#include "ModelArrange.hpp" #include "Geometry.hpp" #include "SVG.hpp" #include "MTUtils.hpp" #include #include #include #include #include #include #include #include #include namespace libnest2d { #if !defined(_MSC_VER) && defined(__SIZEOF_INT128__) && !defined(__APPLE__) using LargeInt = __int128; #else using LargeInt = boost::multiprecision::int128_t; template<> struct _NumTag { using Type = ScalarTag; }; #endif template struct _NumTag> { using Type = RationalTag; }; namespace nfp { template struct NfpImpl { NfpResult operator()(const S &sh, const S &other) { return nfpConvexOnly>(sh, other); } }; } // namespace nfp } // namespace libnest2d namespace Slic3r { namespace arr { using namespace libnest2d; namespace clppr = ClipperLib; using Item = _Item; using Box = _Box; using Circle = _Circle; using Segment = _Segment; using MultiPolygon = TMultiShape; using PackGroup = _PackGroup; // Only for debugging. Prints the model object vertices on stdout. //std::string toString(const Model& model, bool holes = true) { // std::stringstream ss; // ss << "{\n"; // for(auto objptr : model.objects) { // if(!objptr) continue; // auto rmesh = objptr->raw_mesh(); // for(auto objinst : objptr->instances) { // if(!objinst) continue; // Slic3r::TriangleMesh tmpmesh = rmesh; // // CHECK_ME -> Is the following correct ? // tmpmesh.scale(objinst->get_scaling_factor()); // objinst->transform_mesh(&tmpmesh); // ExPolygons expolys = tmpmesh.horizontal_projection(); // for(auto& expoly_complex : expolys) { // ExPolygons tmp = expoly_complex.simplify(scaled(1.)); // if(tmp.empty()) continue; // ExPolygon expoly = tmp.front(); // expoly.contour.make_clockwise(); // for(auto& h : expoly.holes) h.make_counter_clockwise(); // ss << "\t{\n"; // ss << "\t\t{\n"; // for(auto v : expoly.contour.points) ss << "\t\t\t{" // << v(0) << ", " // << v(1) << "},\n"; // { // auto v = expoly.contour.points.front(); // ss << "\t\t\t{" << v(0) << ", " << v(1) << "},\n"; // } // ss << "\t\t},\n"; // // Holes: // ss << "\t\t{\n"; // if(holes) for(auto h : expoly.holes) { // ss << "\t\t\t{\n"; // for(auto v : h.points) ss << "\t\t\t\t{" // << v(0) << ", " // << v(1) << "},\n"; // { // auto v = h.points.front(); // ss << "\t\t\t\t{" << v(0) << ", " << v(1) << "},\n"; // } // ss << "\t\t\t},\n"; // } // ss << "\t\t},\n"; // ss << "\t},\n"; // } // } // } // ss << "}\n"; // return ss.str(); //} // Debugging: Save model to svg file. //void toSVG(SVG& svg, const Model& model) { // for(auto objptr : model.objects) { // if(!objptr) continue; // auto rmesh = objptr->raw_mesh(); // for(auto objinst : objptr->instances) { // if(!objinst) continue; // Slic3r::TriangleMesh tmpmesh = rmesh; // tmpmesh.scale(objinst->get_scaling_factor()); // objinst->transform_mesh(&tmpmesh); // ExPolygons expolys = tmpmesh.horizontal_projection(); // svg.draw(expolys); // } // } //} namespace bgi = boost::geometry::index; using SpatElement = std::pair; using SpatIndex = bgi::rtree< SpatElement, bgi::rstar<16, 4> >; using ItemGroup = std::vector>; const double BIG_ITEM_TRESHOLD = 0.02; Box boundingBox(const Box& pilebb, const Box& ibb ) { auto& pminc = pilebb.minCorner(); auto& pmaxc = pilebb.maxCorner(); auto& iminc = ibb.minCorner(); auto& imaxc = ibb.maxCorner(); PointImpl minc, maxc; setX(minc, std::min(getX(pminc), getX(iminc))); setY(minc, std::min(getY(pminc), getY(iminc))); setX(maxc, std::max(getX(pmaxc), getX(imaxc))); setY(maxc, std::max(getY(pmaxc), getY(imaxc))); return Box(minc, maxc); } // This is "the" object function which is evaluated many times for each vertex // (decimated with the accuracy parameter) of each object. Therefore it is // upmost crucial for this function to be as efficient as it possibly can be but // at the same time, it has to provide reasonable results. std::tuple objfunc(const PointImpl& bincenter, const MultiPolygon& merged_pile, const Box& pilebb, const ItemGroup& items, const Item &item, double bin_area, double norm, // A norming factor for physical dimensions // a spatial index to quickly get neighbors of the candidate item const SpatIndex& spatindex, const SpatIndex& smalls_spatindex, const ItemGroup& remaining ) { // We will treat big items (compared to