left_prev = volume.vertices_and_normals_interleaved.data() + idx_prev[LEFT ] * 6; float *p_left_prev = n_left_prev + 3; float *n_right_prev = volume.vertices_and_normals_interleaved.data() + idx_prev[RIGHT] * 6; float *p_right_prev = n_right_prev + 3; p_left_prev [0] = float(a2.x); p_left_prev [1] = float(a2.y); p_right_prev[0] = float(a1.x); p_right_prev[1] = float(a1.y); xy_right_normal.x += n_right_prev[0]; xy_right_normal.y += n_right_prev[1]; xy_right_normal.scale(1. / length(xy_right_normal)); n_left_prev [0] = float(-xy_right_normal.x); n_left_prev [1] = float(-xy_right_normal.y); n_right_prev[0] = float( xy_right_normal.x); n_right_prev[1] = float( xy_right_normal.y); idx_a[LEFT ] = idx_prev[LEFT ]; idx_a[RIGHT] = idx_prev[RIGHT]; } else if (cross(v_prev, v) > 0.) { // Right turn. Fill in the right turn wedge. volume.push_triangle(idx_prev[RIGHT], idx_a [RIGHT], idx_prev[TOP] ); volume.push_triangle(idx_prev[RIGHT], idx_prev[BOTTOM], idx_a [RIGHT] ); } else { // Left turn. Fill in the left turn wedge. volume.push_triangle(idx_prev[LEFT], idx_prev[TOP], idx_a [LEFT] ); volume.push_triangle(idx_prev[LEFT], idx_a [LEFT], idx_prev[BOTTOM]); } if (ii == lines.size()) { if (! sharp) { // Closing a loop with smooth transition. Unify the closing left / right vertices. memcpy(volume.vertices_and_normals_interleaved.data() + idx_initial[LEFT ] * 6, volume.vertices_and_normals_interleaved.data() + idx_prev[LEFT ] * 6, sizeof(float) * 6); memcpy(volume.vertices_and_normals_interleaved.data() + idx_initial[RIGHT] * 6, volume.vertices_and_normals_interleaved.data() + idx_prev[RIGHT] * 6, sizeof(float) * 6); volume.vertices_and_normals_interleaved.erase(volume.vertices_and_normals_interleaved.end() - 12, volume.vertices_and_normals_interleaved.end()); // Replace the left / right vertex indices to point to the start of the loop. for (size_t u = volume.quad_indices.size() - 16; u < volume.quad_indices.size(); ++ u) { if (volume.quad_indices[u] == idx_prev[LEFT]) volume.quad_indices[u] = idx_initial[LEFT]; else if (volume.quad_indices[u] == idx_prev[RIGHT]) volume.quad_indices[u] = idx_initial[RIGHT]; } } // This is the last iteration, only required to solve the transition. break; } } // Only new allocate top / bottom vertices, if not closing a loop. if (closed && ii + 1 == lines.size()) { idx_b[TOP] = idx_initial[TOP]; } else { idx_b[TOP] = idx_last ++; volume.push_geometry(b.x, b.y, top_z , 0., 0., 1.); } if (closed && ii + 1 == lines.size() && width == width_initial) { idx_b[BOTTOM] = idx_initial[BOTTOM]; } else { idx_b[BOTTOM] = idx_last ++; volume.push_geometry(b.x, b.y, bottom_z, 0., 0., -1.); } // Generate new vertices for the end of this line segment. idx_b[LEFT ] = idx_last ++; volume.push_geometry(b2.x, b2.y, middle_z, -xy_right_normal.x, -xy_right_normal.y, -xy_right_normal.z); idx_b[RIGHT ] = idx_last ++; volume.push_geometry(b1.x, b1.y, middle_z, xy_right_normal.x, xy_right_normal.y, xy_right_normal.z); prev_line = line; memcpy(idx_prev, idx_b, 4 * sizeof(int)); bottom_z_prev = bottom_z; b1_prev = b1; b2_prev = b2; v_prev = v; if (! closed) { // Terminate open paths with caps. if (i == 0) volume.push_quad(idx_a[BOTTOM], idx_a[RIGHT], idx_a[TOP], idx_a[LEFT]); // We don't use 'else' because both cases are true if we have only one line. if (i + 1 == lines.size()) volume.push_quad(idx_b[BOTTOM], idx_b[LEFT], idx_b[TOP], idx_b[RIGHT]); } // Add quads for a straight hollow tube-like segment. // bottom-right face volume.push_quad(idx_a[BOTTOM], idx_b[BOTTOM], idx_b[RIGHT], idx_a[RIGHT]); // top-right face volume.push_quad(idx_a[RIGHT], idx_b[RIGHT], idx_b[TOP], idx_a[TOP]); // top-left face volume.push_quad(idx_a[TOP], idx_b[TOP], idx_b[LEFT], idx_a[LEFT]); // bottom-left face volume.push_quad(idx_a[LEFT], idx_b[LEFT], idx_b[BOTTOM], idx_a[BOTTOM]); } #undef LEFT #undef RIGHT #undef TOP #undef BOTTOM } //############################################################################################################ #if ENRICO_GCODE_PREVIEW // caller is responsible for supplying NO lines with zero length static void thick_lines_to_indexed_vertex_array(const Lines3& lines, const std::vector& widths, const std::vector& heights, bool closed, GLIndexedVertexArray& volume) { assert(!lines.empty()); if (lines.empty()) return; #define LEFT 0 #define RIGHT 1 #define TOP 2 #define BOTTOM 3 // left, right, top, bottom int idx_initial[4] = { -1, -1, -1, -1 }; int idx_prev[4] = { -1, -1, -1, -1 }; double z_prev = 0.0; Vectorf3 n_right_prev; Vectorf3 n_top_prev; Vectorf3 unit_v_prev; double width_initial = 0.0; // new vertices around the line endpoints // left, right, top, bottom Pointf3 a[4]; Pointf3 b[4]; // loop once more in case of closed loops size_t lines_end = closed ? (lines.size() + 1) : lines.size(); for (size_t ii = 0; ii < lines_end; ++ii) { size_t i = (ii == lines.size()) ? 