#ifndef slic3r_SupportLayer_hpp_ #define slic3r_SupportLayer_hpp_ #include #include // for Slic3r::deque #include "../libslic3r.h" #include "ClipperUtils.hpp" #include "Polygon.hpp" namespace Slic3r::FFFSupport { // Support layer type to be used by SupportGeneratorLayer. This type carries a much more detailed information // about the support layer type than the final support layers stored in a PrintObject. enum class SupporLayerType { Unknown = 0, // Ratft base layer, to be printed with the support material. RaftBase, // Raft interface layer, to be printed with the support interface material. RaftInterface, // Bottom contact layer placed over a top surface of an object. To be printed with a support interface material. BottomContact, // Dense interface layer, to be printed with the support interface material. // This layer is separated from an object by an BottomContact layer. BottomInterface, // Sparse base support layer, to be printed with a support material. Base, // Dense interface layer, to be printed with the support interface material. // This layer is separated from an object with TopContact layer. TopInterface, // Top contact layer directly supporting an overhang. To be printed with a support interface material. TopContact, // Some undecided type yet. It will turn into Base first, then it may turn into BottomInterface or TopInterface. Intermediate, }; // A support layer type used internally by the SupportMaterial class. This class carries a much more detailed // information about the support layer than the layers stored in the PrintObject, mainly // the SupportGeneratorLayer is aware of the bridging flow and the interface gaps between the object and the support. class SupportGeneratorLayer { public: void reset() { *this = SupportGeneratorLayer(); } bool operator==(const SupportGeneratorLayer &layer2) const { return print_z == layer2.print_z && height == layer2.height && bridging == layer2.bridging; } // Order the layers by lexicographically by an increasing print_z and a decreasing layer height. bool operator<(const SupportGeneratorLayer &layer2) const { if (print_z < layer2.print_z) { return true; } else if (print_z == layer2.print_z) { if (height > layer2.height) return true; else if (height == layer2.height) { // Bridging layers first. return bridging && ! layer2.bridging; } else return false; } else return false; } void merge(SupportGeneratorLayer &&rhs) { // The union_() does not support move semantic yet, but maybe one day it will. this->polygons = union_(this->polygons, std::move(rhs.polygons)); auto merge = [](std::unique_ptr &dst, std::unique_ptr &src) { if (! dst || dst->empty()) dst = std::move(src); else if (src && ! src->empty()) *dst = union_(*dst, std::move(*src)); }; merge(this->contact_polygons, rhs.contact_polygons); merge(this->overhang_polygons, rhs.overhang_polygons); merge(this->enforcer_polygons, rhs.enforcer_polygons); rhs.reset(); } // For the bridging flow, bottom_print_z will be above bottom_z to account for the vertical separation. // For the non-bridging flow, bottom_print_z will be equal to bottom_z. coordf_t bottom_print_z() const { return print_z - height; } // To sort the extremes of top / bottom interface layers. coordf_t extreme_z() const { return (this->layer_type == SupporLayerType::TopContact) ? this->bottom_z : this->print_z; } SupporLayerType layer_type { SupporLayerType::Unknown }; // Z used for printing, in unscaled coordinates. coordf_t print_z { 0 }; // Bottom Z of this layer. For soluble layers, bottom_z + height = print_z, // otherwise bottom_z + gap + height = print_z. coordf_t bottom_z { 0 }; // Layer height in unscaled coordinates. coordf_t height { 0 }; // Index of a PrintObject layer_id supported by this layer. This will be set for top contact layers. // If this is not a contact layer, it will be set to size_t(-1). size_t idx_object_layer_above { size_t(-1) }; // Index of a PrintObject layer_id, which supports this layer. This will be set for bottom contact layers. // If this is not a contact layer, it will be set to size_t(-1). size_t idx_object_layer_below { size_t(-1) }; // Use a bridging flow when printing this support layer. bool bridging { false }; // Polygons to be filled by the support pattern. Polygons polygons; // Currently for the contact layers only. std::unique_ptr contact_polygons; std::unique_ptr overhang_polygons; // Enforcers need to be propagated independently in case the "support on build plate only" option is enabled. std::unique_ptr enforcer_polygons; }; // Layers are allocated and owned by a deque. Once a layer is allocated, it is maintained // up to the end of a generate() method. The layer storage may be replaced by an allocator class in the future, // which would allocate layers by multiple chunks. class SupportGeneratorLayerStorage { public: SupportGeneratorLayer& allocate_unguarded(SupporLayerType layer_type) { m_storage.emplace_back(); m_storage.back().layer_type = layer_type; return m_storage.back(); } SupportGeneratorLayer& allocate(SupporLayerType layer_type) { m_mutex.lock(); m_storage.emplace_back(); SupportGeneratorLayer *layer_new = &m_storage.back(); m_mutex.unlock(); layer_new->layer_type = layer_type; return *layer_new; } private: template using Allocator = tbb::scalable_allocator; Slic3r::deque> m_storage; tbb::spin_mutex m_mutex; }; using SupportGeneratorLayersPtr = std::vector; } // namespace Slic3r #endif /* slic3r_SupportLayer_hpp_ */