the print bed) differently auto isBig = [bin_area](double a) { return a/bin_area > BIG_ITEM_TRESHOLD ; }; // Candidate item bounding box auto ibb = sl::boundingBox(item.transformedShape()); // Calculate the full bounding box of the pile with the candidate item auto fullbb = boundingBox(pilebb, ibb); // The bounding box of the big items (they will accumulate in the center // of the pile Box bigbb; if(spatindex.empty()) bigbb = fullbb; else { auto boostbb = spatindex.bounds(); boost::geometry::convert(boostbb, bigbb); } // Will hold the resulting score double score = 0; if(isBig(item.area()) || spatindex.empty()) { // This branch is for the bigger items.. auto minc = ibb.minCorner(); // bottom left corner auto maxc = ibb.maxCorner(); // top right corner // top left and bottom right corners auto top_left = PointImpl{getX(minc), getY(maxc)}; auto bottom_right = PointImpl{getX(maxc), getY(minc)}; // Now the distance of the gravity center will be calculated to the // five anchor points and the smallest will be chosen. std::array dists; auto cc = fullbb.center(); // The gravity center dists[0] = pl::distance(minc, cc); dists[1] = pl::distance(maxc, cc); dists[2] = pl::distance(ibb.center(), cc); dists[3] = pl::distance(top_left, cc); dists[4] = pl::distance(bottom_right, cc); // The smalles distance from the arranged pile center: auto dist = *(std::min_element(dists.begin(), dists.end())) / norm; auto bindist = pl::distance(ibb.center(), bincenter) / norm; dist = 0.8*dist + 0.2*bindist; // Density is the pack density: how big is the arranged pile double density = 0; if(remaining.empty()) { auto mp = merged_pile; mp.emplace_back(item.transformedShape()); auto chull = sl::convexHull(mp); placers::EdgeCache ec(chull); double circ = ec.circumference() / norm; double bcirc = 2.0*(fullbb.width() + fullbb.height()) / norm; score = 0.5*circ + 0.5*bcirc; } else { // Prepare a variable for the alignment score. // This will indicate: how well is the candidate item aligned with // its neighbors. We will check the alignment with all neighbors and // return the score for the best alignment. So it is enough for the // candidate to be aligned with only one item. auto alignment_score = 1.0; density = std::sqrt((fullbb.width() / norm )* (fullbb.height() / norm)); auto querybb = item.boundingBox(); // Query the spatial index for the neighbors std::vector result; result.reserve(spatindex.size()); if(isBig(item.area())) { spatindex.query(bgi::intersects(querybb), std::back_inserter(result)); } else { smalls_spatindex.query(bgi::intersects(querybb), std::back_inserter(result)); } for(auto& e : result) { // now get the score for the best alignment auto idx = e.second; Item& p = items[idx]; auto parea = p.area(); if(std::abs(1.0 - parea/item.area()) < 1e-6) { auto bb = boundingBox(p.boundingBox(), ibb); auto bbarea = bb.area(); auto ascore = 1.0 - (item.area() + parea)/bbarea; if(ascore < alignment_score) alignment_score = ascore; } } // The final mix of the score is the balance between the distance // from the full pile center, the pack density and the // alignment with the neighbors if(result.empty()) score = 0.5 * dist + 0.5 * density; else score = 0.40 * dist + 0.40 * density + 0.2 * alignment_score; } } else { // Here there are the small items that should be placed around the // already processed bigger items. // No need to play around with the anchor points, the center will be // just fine for small items score = pl::distance(ibb.center(), bigbb.center()) / norm; } return std::make_tuple(score, fullbb); } // Fill in the placer algorithm configuration with values carefully chosen for // Slic3r. template void fillConfig(PConf& pcfg) { // Align the arranged pile into the center of the bin pcfg.alignment = PConf::Alignment::CENTER; // Start placing the items from the center of the print bed pcfg.starting_point = PConf::Alignment::CENTER; // TODO cannot use rotations until multiple objects of same geometry can // handle different rotations // arranger.useMinimumBoundigBoxRotation(); pcfg.rotations = { 0.0 }; // The accuracy of optimization. // Goes from 0.0 to 1.0 and scales performance as well pcfg.accuracy = 0.65f; pcfg.parallel = true; } // Type