0 : ii; const Line3& line = lines[i]; double height = heights[i]; double width = widths[i]; Vectorf3 unit_v = normalize(Vectorf3::new_unscale(line.vector())); Vectorf3 n_top; Vectorf3 n_right; Vectorf3 unit_positive_z(0.0, 0.0, 1.0); // float dot_z = dot(unit_v, unit_positive_z); // bool is_vertical = ::fabs(dot_z) > 0.99999; if ((line.a.x == line.b.x) && (line.a.y == line.b.y)) // if (is_vertical) { // vertical segment n_right = (line.a.z < line.b.z) ? Vectorf3(-1.0, 0.0, 0.0) : Vectorf3(1.0, 0.0, 0.0); n_top = Vectorf3(0.0, 1.0, 0.0); } else { // generic segment n_right = normalize(cross(unit_v, unit_positive_z)); n_top = normalize(cross(n_right, unit_v)); } Vectorf3 rl_displacement = 0.5 * width * n_right; Vectorf3 tb_displacement = 0.5 * height * n_top; Pointf3 l_a = Pointf3::new_unscale(line.a); Pointf3 l_b = Pointf3::new_unscale(line.b); a[RIGHT] = l_a + rl_displacement; a[LEFT] = l_a - rl_displacement; a[TOP] = l_a + tb_displacement; a[BOTTOM] = l_a - tb_displacement; b[RIGHT] = l_b + rl_displacement; b[LEFT] = l_b - rl_displacement; b[TOP] = l_b + tb_displacement; b[BOTTOM] = l_b - tb_displacement; Vectorf3 n_bottom = -n_top; Vectorf3 n_left = -n_right; int idx_a[4]; int idx_b[4]; int idx_last = int(volume.vertices_and_normals_interleaved.size() / 6); bool z_different = (z_prev != l_a.z); z_prev = l_b.z; // Share top / bottom vertices if possible. if (ii == 0) { idx_a[TOP] = idx_last++; volume.push_geometry(a[TOP], n_top); } else idx_a[TOP] = idx_prev[TOP]; if ((ii == 0) || z_different) { // Start of the 1st line segment or a change of the layer thickness while maintaining the print_z. idx_a[BOTTOM] = idx_last++; volume.push_geometry(a[BOTTOM], n_bottom); idx_a[LEFT] = idx_last++; volume.push_geometry(a[LEFT], n_left); idx_a[RIGHT] = idx_last++; volume.push_geometry(a[RIGHT], n_right); } else idx_a[BOTTOM] = idx_prev[BOTTOM]; if (ii == 0) { // Start of the 1st line segment. width_initial = width; ::memcpy(idx_initial, idx_a, sizeof(int) * 4); } else { // Continuing a previous segment. // Share left / right vertices if possible. double v_dot = dot(unit_v_prev, unit_v); bool is_sharp = v_dot < 0.707; // sin(45 degrees) bool is_right_turn = dot(n_top_prev, cross(unit_v_prev, unit_v)) > 0.0; if (is_sharp) { // Allocate new left / right points for the start of this segment as these points will receive their own normals to indicate a sharp turn. idx_a[RIGHT] = idx_last++; volume.push_geometry(a[RIGHT], n_right); idx_a[LEFT] = idx_last++; volume.push_geometry(a[LEFT], n_left); } if (v_dot > 0.9) { // The two successive segments are nearly collinear. idx_a[LEFT] = idx_prev[LEFT]; idx_a[RIGHT] = idx_prev[RIGHT]; } else if (!is_sharp) { // Create a sharp corner with an overshot and average the left / right normals. // At the crease angle of 45 degrees, the overshot at the corner will be less than (1-1/cos(PI/8)) = 8.2% over an arc. // averages normals Vectorf3 average_n_right = normalize(0.5 * (n_right + n_right_prev)); Vectorf3 average_n_left = -average_n_right; Vectorf3 average_rl_displacement = 0.5 * width * average_n_right; // updates vertices around a a[RIGHT] = l_a + average_rl_displacement; a[LEFT] = l_a - average_rl_displacement; // updates previous line normals float* normal_left_prev = volume.vertices_and_normals_interleaved.data() + idx_prev[LEFT] * 6; normal_left_prev[0] = float(average_n_left.x); normal_left_prev[1] = float(average_n_left.y); normal_left_prev[2] = float(average_n_left.z); float* normal_right_prev = volume.vertices_and_normals_interleaved.data() + idx_prev[RIGHT] * 6; normal_right_prev[0] = float(average_n_right.x); normal_right_prev[1] = float(average_n_right.y); normal_right_prev[2] = float(average_n_right.z); // updates previous line's vertices around b float* b_left_prev = normal_left_prev + 3; b_left_prev[0] = float(a[LEFT].x); b_left_prev[1] = float(a[LEFT].y); b_left_prev[2] = float(a[LEFT].z); float* b_right_prev = normal_right_prev + 3; b_right_prev[0] = float(a[RIGHT].x); b_right_prev[1] = float(a[RIGHT].y); b_right_prev[2] = float(a[RIGHT].z); idx_a[LEFT] = idx_prev[LEFT]; idx_a[RIGHT] = idx_prev[RIGHT]; } else if (is_right_turn) { // Right turn. Fill in the right turn wedge. volume.push_triangle(idx_prev[RIGHT], idx_a[RIGHT], idx_prev[TOP]); volume.push_triangle(idx_prev[RIGHT], idx_prev[BOTTOM], idx_a[RIGHT]); } else { // Left turn. Fill in the left turn wedge. volume.push_triangle(idx_prev[LEFT], idx_prev[TOP], idx_a[LEFT]); volume.push_triangle(idx_prev[LEFT], idx_a[LEFT], idx_prev[BOTTOM]); } if (ii == lines.size()) { if (!is_sharp) { // Closing a