package Slic3r::GUI::PreviewCanvas; use strict; use warnings; use Wx::Event qw(EVT_PAINT EVT_SIZE EVT_ERASE_BACKGROUND EVT_IDLE EVT_MOUSEWHEEL EVT_MOUSE_EVENTS); # must load OpenGL *before* Wx::GLCanvas use OpenGL qw(:glconstants :glfunctions :glufunctions); use base qw(Wx::GLCanvas Class::Accessor); use Math::Trig qw(asin); use List::Util qw(reduce min max first); use Slic3r::Geometry qw(X Y Z MIN MAX triangle_normal normalize deg2rad tan); use Wx::GLCanvas qw(:all); __PACKAGE__->mk_accessors( qw(quat dirty init mview_init object_bounding_box object_shift volumes initpos sphi stheta cutting_plane_z ) ); use constant TRACKBALLSIZE => 0.8; use constant TURNTABLE_MODE => 1; use constant SELECTED_COLOR => [0,1,0,1]; use constant COLORS => [ [1,1,1], [1,0.5,0.5], [0.5,1,0.5], [0.5,0.5,1] ]; sub new { my ($class, $parent, $object) = @_; my $self = $class->SUPER::new($parent); $self->quat((0, 0, 0, 1)); $self->sphi(45); $self->stheta(-45); $self->load_object($object); EVT_PAINT($self, sub { my $dc = Wx::PaintDC->new($self); $self->Render($dc); }); EVT_SIZE($self, sub { $self->dirty(1) }); EVT_IDLE($self, sub { return unless $self->dirty; return if !$self->IsShownOnScreen; $self->Resize( $self->GetSizeWH ); $self->Refresh; }); EVT_MOUSEWHEEL($self, sub { my ($self, $e) = @_; my $zoom = ($e->GetWheelRotation() / $e->GetWheelDelta() / 10); $zoom = $zoom > 0 ? (1.0 + $zoom) : 1 / (1.0 - $zoom); my @pos3d = $self->mouse_to_3d($e->GetX(), $e->GetY()); $self->ZoomTo($zoom, $pos3d[0], $pos3d[1]); $self->Refresh; }); EVT_MOUSE_EVENTS($self, sub { my ($self, $e) = @_; if ($e->Dragging() && $e->LeftIsDown()) { $self->handle_rotation($e); } elsif ($e->Dragging() && $e->RightIsDown()) { $self->handle_translation($e); } elsif ($e->LeftUp() || $e->RightUp()) { $self->initpos(undef); } else { $e->Skip(); } }); return $self; } sub load_object { my ($self, $object) = @_; my $bb = $object->raw_mesh->bounding_box; my $center = $bb->center; $self->object_shift(Slic3r::Pointf3->new(-$center->x, -$center->y, -$bb->z_min)); #,, $bb->translate(@{ $self->object_shift }); $self->object_bounding_box($bb); # group mesh(es) by material my @materials = (); $self->volumes([]); # sort volumes: non-modifiers first my @volumes = sort { ($a->modifier // 0) <=> ($b->modifier // 0) } @{$object->volumes}; foreach my $volume (@volumes) { my $mesh = $volume->mesh->clone; $mesh->translate(@{ $self->object_shift }); my $material_id = $volume->material_id // '_'; my $color_idx = first { $materials[$_] eq $material_id } 0..$#materials; if (!defined $color_idx) { push @materials, $material_id; $color_idx = $#materials; } my $color = [ @{COLORS->[ $color_idx % scalar(@{&COLORS}) ]} ]; push @$color, $volume->modifier ? 