#include "Point.hpp" #include "Line.hpp" #include "MultiPoint.hpp" #include "Int128.hpp" #include namespace Slic3r { void Point::rotate(double angle) { double cur_x = (double)(*this)(0); double cur_y = (double)(*this)(1); double s = ::sin(angle); double c = ::cos(angle); (*this)(0) = (coord_t)round(c * cur_x - s * cur_y); (*this)(1) = (coord_t)round(c * cur_y + s * cur_x); } void Point::rotate(double angle, const Point ¢er) { double cur_x = (double)(*this)(0); double cur_y = (double)(*this)(1); double s = ::sin(angle); double c = ::cos(angle); double dx = cur_x - (double)center(0); double dy = cur_y - (double)center(1); (*this)(0) = (coord_t)round( (double)center(0) + c * dx - s * dy ); (*this)(1) = (coord_t)round( (double)center(1) + c * dy + s * dx ); } int Point::nearest_point_index(const Points &points) const { PointConstPtrs p; p.reserve(points.size()); for (Points::const_iterator it = points.begin(); it != points.end(); ++it) p.push_back(&*it); return this->nearest_point_index(p); } int Point::nearest_point_index(const PointConstPtrs &points) const { int idx = -1; double distance = -1; // double because long is limited to 2147483647 on some platforms and it's not enough for (PointConstPtrs::const_iterator it = points.begin(); it != points.end(); ++it) { /* If the X distance of the candidate is > than the total distance of the best previous candidate, we know we don't want it */ double d = sqr((*this)(0) - (*it)->x()); if (distance != -1 && d > distance) continue; /* If the Y distance of the candidate is > than the total distance of the best previous candidate, we know we don't want it */ d += sqr((*this)(1) - (*it)->y()); if (distance != -1 && d > distance) continue; idx = it - points.begin(); distance = d; if (distance < EPSILON) break; } return idx; } int Point::nearest_point_index(const PointPtrs &points) const { PointConstPtrs p; p.reserve(points.size()); for (PointPtrs::const_iterator it = points.begin(); it != points.end(); ++it) p.push_back(*it); return this->nearest_point_index(p); } bool Point::nearest_point(const Points &points, Point* point) const { int idx = this->nearest_point_index(points); if (idx == -1) return false; *point = points.at(idx); return true; } /* Three points are a counter-clockwise turn if ccw > 0, clockwise if * ccw < 0, and collinear if ccw = 0 because ccw is a determinant that * gives the signed area of the triangle formed by p1, p2 and this point. * In other words it is the 2D cross product of p1-p2 and p1-this, i.e. * z-component of their 3D cross product. * We return double because it must be big enough to hold 2*max(|coordinate|)^2 */ double Point::ccw(const Point &p1, const Point &p2) const { return (double)(p2(0) - p1(0))*(double)((*this)(1) - p1(1)) - (double)(p2(1) - p1(1))*(double)((*this)(0) - p1(0)); } double Point::ccw(const Line &line) const { return this->ccw(line.a, line.b); } // returns the CCW angle between this-p1 and this-p2 // i.e. this assumes a CCW rotation from p1 to p2 around this double Point::ccw_angle(const Point &p1, const Point &p2) const { double angle = atan2(p1(0) - (*this)(0), p1(1) - (*this)(1)) - atan2(p2(0) - (*this)(0), p2(1) - (*this)(1)); // we only want to return only positive angles return angle <= 0 ? angle + 2*PI : angle; } Point Point::projection_onto(const MultiPoint &poly) const { Point running_projection = poly.first_point(); double running_min = (running_projection - *this).cast().norm(); Lines lines = poly.lines(); for (Lines::const_iterator line = lines.begin(); line != lines.end(); ++line) { Point point_temp = this->projection_onto(*line); if ((point_temp - *this).cast().norm() < running_min) { running_projection = point_temp; running_min = (running_projection - *this).cast().norm(); } } return running_projection; } Point Point::projection_onto(const Line &line) const { if (line.a == line.b) return line.a; /* (Ported from VisiLibity by Karl J. Obermeyer) The projection of point_temp onto the line determined by line_segment_temp can be represented as an affine combination expressed in the form projection of Point = theta*line_segment_temp.first + (1.0-theta)*line_segment_temp.second. If theta is outside the interval [0,1], then one of the Line_Segment's endpoints must be closest to calling Point. */ double lx = (double)(line.b(0) - line.a(0)); double ly = (double)(line.b(1) - line.a(1)); double theta = ( (double)(line.b(0) - (*this)(0))*lx + (double)(line.b(1)- (*this)(1))*ly ) / ( sqr(lx) + sqr(ly) ); if (0.0 <= theta && theta <= 1.0) return (theta * line.a.cast() + (1.0-theta) * line.b.cast()).cast(); // Else pick closest endpoint. return ((line.a - *this).cast().squaredNorm() < (line.b - *this).cast().squaredNorm()) ? line.a : line.b; } std::ostream& operator<<(std::ostream &stm, const Pointf &pointf) { return stm << pointf(0) << "," << pointf(1); } namespace int128 { int orient(const Vec2crd &p1, const Vec2crd &p2, const Vec2crd &p3) { Slic3r::Vector v1(p2 - p1); Slic3r::Vector v2(p3 - p1); return Int128::sign_determinant_2x2_filtered(v1(0), v1(1), v2(0), v2(1)); } int cross(const Vec2crd &v1, const Vec2crd &v2) { return Int128::sign_determinant_2x2_filtered(v1(0), v1(1), v2(0), v2(1)); } } }