loop with smooth transition. Unify the closing left / right vertices. ::memcpy(volume.vertices_and_normals_interleaved.data() + idx_initial[LEFT] * 6, volume.vertices_and_normals_interleaved.data() + idx_prev[LEFT] * 6, sizeof(float) * 6); ::memcpy(volume.vertices_and_normals_interleaved.data() + idx_initial[RIGHT] * 6, volume.vertices_and_normals_interleaved.data() + idx_prev[RIGHT] * 6, sizeof(float) * 6); volume.vertices_and_normals_interleaved.erase(volume.vertices_and_normals_interleaved.end() - 12, volume.vertices_and_normals_interleaved.end()); // Replace the left / right vertex indices to point to the start of the loop. for (size_t u = volume.quad_indices.size() - 16; u < volume.quad_indices.size(); ++u) { if (volume.quad_indices[u] == idx_prev[LEFT]) volume.quad_indices[u] = idx_initial[LEFT]; else if (volume.quad_indices[u] == idx_prev[RIGHT]) volume.quad_indices[u] = idx_initial[RIGHT]; } } // This is the last iteration, only required to solve the transition. break; } } // Only new allocate top / bottom vertices, if not closing a loop. if (closed && (ii + 1 == lines.size())) idx_b[TOP] = idx_initial[TOP]; else { idx_b[TOP] = idx_last++; volume.push_geometry(b[TOP], n_top); } if (closed && (ii + 1 == lines.size()) && (width == width_initial)) idx_b[BOTTOM] = idx_initial[BOTTOM]; else { idx_b[BOTTOM] = idx_last++; volume.push_geometry(b[BOTTOM], n_bottom); } // Generate new vertices for the end of this line segment. idx_b[LEFT] = idx_last++; volume.push_geometry(b[LEFT], n_left); idx_b[RIGHT] = idx_last++; volume.push_geometry(b[RIGHT], n_right); ::memcpy(idx_prev, idx_b, 4 * sizeof(int)); n_right_prev = n_right; n_top_prev = n_top; unit_v_prev = unit_v; if (!closed) { // Terminate open paths with caps. if (i == 0) volume.push_quad(idx_a[BOTTOM], idx_a[RIGHT], idx_a[TOP], idx_a[LEFT]); // We don't use 'else' because both cases are true if we have only one line. if (i + 1 == lines.size()) volume.push_quad(idx_b[BOTTOM], idx_b[LEFT], idx_b[TOP], idx_b[RIGHT]); } // Add quads for a straight hollow tube-like segment. // bottom-right face volume.push_quad(idx_a[BOTTOM], idx_b[BOTTOM], idx_b[RIGHT], idx_a[RIGHT]); // top-right face volume.push_quad(idx_a[RIGHT], idx_b[RIGHT], idx_b[TOP], idx_a[TOP]); // top-left face volume.push_quad(idx_a[TOP], idx_b[TOP], idx_b[LEFT], idx_a[LEFT]); // bottom-left face volume.push_quad(idx_a[LEFT], idx_b[LEFT], idx_b[BOTTOM], idx_a[BOTTOM]); } #undef LEFT #undef RIGHT #undef TOP #undef BOTTOM } #endif // ENRICO_GCODE_PREVIEW //############################################################################################################ static void thick_lines_to_verts( const Lines &lines, const std::vector &widths, const std::vector &heights, bool closed, double top_z, GLVolume &volume) { thick_lines_to_indexed_vertex_array(lines, widths, heights, closed, top_z, volume.indexed_vertex_array); } //############################################################################################################ #if ENRICO_GCODE_PREVIEW static void thick_lines_to_verts(const Lines3& lines, const std::vector& widths, const std::vector& heights, bool closed, GLVolume& volume) { thick_lines_to_indexed_vertex_array(lines, widths, heights, closed, volume.indexed_vertex_array); } #endif // ENRICO_GCODE_PREVIEW //############################################################################################################ // Fill in the qverts and tverts with quads and triangles for the extrusion_path. static inline void extrusionentity_to_verts(const ExtrusionPath &extrusion_path, float print_z, const Point ©, GLVolume &volume) { Polyline polyline = extrusion_path.polyline; polyline.remove_duplicate_points(); polyline.translate(copy); Lines lines = polyline.lines(); std::vector widths(lines.size(), extrusion_path.width); std::vector heights(lines.size(), extrusion_path.height); thick_lines_to_verts(lines, widths, heights, false, print_z, volume); } // Fill in the qverts and tverts with quads and triangles for the extrusion_loop. static inline void extrusionentity_to_verts(const ExtrusionLoop &extrusion_loop, float print_z, const Point ©, GLVolume &volume) { Lines lines; std::vector widths; std::vector heights; for (const ExtrusionPath &extrusion_path : extrusion_loop.paths) { Polyline polyline = extrusion_path.polyline; polyline.remove_duplicate_points(); polyline.translate(copy); Lines lines_this = polyline.lines(); append(lines, lines_this); widths.insert(widths.end(), lines_this.size(), extrusion_path.width); heights.insert(heights.end(), lines_this.size(), extrusion_path.height); } thick_lines_to_verts(lines, widths, heights, true, print_z, volume); } // Fill in the qverts and tverts with quads and triangles