0.5 : 1; push @{$self->volumes}, my $v = { color => $color, }; { my $vertices = $mesh->vertices; my @verts = map @{ $vertices->[$_] }, map @$_, @{$mesh->facets}; $v->{verts} = OpenGL::Array->new_list(GL_FLOAT, @verts); } { my @norms = map { @$_, @$_, @$_ } @{$mesh->normals}; $v->{norms} = OpenGL::Array->new_list(GL_FLOAT, @norms); } } } sub SetCuttingPlane { my ($self, $z) = @_; $self->cutting_plane_z($z); } # Given an axis and angle, compute quaternion. sub axis_to_quat { my ($ax, $phi) = @_; my $lena = sqrt(reduce { $a + $b } (map { $_ * $_ } @$ax)); my @q = map { $_ * (1 / $lena) } @$ax; @q = map { $_ * sin($phi / 2.0) } @q; $q[$#q + 1] = cos($phi / 2.0); return @q; } # Project a point on the virtual trackball. # If it is inside the sphere, map it to the sphere, if it outside map it # to a hyperbola. sub project_to_sphere { my ($r, $x, $y) = @_; my $d = sqrt($x * $x + $y * $y); if ($d < $r * 0.70710678118654752440) { # Inside sphere return sqrt($r * $r - $d * $d); } else { # On hyperbola my $t = $r / 1.41421356237309504880; return $t * $t / $d; } } sub cross { my ($v1, $v2) = @_; return (@$v1[1] * @$v2[2] - @$v1[2] * @$v2[1], @$v1[2] * @$v2[0] - @$v1[0] * @$v2[2], @$v1[0] * @$v2[1] - @$v1[1] * @$v2[0]); } # Simulate a track-ball. Project the points onto the virtual trackball, # then figure out the axis of rotation, which is the cross product of # P1 P2 and O P1 (O is the center of the ball, 0,0,0) Note: This is a # deformed trackball-- is a trackball in the center, but is deformed # into a hyperbolic sheet of rotation away from the center. # It is assumed that the arguments to this routine are in the range # (-1.0 ... 1.0). sub trackball { my ($p1x, $p1y, $p2x, $p2y) = @_; if ($p1x == $p2x && $p1y == $p2y) { # zero rotation return (0.0, 0.0, 0.0, 1.0); } # First, figure out z-coordinates for projection of P1 and P2 to # deformed sphere my @p1 = ($p1x, $p1y, project_to_sphere(TRACKBALLSIZE, $p1x, $p1y)); my @p2 = ($p2x, $p2y, project_to_sphere(TRACKBALLSIZE, $p2x, $p2y)); # axis of rotation (cross product of P1 and P2) my @a = cross(\@p2, \@p1); # Figure out how much to rotate around that axis. my @d = map { $_ * $_ } (map { $p1[$_] - $p2[$_] } 0 .. $#p1); my $t = sqrt(reduce { $a + $b } @d) / (2.0 * TRACKBALLSIZE); # Avoid problems with out-of-control values... $t = 1.0 if ($t > 1.0); $t = -1.0 if ($t < -1.0); my $phi = 2.0 * asin($t); return axis_to_quat(\@a, $phi); } # Build a rotation matrix, given a quaternion rotation. sub quat_to_rotmatrix { my ($q) = @_; my @m = (); $m[0] = 1.0 - 2.0 * (@$q[1] * @$q[1] + @$q[2] * @$q[2]); $m[1] = 2.0 * (@$q[0] * @$q[1] - @$q[2] * @$q[3]); $m[2] = 2.0 * (@$q[2] * @$q[0] + @$q[1] * @$q[3]); $m[3] = 0.0; $m[4] = 2.0 * (@$q[0] * @$q[1] + @$q[2] * @$q[3]); $m[5] = 1.0 - 2.0 * (@$q[2] * @$q[2] + @$q[0] * @$q[0]); $m[6] = 2.0 * (@$q[1] * @$q[2] - @$q[0] * @$q[3]); $m[7] = 0.0; $m[8] = 2.0 * (@$q[2] * @$q[0] - @$q[1] * @$q[3]); $m[9] = 2.0 * (@$q[1] * @$q[2] + @$q[0] * @$q[3]); $m[10] = 1.0 - 2.0 * (@$q[1] * @$q[1] + @$q[0] * @$q[0]); $m[11] = 0.0; $m[12] = 0.0; $m[13] = 0.0; $m[14] = 0.0; $m[15] = 1.0; return @m; } sub mulquats { my ($q1, $rq) = @_; return (@$q1[3] * @$rq[0] + @$q1[0] * @$rq[3] + @$q1[1] * @$rq[2] - @$q1[2] * @$rq[1], @$q1[3] * @$rq[1] + @$q1[1] * @$rq[3] + @$q1[2] * @$rq[0] - @$q1[0] * @$rq[2], @$q1[3] * @$rq[2] + @$q1[2] * @$rq[3] + @$q1[0] * @$rq[1] - @$q1[1] * @$rq[0], @$q1[3] * @$rq[3] - @$q1[0] * @$rq[0] - @$q1[1] * @$rq[1] - @$q1[2] * @$rq[2]) } sub handle_rotation { my ($self, $e) = @_; if (not defined $self->initpos) { $self->initpos($e->GetPosition()); } else { my $orig = $self->initpos; my $new = $e->GetPosition(); my $size = $self->GetClientSize(); if (TURNTABLE_MODE) { $self->sphi($self->sphi + ($new->x - $orig->x)*TRACKBALLSIZE); $self->stheta($self->stheta + ($new->y - $orig->y)*TRACKBALLSIZE); #- } else { my @quat = trackball($orig->x / ($size->width / 2) - 1, 1 - $orig->y / ($size->height / 2), #/ $new->x / ($size->width / 2) - 1, 1 - $new->y / ($size->height / 2), #/ ); $self->quat(mulquats($self->quat, \@quat)); } $self->initpos($new); $self->Refresh; } } sub handle_translation { my ($self, $e) = @_; if (not defined $self->initpos) { $self->initpos($e->GetPosition()); } else { my $new = $e->GetPosition(); my $orig = $self->initpos; my @orig3d = $self->mouse_to_3d($orig->x, $orig->y); #)() my @new3d = $self->mouse_to_3d($new->x, $new->y); #)() glTranslatef($new3d[0] - $orig3d[0], $new3d[1] - $orig3d[1], 0); $self->initpos($new); $self->Refresh; } } sub mouse_to_3d { my ($self, $x, $y) = @_; my @viewport = glGetIntegerv_p(GL_VIEWPORT); # 4 items my @mview = glGetDoublev_p(GL_MODELVIEW_MATRIX); # 16 items my @proj = glGetDoublev_p(GL_PROJECTION_MATRIX); # 16 items my @projected = gluUnProject_p($x, $viewport[3] - $y, 1.0, @mview, @proj, @viewport); return @projected; } sub ZoomTo { my ($self, $factor, $tox, $toy) = @_; glTranslatef($tox, $toy, 0); glMatrixMode(GL_MODELVIEW); $self->Zoom($factor); glTranslatef(-$tox, -$toy, 0); } sub Zoom { my ($self, $factor) = @_; glScalef($factor, $factor, 1); } sub GetContext { my ($self) = @_; if (Wx::wxVERSION >= 2.009) { return $self->{context} ||= Wx::GLContext->new($self); } else { return $self->SUPER::GetContext; } } sub SetCurrent { my ($self, $context) = @_; if (Wx::wxVERSION >= 2.009) { return $self->SUPER::SetCurrent($context); } else { return $self->SUPER::SetCurrent; } } sub ResetModelView { my ($self, $factor) = @_; glMatrixMode(GL_MODELVIEW); glLoadIdentity(); my $win_size = $self->GetClientSize(); my $ratio = $factor * min($win_size->width, $win_size->height) / max(@{ $self->object_bounding_box->size }); glScalef($ratio, $ratio, 1); } sub Resize { my ($self, $x, $y) = @_; return unless $self->GetContext; $self->dirty(0); $self->SetCurrent($self->GetContext); glViewport(0, 0, $x, $y); glMatrixMode(GL_PROJECTION); glLoadIdentity(); glOrtho(-$x/2, $x/2, -$y/2, $y/2, 0.5, 2 * max(@{ $self->object_bounding_box->size })); glMatrixMode(GL_MODELVIEW); unless ($self->mview_init) { $self->mview_init(1); $self->ResetModelView(0.9); } } sub InitGL { my $self = shift; return if $self->init; return unless $self->GetContext; $self->init(1); glEnable(GL_NORMALIZE); glEnable(GL_LIGHTING); glDepthFunc(GL_LESS); glEnable(GL_DEPTH_TEST); # Settings for our light. my @LightPos = (0, 0, 2, 1.0); my @LightAmbient = (0.1, 0.1, 0.1, 1.0); my @LightDiffuse = (0.7, 0.5, 0.5, 1.0); my @LightSpecular = (0.1, 0.1, 0.1, 0.1); # Enables Smooth Color Shading; try GL_FLAT for (lack of) fun. glShadeModel(GL_SMOOTH); # Set up a light, turn it