trait for an arranger class for different bin types (box, circle, // polygon, etc...) template class AutoArranger {}; // A class encapsulating the libnest2d Nester class and extending it with other // management and spatial index structures for acceleration. template class _ArrBase { public: // Useful type shortcuts... using Placer = typename placers::_NofitPolyPlacer; using Selector = selections::_FirstFitSelection; using Packer = Nester; using PConfig = typename Packer::PlacementConfig; using Distance = TCoord; protected: Packer m_pck; PConfig m_pconf; // Placement configuration double m_bin_area; SpatIndex m_rtree; // spatial index for the normal (bigger) objects SpatIndex m_smallsrtree; // spatial index for only the smaller items double m_norm; // A coefficient to scale distances MultiPolygon m_merged_pile; // The already merged pile (vector of items) Box m_pilebb; // The bounding box of the merged pile. ItemGroup m_remaining; // Remaining items (m_items at the beginning) ItemGroup m_items; // The items to be packed public: _ArrBase(const TBin& bin, Distance dist, std::function progressind, std::function stopcond): m_pck(bin, dist), m_bin_area(sl::area(bin)), m_norm(std::sqrt(sl::area(bin))) { fillConfig(m_pconf); // Set up a callback that is called just before arranging starts // This functionality is provided by the Nester class (m_pack). m_pconf.before_packing = [this](const MultiPolygon& merged_pile, // merged pile const ItemGroup& items, // packed items const ItemGroup& remaining) // future items to be packed { m_items = items; m_merged_pile = merged_pile; m_remaining = remaining; m_pilebb = sl::boundingBox(merged_pile); m_rtree.clear(); m_smallsrtree.clear(); // We will treat big items (compared to the print bed) differently auto isBig = [this](double a) { return a/m_bin_area > BIG_ITEM_TRESHOLD ; }; for(unsigned idx = 0; idx < items.size(); ++idx) { Item& itm = items[idx]; if(isBig(itm.area())) m_rtree.insert({itm.boundingBox(), idx}); m_smallsrtree.insert({itm.boundingBox(), idx}); } }; m_pck.progressIndicator(progressind); m_pck.stopCondition(stopcond); } template inline PackGroup operator()(Args&&...args) { m_rtree.clear(); return m_pck.execute(std::forward(args)...); } inline void preload(const PackGroup& pg) { m_pconf.alignment = PConfig::Alignment::DONT_ALIGN; m_pconf.object_function = nullptr; // drop the special objectfunction m_pck.preload(pg); // Build the rtree for queries to work for(const ItemGroup& grp : pg) for(unsigned idx = 0; idx < grp.size(); ++idx) { Item& itm = grp[idx]; m_rtree.insert({itm.boundingBox(), idx}); } m_pck.configure(m_pconf); } bool is_colliding(const Item& item) { if(m_rtree.empty()) return false; std::vector result; m_rtree.query(bgi::intersects(item.boundingBox()), std::back_inserter(result)); return !result.empty(); } }; // Arranger specialization for a Box shaped bin. template<> class AutoArranger: public _ArrBase { public: AutoArranger(const Box& bin, Distance dist, std::function progressind = [](unsigned){}, std::function stopcond = [](){return false;}): _ArrBase(bin, dist, progressind, stopcond) { // Here we set up the actual object function that calls the common // object function for all bin shapes than does an additional inside // check for the arranged pile. m_pconf.object_function = [this, bin] (const Item &item) { auto result = objfunc(bin.center(), m_merged_pile, m_pilebb, m_items, item, m_bin_area, m_norm, m_rtree, m_smallsrtree, m_remaining); double score = std::get<0>(result); auto& fullbb = std::get<1>(result); double miss = Placer::overfit(fullbb, bin); miss = miss > 0? miss : 0; score += miss*miss; return score; }; m_pck.configure(m_pconf); } }; inline Circle to_lnCircle(const CircleBed& circ) { return Circle({circ.center()(0), circ.center()(1)}, circ.radius()); } // Arranger specialization for circle shaped bin. template<> class AutoArranger: public _ArrBase { public: AutoArranger(const Circle& bin, Distance dist, std::function progressind = [](unsigned){}, std::function stopcond = [](){return false;}): _ArrBase(bin, dist, progressind, stopcond) { // As with the box, only the inside check is different. m_pconf.object_function = [this, &bin] (const Item &item) { auto result = objfunc(bin.center(), m_merged_pile, m_pilebb, m_items, item, m_bin_area, m_norm, m_rtree, m_smallsrtree, m_remaining); double score = std::get<0>(result); auto isBig = [this](const Item& itm) { return itm.area()/m_bin_area > BIG_ITEM_TRESHOLD ; }; if(isBig(item)) { auto mp = m_merged_pile; mp.push_back(item.transformedShape()); auto chull = sl::convexHull(mp); double miss = Placer::overfit(chull, bin); if(miss < 0) miss = 0; score += miss*miss; } return score; }; m_pck.configure(m_pconf); } }; // Arranger specialization for a generalized polygon. // Warning: this is unfinished business. It may or may not work. template<> class AutoArranger: public _ArrBase { public: AutoArranger(const PolygonImpl& bin, Distance dist, std::function progressind = [](unsigned){}, std::function stopcond = [](){return false;}): _ArrBase(bin, dist, progressind, stopcond) { m_pconf.object_function = [this, &bin] (const Item &item) { auto binbb = sl::boundingBox(bin); auto result = objfunc(binbb.center(), m_merged_pile, m_pilebb, m_items, item, m_bin_area, m_norm, m_rtree, m_smallsrtree, m_remaining); double score = std::get<0>(result); return score; }; m_pck.configure(m_pconf); } }; // Specialization with no bin. In this case the arranger should just arrange // all objects into a minimum sized pile but it is not limited by a bin. A // consequence is that only one pile should be created. template<> class AutoArranger: public _ArrBase { public: AutoArranger(bool, Distance dist, std::function progressind, std::function stopcond): _ArrBase(Box(0, 0), dist, progressind, stopcond) { this->m_pconf.object_function = [this] (const Item &item) { auto result = objfunc({0, 0}, m_merged_pile, m_pilebb, m_items, item, 0, m_norm, m_rtree, m_smallsrtree, m_remaining); return std::get<0>(result); }; this->m_pck.configure(m_pconf); } }; // Get the type of bed geometry from a simple vector of points. BedShapeHint bedShape(const Polyline &bed) { BedShapeHint ret; auto x = [](const Point& p) { return p(X); }; auto y = [](const Point& p) { return p(Y); }; auto width = [x](const BoundingBox& box) { return x(box.max) - x(box.min); }; auto height = [y](const BoundingBox& box) { return y(box.max) - y(box.min); }; auto area = [&width, &height](const BoundingBox& box) { double w = width(box); double h = height(box); return w * h; }; auto poly_area = [](Polyline p) { Polygon pp; pp.points.reserve(p.points.size() + 1); pp.points = std::move(p.points); pp.points.emplace_back(pp.points.front()); return std::abs(pp.area()); }; auto distance_to = [x, y](const Point& p1, const Point& p2) { double dx = x(p2) - x(p1); double dy = y(p2) - y(p1); return std::sqrt(dx*dx + dy*dy); }; auto bb = bed.bounding_box(); auto isCircle = [bb, distance_to](const Polyline& polygon) { auto center = bb.center(); std::vector vertex_distances; double avg_dist = 0; for (auto pt: polygon.points) { double distance = distance_to(center, pt); vertex_distances.push_back(distance); avg_dist += distance; } avg_dist /= vertex_distances.size(); CircleBed ret(center, avg_dist); for(auto el : vertex_distances) { if (std::abs(el - avg_dist) > 10 * SCALED_EPSILON) { ret = CircleBed(); break; } } return ret; }; auto parea = poly_area(bed); if( (1.0 - parea/area(bb)) < 1e-3 ) { ret.type = BedShapeType::BOX; ret.shape.box = bb; } else if(auto c = isCircle(bed)) { ret.type = BedShapeType::CIRCLE; ret.shape.circ = c; } else { ret.type = BedShapeType::IRREGULAR; ret.shape.polygon = bed; } // Determine the bed shape by hand return ret; } //static const SLIC3R_CONSTEXPR double SIMPLIFY_TOLERANCE_MM = 0.1; //template //PackGroup _arrange(std::vector & items, // const BinT & bin, // coord_t minobjd, // std::function prind, // std::function stopfn) //{ // AutoArranger arranger{bin, minobjd, prind, stopfn}; // return arranger(items.begin(), items.end()); //} template PackGroup _arrange(std::vector & shapes, const PackGroup & preshapes, const BinT & bin, coord_t minobjd, std::function prind, std::function stopfn) { // auto binbb = sl::boundingBox(bin); AutoArranger arranger{bin, minobjd, prind, stopfn}; if(!preshapes.front().empty()) { // If there is something on the plate arranger.preload(preshapes); // Try