for the extrusion_multi_path. static inline void extrusionentity_to_verts(const ExtrusionMultiPath &extrusion_multi_path, float print_z, const Point ©, GLVolume &volume) { Lines lines; std::vector widths; std::vector heights; for (const ExtrusionPath &extrusion_path : extrusion_multi_path.paths) { Polyline polyline = extrusion_path.polyline; polyline.remove_duplicate_points(); polyline.translate(copy); Lines lines_this = polyline.lines(); append(lines, lines_this); widths.insert(widths.end(), lines_this.size(), extrusion_path.width); heights.insert(heights.end(), lines_this.size(), extrusion_path.height); } thick_lines_to_verts(lines, widths, heights, false, print_z, volume); } static void extrusionentity_to_verts(const ExtrusionEntity *extrusion_entity, float print_z, const Point ©, GLVolume &volume); static inline void extrusionentity_to_verts(const ExtrusionEntityCollection &extrusion_entity_collection, float print_z, const Point ©, GLVolume &volume) { for (const ExtrusionEntity *extrusion_entity : extrusion_entity_collection.entities) extrusionentity_to_verts(extrusion_entity, print_z, copy, volume); } static void extrusionentity_to_verts(const ExtrusionEntity *extrusion_entity, float print_z, const Point ©, GLVolume &volume) { if (extrusion_entity != nullptr) { auto *extrusion_path = dynamic_cast(extrusion_entity); if (extrusion_path != nullptr) extrusionentity_to_verts(*extrusion_path, print_z, copy, volume); else { auto *extrusion_loop = dynamic_cast(extrusion_entity); if (extrusion_loop != nullptr) extrusionentity_to_verts(*extrusion_loop, print_z, copy, volume); else { auto *extrusion_multi_path = dynamic_cast(extrusion_entity); if (extrusion_multi_path != nullptr) extrusionentity_to_verts(*extrusion_multi_path, print_z, copy, volume); else { auto *extrusion_entity_collection = dynamic_cast(extrusion_entity); if (extrusion_entity_collection != nullptr) extrusionentity_to_verts(*extrusion_entity_collection, print_z, copy, volume); else { CONFESS("Unexpected extrusion_entity type in to_verts()"); } } } } } } //############################################################################################################ #if ENRICO_GCODE_PREVIEW static void polyline3_to_verts(const Polyline3& polyline, double width, double height, const Point& copy, GLVolume& volume) { Polyline3 p = polyline; p.remove_duplicate_points(); p.translate(copy); Lines3 lines = polyline.lines(); std::vector widths(lines.size(), width); std::vector heights(lines.size(), height); thick_lines_to_verts(lines, widths, heights, false, volume); } #endif // ENRICO_GCODE_PREVIEW //############################################################################################################ void _3DScene::_glew_init() { glewInit(); } static inline int hex_digit_to_int(const char c) { return (c >= '0' && c <= '9') ? int(c - '0') : (c >= 'A' && c <= 'F') ? int(c - 'A') + 10 : (c >= 'a' && c <= 'f') ? int(c - 'a') + 10 : -1; } static inline std::vector parse_colors(const std::vector &scolors) { std::vector output(scolors.size() * 4, 1.f); for (size_t i = 0; i < scolors.size(); ++ i) { const std::string &scolor = scolors[i]; const char *c = scolor.data() + 1; if (scolor.size() == 7 && scolor.front() == '#') { for (size_t j = 0; j < 3; ++j) { int digit1 = hex_digit_to_int(*c ++); int digit2 = hex_digit_to_int(*c ++); if (digit1 == -1 || digit2 == -1) break; output[i * 4 + j] = float(digit1 * 16 + digit2) / 255.f; } } } return output; } //############################################################################################################ #if ENRICO_GCODE_PREVIEW void _3DScene::load_gcode_preview(const Print* print, GLVolumeCollection* volumes, bool use_VBOs) { _load_gcode_extrusion_paths(*print, *volumes, use_VBOs); _load_gcode_travel_paths(*print, *volumes, use_VBOs); _load_gcode_retractions(*print, *volumes, use_VBOs); } #endif // ENRICO_GCODE_PREVIEW //############################################################################################################ // Create 3D thick extrusion lines for a skirt and brim. // Adds a new Slic3r::GUI::3DScene::Volume to volumes. void _3DScene::_load_print_toolpaths( const Print *print, GLVolumeCollection *volumes, const std::vector &tool_colors, bool use_VBOs) { if (!print->has_skirt() && print->config.brim_width.value == 0) return; const float color[] = { 0.5f, 1.0f, 0.5f, 1.f }; // greenish // number of skirt layers size_t total_layer_count = 0; for (const PrintObject *print_object : print->objects) total_layer_count = std::max(total_layer_count, print_object->total_layer_count()); size_t skirt_height = print->has_infinite_skirt() ? total_layer_count : std::min(print->config.skirt_height.value, total_layer_count); if (skirt_height == 0 && print->config.brim_width.value > 0) skirt_height = 1; // get first skirt_height layers (maybe this should be moved to a PrintObject method?) const PrintObject *object0 = print->objects.front(); std::vector print_zs; print_zs.reserve(skirt_height * 2); for (size_t i = 0; i < std::min(skirt_height, object0->layers.size()); ++ i) print_zs.push_back(float(object0->layers[i]->print_z)); //FIXME why there are support layers? for (size_t i = 0; i < std::min(skirt_height, object0->support_layers.size()); ++ i) print_zs.push_back(float(object0->support_layers[i]->print_z)); sort_remove_duplicates(print_zs); if (print_zs.size() > skirt_height) print_zs.erase(print_zs.begin() + skirt_height, print_zs.end()); volumes->volumes.emplace_back(new GLVolume(color)); GLVolume &volume = *volumes->volumes.back(); for (size_t i = 0; i < skirt_height; ++ i) { volume.print_zs.push_back(print_zs[i]); volume.offsets.push_back(volume.indexed_vertex_array.quad_indices.size()); volume.offsets.push_back(volume.indexed_vertex_array.triangle_indices.size()); if (i == 0) extrusionentity_to_verts(print->brim, print_zs[i], Point(0, 0), volume); extrusionentity_to_verts(print->skirt, print_zs[i], Point(0, 0), volume); } volume.bounding_box = volume.indexed_vertex_array.bounding_box(); volume.indexed_vertex_array.finalize_geometry(use_VBOs); } // Create 3D thick extrusion lines for object forming extrusions. // Adds a new Slic3r::GUI::3DScene::Volume to $self->volumes, // one for perimeters, one for infill and one for supports. void _3DScene::_load_print_object_toolpaths( const PrintObject *print_object, GLVolumeCollection *volumes, const std::vector &tool_colors_str, bool use_VBOs) { std::vector tool_colors = parse_colors(tool_colors_str); struct Ctxt { const Points *shifted_copies; std::vector layers; bool has_perimeters; bool has_infill; bool has_support; const std::vector* tool_colors; // Number of vertices (each vertex is 6x4=24 bytes long) static const size_t alloc_size_max () { return 131072; } // 3.15MB // static const size_t alloc_size_max () { return 65536; } // 1.57MB // static const size_t alloc_size_max () { return 32768; } // 786kB static const size_t alloc_size_reserve() { return alloc_size_max() * 2; } static const float* color_perimeters () { static float color[4] = { 1.0f, 1.0f, 0.0f, 1.f }; return color; } // yellow static const float* color_infill () { static float color[4] = { 1.0f, 0.5f, 0.5f, 1.f }; return color; } // redish static const float* color_support () { static float color[4] = { 0.5f, 1.0f, 0.5f, 1.f }; return color; } // greenish // For cloring by a tool, return a parsed color. bool color_by_tool() const { return tool_colors != nullptr; } size_t number_tools() const { return this->color_by_tool() ? tool_colors->size() / 4 : 0; } const float* color_tool(size_t tool) const { return tool_colors->data() + tool * 4; } int volume_idx(int extruder, int feature) const { return this->color_by_tool() ? std::min(this->number_tools() - 1, std::max(extruder - 1, 0)) : feature; } } ctxt; ctxt.shifted_copies = &print_object->_shifted_copies; // order layers by print_z ctxt.layers.reserve(print_object->layers.size() + print_object->support_layers.size()); for (const Layer *layer : print_object->layers) ctxt.layers.push_back(layer); for (const Layer *layer : print_object->support_layers) ctxt.layers.push_back(layer); std::sort(ctxt.layers.begin(), ctxt.layers.end(), [](const Layer *l1, const Layer *l2) { return l1->print_z < l2->print_z; }); // Maximum size of an allocation block: 32MB / sizeof(float) ctxt.has_perimeters = print_object->state.is_done(posPerimeters); ctxt.has_infill = print_object->state.is_done(posInfill); ctxt.has_support = print_object->state.is_done(posSupportMaterial); ctxt.tool_colors = tool_colors.empty() ? nullptr : &tool_colors; BOOST_LOG_TRIVIAL(debug) << "Loading print object toolpaths in parallel - start"; //FIXME Improve the heuristics for a grain size. size_t grain_size = std::max(ctxt.layers.size() / 16, size_t(1)); tbb::spin_mutex new_volume_mutex; auto new_volume = [volumes, &new_volume_mutex](const float *color) -> GLVolume* { auto *volume = new GLVolume(color); new_volume_mutex.lock(); volumes->volumes.emplace_back(volume); new_volume_mutex.unlock(); return volume; }; const size_t volumes_cnt_initial = volumes->volumes.size(); std::vector volumes_per_thread(ctxt.layers.size()); tbb::parallel_for( tbb::blocked_range(0, ctxt.layers.size(), grain_size), [&ctxt, &new_volume](const tbb::blocked_range& range) { std::vector vols; if (ctxt.color_by_tool()) { for (size_t i = 0; i < ctxt.number_tools(); ++ i) vols.emplace_back(new_volume(ctxt.color_tool(i))); } else vols = { new_volume(ctxt.color_perimeters()), new_volume(ctxt.color_infill()), new_volume(ctxt.color_support()) }; for (GLVolume *vol : vols) vol->indexed_vertex_array.reserve(ctxt.alloc_size_reserve()); for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) { const Layer *layer = ctxt.layers[idx_layer]; for (size_t i = 0; i < vols.size(); ++ i) { GLVolume &vol = *vols[i]; if (vol.print_zs.empty() || vol.print_zs.back() != layer->print_z) { vol.print_zs.push_back(layer->print_z); vol.offsets.push_back(vol.indexed_vertex_array.quad_indices.size()); vol.offsets.push_back(vol.indexed_vertex_array.triangle_indices.size()); } } for (const Point ©: *ctxt.shifted_copies) { for (const LayerRegion *layerm : layer->regions) { if (ctxt.has_perimeters) extrusionentity_to_verts(layerm->perimeters, float(layer->print_z), copy, *vols[ctxt.volume_idx(layerm->region()->config.perimeter_extruder.value, 0)]); if (ctxt.has_infill) { for (const ExtrusionEntity *ee : layerm->fills.entities) { // fill represents infill extrusions of a single island. const auto *fill = dynamic_cast(ee); if (! fill->entities.empty()) extrusionentity_to_verts(*fill, float(layer->print_z), copy, *vols[ctxt.volume_idx( is_solid_infill(fill->entities.front()->role()) ? layerm->region()->config.solid_infill_extruder : layerm->region()->config.infill_extruder, 1)]); } } } if (ctxt.has_support) { const SupportLayer *support_layer = dynamic_cast(layer); if (support_layer) { for (const ExtrusionEntity *extrusion_entity : support_layer->support_fills.entities) extrusionentity_to_verts(extrusion_entity, float(layer->print_z), copy, *vols[ctxt.volume_idx( (extrusion_entity->role() == erSupportMaterial) ? support_layer->object()->config.support_material_extruder : support_layer->object()->config.support_material_interface_extruder, 2)]); } } } for (size_t i = 0; i < vols.size(); ++ i) { GLVolume &vol = *vols[i]; if (vol.indexed_vertex_array.vertices_and_normals_interleaved.size() / 6 > ctxt.alloc_size_max()) { // Store the vertex arrays and restart their containers, vols[i] = new_volume(vol.color); GLVolume &vol_new = *vols[i]; // Assign the large pre-allocated buffers to the new GLVolume. vol_new.indexed_vertex_array = std::move(vol.indexed_vertex_array); // Copy the content back to the old GLVolume. vol.indexed_vertex_array = vol_new.indexed_vertex_array; // Finalize a bounding box of the old GLVolume. vol.bounding_box = vol.indexed_vertex_array.bounding_box(); // Clear the buffers, but keep them pre-allocated. vol_new.indexed_vertex_array.clear(); // Just make sure that clear did not clear the reserved memory. vol_new.indexed_vertex_array.reserve(ctxt.alloc_size_reserve()); } } } for (GLVolume *vol : vols) { vol->bounding_box = vol->indexed_vertex_array.bounding_box(); vol->indexed_vertex_array.shrink_to_fit(); } }); BOOST_LOG_TRIVIAL(debug) << "Loading print object toolpaths in parallel - finalizing results"; // Remove empty volumes from the newly added volumes. volumes->volumes.erase( std::remove_if(volumes->volumes.begin() + volumes_cnt_initial, volumes->volumes.end(), [](const GLVolume *volume) { return volume->empty(); }), volumes->volumes.end()); for (size_t i = volumes_cnt_initial; i < volumes->volumes.size(); ++ i) volumes->volumes[i]->indexed_vertex_array.finalize_geometry(use_VBOs); BOOST_LOG_TRIVIAL(debug) << "Loading print object toolpaths in parallel - end"; } void _3DScene::_load_wipe_tower_toolpaths( const Print *print, GLVolumeCollection *volumes, const std::vector &tool_colors_str, bool use_VBOs) { if (print->m_wipe_tower_tool_changes.empty()) return; std::vector tool_colors = parse_colors(tool_colors_str); struct Ctxt { const Print *print; const std::vector *tool_colors; // Number of vertices (each vertex is 6x4=24 bytes long) static const size_t alloc_size_max () { return 131072; } // 3.15MB static const size_t alloc_size_reserve() { return alloc_size_max() * 2; } static const float* color_support () { static float color[4] = { 0.5f, 1.0f, 0.5f, 1.f }; return color; } // greenish // For cloring by a tool, return a parsed color. bool color_by_tool() const { return tool_colors != nullptr; } size_t number_tools() const { return this->color_by_tool() ? tool_colors->size() / 4 : 0; } const float* color_tool(size_t tool) const { return tool_colors->data() + tool * 4; } int volume_idx(int tool, int feature) const { return this->color_by_tool() ? std::min(this->number_tools() - 1, std::max(tool, 0)) : feature; } const std::vector& tool_change(size_t idx) { return priming.empty() ? ((idx == print->m_wipe_tower_tool_changes.size()) ? final : print->m_wipe_tower_tool_changes[idx]) : ((idx == 0) ? priming : (idx == print->m_wipe_tower_tool_changes.size() + 1) ? final : print->m_wipe_tower_tool_changes[idx - 1]); } std::vector priming; std::vector final; } ctxt; ctxt.print = print; ctxt.tool_colors = tool_colors.empty() ? nullptr : &tool_colors; if (print->m_wipe_tower_priming) ctxt.priming.emplace_back(*print->m_wipe_tower_priming.get()); if (print->m_wipe_tower_final_purge) ctxt.final.emplace_back(*print->m_wipe_tower_final_purge.get()); BOOST_LOG_TRIVIAL(debug) << "Loading wipe tower toolpaths in parallel - start"; //FIXME Improve the heuristics for a grain size. size_t n_items = print->m_wipe_tower_tool_changes.size() + (ctxt.priming.empty() ? 