on. glLightfv_p(GL_LIGHT1, GL_POSITION, @LightPos); glLightfv_p(GL_LIGHT1, GL_AMBIENT, @LightAmbient); glLightfv_p(GL_LIGHT1, GL_DIFFUSE, @LightDiffuse); glLightfv_p(GL_LIGHT1, GL_SPECULAR, @LightSpecular); glEnable(GL_LIGHT1); # A handy trick -- have surface material mirror the color. glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE); glEnable(GL_COLOR_MATERIAL); } sub Render { my ($self, $dc) = @_; return unless $self->GetContext; $self->SetCurrent($self->GetContext); $self->InitGL; glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glPushMatrix(); my $object_size = $self->object_bounding_box->size; glTranslatef(0, 0, -max(@$object_size[0..1])); my @rotmat = quat_to_rotmatrix($self->quat); glMultMatrixd_p(@rotmat[0..15]); glRotatef($self->stheta, 1, 0, 0); glRotatef($self->sphi, 0, 0, 1); my $center = $self->object_bounding_box->center; glTranslatef(-$center->x, -$center->y, -$center->z); #,, $self->draw_mesh; my $z0 = 0; # draw axes { my $axis_len = 2 * max(@{ $object_size }); glLineWidth(2); glBegin(GL_LINES); # draw line for x axis glColor3f(1, 0, 0); glVertex3f(0, 0, $z0); glVertex3f($axis_len, 0, $z0); # draw line for y axis glColor3f(0, 1, 0); glVertex3f(0, 0, $z0); glVertex3f(0, $axis_len, $z0); # draw line for Z axis glColor3f(0, 0, 1); glVertex3f(0, 0, $z0); glVertex3f(0, 0, $z0+$axis_len); glEnd(); # draw ground my $ground_z = $z0-0.02; glDisable(GL_CULL_FACE); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glBegin(GL_QUADS); glColor4f(1, 1, 1, 0.5); glVertex3f(-$axis_len, -$axis_len, $ground_z); glVertex3f($axis_len, -$axis_len, $ground_z); glVertex3f($axis_len, $axis_len, $ground_z); glVertex3f(-$axis_len, $axis_len, $ground_z); glEnd(); glEnable(GL_CULL_FACE); glDisable(GL_BLEND); # draw grid glBegin(GL_LINES); glColor3f(1, 1, 1); for (my $x = -$axis_len; $x <= $axis_len; $x += 10) { glVertex3f($x, -$axis_len, $ground_z); glVertex3f($x, $axis_len, $ground_z); } for (my $y = -$axis_len; $y <= $axis_len; $y += 10) { glVertex3f(-$axis_len, $y, $ground_z); glVertex3f($axis_len, $y, $ground_z); } glEnd(); # draw cutting plane if (defined $self->cutting_plane_z) { my $plane_z = $z0 + $self->cutting_plane_z; glDisable(GL_CULL_FACE); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glBegin(GL_QUADS); glColor4f(1, 0.8, 0.8, 0.5); glVertex3f(-$axis_len, -$axis_len, $plane_z); glVertex3f($axis_len, -$axis_len, $plane_z); glVertex3f($axis_len, $axis_len, $plane_z); glVertex3f(-$axis_len, $axis_len, $plane_z); glEnd(); glEnable(GL_CULL_FACE); glDisable(GL_BLEND); } } glPopMatrix(); glFlush(); $self->SwapBuffers(); } sub draw_mesh { my $self = shift; glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnable(GL_CULL_FACE); glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_NORMAL_ARRAY); foreach my $volume (@{$self->volumes}) { glVertexPointer_p(3, $volume->{verts}); glCullFace(GL_BACK); glNormalPointer_p($volume->{norms}); if ($volume->{selected}) { glColor4f(@{ &SELECTED_COLOR }); } else { glColor4f(@{ $volume->{color} }); } glDrawArrays(GL_TRIANGLES, 0, $volume->{verts}->elements / 3); } glDisableClientState(GL_NORMAL_ARRAY); glDisableClientState(GL_VERTEX_ARRAY); } 1;