to put the first item to the center, as the arranger will not // do this for us. // auto shptrit = minstances.begin(); // for(auto shit = shapes.begin(); shit != shapes.end(); ++shit, ++shptrit) // { // // Try to place items to the center // Item& itm = *shit; // auto ibb = itm.boundingBox(); // auto d = binbb.center() - ibb.center(); // itm.translate(d); // if(!arranger.is_colliding(itm)) { // arranger.preload({{itm}}); // auto offset = itm.translation(); // Radians rot = itm.rotation(); // ModelInstance *minst = *shptrit; // Vec3d foffset(unscaled(offset.X), // unscaled(offset.Y), // minst->get_offset()(Z)); // // write the transformation data into the model instance // minst->set_rotation(Z, rot); // minst->set_offset(foffset); // shit = shapes.erase(shit); // shptrit = minstances.erase(shptrit); // break; // } // } } return arranger(shapes.begin(), shapes.end()); } inline SLIC3R_CONSTEXPR coord_t stride_padding(coord_t w) { return w + w / 5; } //// The final client function to arrange the Model. A progress indicator and //// a stop predicate can be also be passed to control the process. bool arrange(Arrangeables & arrangables, const Arrangeables & excludes, coord_t min_obj_distance, const BedShapeHint & bedhint, std::function progressind, std::function stopcondition) { bool ret = true; namespace clppr = ClipperLib; std::vector items, excluded_items; items.reserve(arrangables.size()); coord_t binwidth = 0; PackGroup preshapes{ {} }; // pack group with one initial bin for preloading auto process_arrangeable = [](const Arrangeable * arrangeable, std::vector & outp, std::function applyfn) { assert(arrangeable); auto arrangeitem = arrangeable->get_arrange_polygon(); Polygon & p = std::get<0>(arrangeitem); const Vec2crd &offs = std::get<1>(arrangeitem); double rotation = std::get<2>(arrangeitem); if (p.is_counter_clockwise()) p.reverse(); clppr::Polygon clpath(Slic3rMultiPoint_to_ClipperPath(p)); auto firstp = clpath.Contour.front(); clpath.Contour.emplace_back(firstp); outp.emplace_back(applyfn, std::move(clpath)); outp.front().rotation(rotation); outp.front().translation({offs.x(), offs.y()}); }; for (Arrangeable *arrangeable : arrangables) { process_arrangeable( arrangeable, items, // callback called by arrange to apply the result on the arrangeable [arrangeable, &binwidth](const Item &itm, unsigned binidx) { clppr::cInt stride = binidx * stride_padding(binwidth); clppr::IntPoint offs = itm.translation(); arrangeable->apply_arrange_result({unscaled(offs.X + stride), unscaled(offs.Y)}, itm.rotation()); }); } for (const Arrangeable * fixed: excludes) process_arrangeable(fixed, excluded_items, nullptr); for(Item& excl : excluded_items) preshapes.front().emplace_back(excl); // Integer ceiling the min distance from the bed perimeters coord_t md = min_obj_distance - SCALED_EPSILON; md = (md % 2) ? md / 2 + 1 : md / 2; auto& cfn = stopcondition; switch (bedhint.type) { case BedShapeType::BOX: { // Create the arranger for the box shaped bed BoundingBox bbb = bedhint.shape.box; bbb.min -= Point{md, md}, bbb.max += Point{md, md}; Box binbb{{bbb.min(X), bbb.min(Y)}, {bbb.max(X), bbb.max(Y)}}; binwidth = coord_t(binbb.width()); _arrange(items, preshapes, binbb, min_obj_distance, progressind, cfn); break; } case BedShapeType::CIRCLE: { auto c = bedhint.shape.circ; auto cc = to_lnCircle(c); binwidth = scaled(c.radius()); _arrange(items, preshapes, cc, min_obj_distance, progressind, cfn); break; } case BedShapeType::IRREGULAR: { auto ctour = Slic3rMultiPoint_to_ClipperPath(bedhint.shape.polygon); auto irrbed = sl::create(std::move(ctour)); BoundingBox polybb(bedhint.shape.polygon); binwidth = (polybb.max(X) - polybb.min(X)); _arrange(items, preshapes, irrbed, min_obj_distance, progressind, cfn); break; } case BedShapeType::WHO_KNOWS: { _arrange(items, preshapes, false, min_obj_distance, progressind, cfn); break; } }; if(stopcondition()) return false; return ret; } /// Arrange, without the fixed items (excludes) bool arrange(Arrangeables & inp, coord_t min_d, const BedShapeHint & bedhint, std::function prfn, std::function stopfn) { return arrange(inp, {}, min_d, bedhint, prfn, stopfn); } } // namespace arr } // namespace Slic3r