0 : 1); size_t grain_size = std::max(n_items / 128, size_t(1)); tbb::spin_mutex new_volume_mutex; auto new_volume = [volumes, &new_volume_mutex](const float *color) -> GLVolume* { auto *volume = new GLVolume(color); new_volume_mutex.lock(); volumes->volumes.emplace_back(volume); new_volume_mutex.unlock(); return volume; }; const size_t volumes_cnt_initial = volumes->volumes.size(); std::vector volumes_per_thread(n_items); tbb::parallel_for( tbb::blocked_range(0, n_items, grain_size), [&ctxt, &new_volume](const tbb::blocked_range& range) { // Bounding box of this slab of a wipe tower. std::vector vols; if (ctxt.color_by_tool()) { for (size_t i = 0; i < ctxt.number_tools(); ++ i) vols.emplace_back(new_volume(ctxt.color_tool(i))); } else vols = { new_volume(ctxt.color_support()) }; for (GLVolume *volume : vols) volume->indexed_vertex_array.reserve(ctxt.alloc_size_reserve()); for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) { const std::vector &layer = ctxt.tool_change(idx_layer); for (size_t i = 0; i < vols.size(); ++ i) { GLVolume &vol = *vols[i]; if (vol.print_zs.empty() || vol.print_zs.back() != layer.front().print_z) { vol.print_zs.push_back(layer.front().print_z); vol.offsets.push_back(vol.indexed_vertex_array.quad_indices.size()); vol.offsets.push_back(vol.indexed_vertex_array.triangle_indices.size()); } } for (const WipeTower::ToolChangeResult &extrusions : layer) { for (size_t i = 1; i < extrusions.extrusions.size();) { const WipeTower::Extrusion &e = extrusions.extrusions[i]; if (e.width == 0.) { ++ i; continue; } size_t j = i + 1; if (ctxt.color_by_tool()) for (; j < extrusions.extrusions.size() && extrusions.extrusions[j].tool == e.tool && extrusions.extrusions[j].width > 0.f; ++ j) ; else for (; j < extrusions.extrusions.size() && extrusions.extrusions[j].width > 0.f; ++ j) ; size_t n_lines = j - i; Lines lines; std::vector widths; std::vector heights; lines.reserve(n_lines); widths.reserve(n_lines); heights.assign(n_lines, extrusions.layer_height); for (; i < j; ++ i) { const WipeTower::Extrusion &e = extrusions.extrusions[i]; assert(e.width > 0.f); const WipeTower::Extrusion &e_prev = *(&e - 1); lines.emplace_back(Point::new_scale(e_prev.pos.x, e_prev.pos.y), Point::new_scale(e.pos.x, e.pos.y)); widths.emplace_back(e.width); } thick_lines_to_verts(lines, widths, heights, lines.front().a == lines.back().b, extrusions.print_z, *vols[ctxt.volume_idx(e.tool, 0)]); } } } for (size_t i = 0; i < vols.size(); ++ i) { GLVolume &vol = *vols[i]; if (vol.indexed_vertex_array.vertices_and_normals_interleaved.size() / 6 > ctxt.alloc_size_max()) { // Store the vertex arrays and restart their containers, vols[i] = new_volume(vol.color); GLVolume &vol_new = *vols[i]; // Assign the large pre-allocated buffers to the new GLVolume. vol_new.indexed_vertex_array = std::move(vol.indexed_vertex_array); // Copy the content back to the old GLVolume. vol.indexed_vertex_array = vol_new.indexed_vertex_array; // Finalize a bounding box of the old GLVolume. vol.bounding_box = vol.indexed_vertex_array.bounding_box(); // Clear the buffers, but keep them pre-allocated. vol_new.indexed_vertex_array.clear(); // Just make sure that clear did not clear the reserved memory. vol_new.indexed_vertex_array.reserve(ctxt.alloc_size_reserve()); } } for (GLVolume *vol : vols) { vol->bounding_box = vol->indexed_vertex_array.bounding_box(); vol->indexed_vertex_array.shrink_to_fit(); } }); BOOST_LOG_TRIVIAL(debug) << "Loading wipe tower toolpaths in parallel - finalizing results"; // Remove empty volumes from the newly added volumes. volumes->volumes.erase( std::remove_if(volumes->volumes.begin() + volumes_cnt_initial, volumes->volumes.end(), [](const GLVolume *volume) { return volume->empty(); }), volumes->volumes.end()); for (size_t i = volumes_cnt_initial; i < volumes->volumes.size(); ++ i) volumes->volumes[i]->indexed_vertex_array.finalize_geometry(use_VBOs); BOOST_LOG_TRIVIAL(debug) << "Loading wipe tower toolpaths in parallel - end"; } //############################################################################################################ #if ENRICO_GCODE_PREVIEW void _3DScene::_load_gcode_extrusion_paths(const Print& print, GLVolumeCollection& volumes, bool use_VBOs) { // helper functions to extract data from path in dependence of the selected extrusion view type struct PathHelper { static float path_filter(GCodeAnalyzer::PreviewData::Extrusion::EViewType type, const ExtrusionPath& path) { switch (type) { case GCodeAnalyzer::PreviewData::Extrusion::FeatureType: return (float)path.role(); case GCodeAnalyzer::PreviewData::Extrusion::Height: return path.height; case GCodeAnalyzer::PreviewData::Extrusion::Width: return path.width; case GCodeAnalyzer::PreviewData::Extrusion::Feedrate: return path.feedrate; } return 0.0f; } static const GCodeAnalyzer::PreviewData::Color& path_color(const GCodeAnalyzer::PreviewData& data, const ExtrusionPath& path) { switch (data.extrusion.view_type) { case GCodeAnalyzer::PreviewData::Extrusion::FeatureType: return data.get_extrusion_role_color(path.role()); case GCodeAnalyzer::PreviewData::Extrusion::Height: return data.get_extrusion_height_color(path.height); case GCodeAnalyzer::PreviewData::Extrusion::Width: return data.get_extrusion_width_color(path.width); case GCodeAnalyzer::PreviewData::Extrusion::Feedrate: return data.get_extrusion_feedrate_color(path.feedrate); } return GCodeAnalyzer::PreviewData::Color::Dummy; } }; Point origin(0, 0); for (const GCodeAnalyzer::PreviewData::Extrusion::Layer& layer : print.gcode_preview.extrusion.layers) { float filter = FLT_MAX; GLVolume* volume = nullptr; for (const ExtrusionPath& path : layer.paths) { if (print.gcode_preview.extrusion.is_role_flag_set(path.role())) { float path_filter = PathHelper::path_filter(print.gcode_preview.extrusion.view_type, path); if (filter == path_filter) { // adds path to current volume if (volume != nullptr) extrusionentity_to_verts(path, layer.z, origin, *volume); } else { if (volume != nullptr) { // finalizes current volume volume->bounding_box = volume->indexed_vertex_array.bounding_box(); volume->indexed_vertex_array.finalize_geometry(use_VBOs); volume = nullptr; } // adds new volume volumes.volumes.emplace_back(new GLVolume(PathHelper::path_color(print.gcode_preview, path).rgba)); volume = volumes.volumes.back(); if (volume != nullptr) { volume->print_zs.push_back(layer.z); volume->offsets.push_back(volume->indexed_vertex_array.quad_indices.size()); volume->offsets.push_back(volume->indexed_vertex_array.triangle_indices.size()); // adds path to current volume extrusionentity_to_verts(path, layer.z, origin, *volume); } // updates current filter filter = path_filter; } } } if (volume != nullptr) { // finalizes last volume on layer volume->bounding_box = volume->indexed_vertex_array.bounding_box(); volume->indexed_vertex_array.finalize_geometry(use_VBOs); } } } void _3DScene::_load_gcode_travel_paths(const Print& print, GLVolumeCollection& volumes, bool use_VBOs) { struct TypeMatch { GCodeAnalyzer::PreviewData::Travel::EType type; TypeMatch(GCodeAnalyzer::PreviewData::Travel::EType type) : type(type) { } bool operator () (const GCodeAnalyzer::PreviewData::Travel::Polyline& p) const { return p.type == type; } }; if (print.gcode_preview.travel.is_visible) { Point origin(0, 0); for (unsigned int i = (unsigned int)GCodeAnalyzer::PreviewData::Travel::Move; i < (unsigned int)GCodeAnalyzer::PreviewData::Travel::Num_Types; ++i) { GCodeAnalyzer::PreviewData::Travel::EType type = (GCodeAnalyzer::PreviewData::Travel::EType)i; if (std::count_if(print.gcode_preview.travel.polylines.begin(), print.gcode_preview.travel.polylines.end(), TypeMatch(type)) > 0) { volumes.volumes.emplace_back(new GLVolume(print.gcode_preview.travel.type_colors[i].rgba)); GLVolume* volume = volumes.volumes.back(); if (volume != nullptr) { for (const GCodeAnalyzer::PreviewData::Travel::Polyline& polyline : print.gcode_preview.travel.polylines) { if (polyline.type == type) { const BoundingBox3& bbox = polyline.polyline.bounding_box(); coordf_t print_z = unscale(bbox.max.z); volume->print_zs.push_back(print_z); volume->offsets.push_back(volume->indexed_vertex_array.quad_indices.size()); volume->offsets.push_back(volume->indexed_vertex_array.triangle_indices.size()); // adds polyline to volume polyline3_to_verts(polyline.polyline, print.gcode_preview.travel.width, print.gcode_preview.travel.height, origin, *volume); } } // finalizes volume volume->bounding_box = volume->indexed_vertex_array.bounding_box(); volume->indexed_vertex_array.finalize_geometry(use_VBOs); } } } } } void _3DScene::_load_gcode_retractions(const Print& print, GLVolumeCollection& volumes, bool use_VBOs) { if (print.gcode_preview.retraction.is_visible) { } } #endif // ENRICO_GCODE_PREVIEW //############################################################################################################ }