#include "Flow.hpp" #include "I18N.hpp" #include "Print.hpp" #include #include #include // Overlap factor of perimeter lines. Currently no overlap. // #define HAS_PERIMETER_LINE_OVERLAP #ifdef HAS_PERIMETER_LINE_OVERLAP #define PERIMETER_LINE_OVERLAP_FACTOR 1.0 #endif // Mark string for localization and translate. #define L(s) Slic3r::I18N::translate(s) namespace Slic3r { FlowErrorNegativeSpacing::FlowErrorNegativeSpacing() : FlowError("Flow::spacing() produced negative spacing. Did you set some extrusion width too small?") {} FlowErrorNegativeFlow::FlowErrorNegativeFlow() : FlowError("Flow::mm3_per_mm() produced negative flow. Did you set some extrusion width too small?") {} // This static method returns a sane extrusion width default. float Flow::auto_extrusion_width(FlowRole role, float nozzle_diameter) { switch (role) { case frSupportMaterial: case frSupportMaterialInterface: case frTopSolidInfill: return nozzle_diameter; default: case frExternalPerimeter: case frPerimeter: case frSolidInfill: case frInfill: return 1.125f * nozzle_diameter; } } // Used by the Flow::extrusion_width() funtion to provide hints to the user on default extrusion width values, // and to provide reasonable values to the PlaceholderParser. static inline FlowRole opt_key_to_flow_role(const std::string &opt_key) { if (opt_key == "perimeter_extrusion_width" || // or all the defaults: opt_key == "extrusion_width" || opt_key == "first_layer_extrusion_width") return frPerimeter; else if (opt_key == "external_perimeter_extrusion_width") return frExternalPerimeter; else if (opt_key == "infill_extrusion_width") return frInfill; else if (opt_key == "solid_infill_extrusion_width") return frSolidInfill; else if (opt_key == "top_infill_extrusion_width") return frTopSolidInfill; else if (opt_key == "support_material_extrusion_width") return frSupportMaterial; else throw Slic3r::RuntimeError("opt_key_to_flow_role: invalid argument"); }; static inline void throw_on_missing_variable(const std::string &opt_key, const char *dependent_opt_key) { throw FlowErrorMissingVariable((boost::format(L("Cannot calculate extrusion width for %1%: Variable \"%2%\" not accessible.")) % opt_key % dependent_opt_key).str()); } // Used to provide hints to the user on default extrusion width values, and to provide reasonable values to the PlaceholderParser. double Flow::extrusion_width(const std::string& opt_key, const ConfigOptionFloatOrPercent* opt, const ConfigOptionResolver& config, const unsigned int first_printing_extruder) { assert(opt != nullptr); bool first_layer = boost::starts_with(opt_key, "first_layer_"); #if 0 // This is the logic used for skit / brim, but not for the rest of the 1st layer. if (opt->value == 0. && first_layer) { // The "first_layer_extrusion_width" was set to zero, try a substitute. opt = config.option("perimeter_extrusion_width"); if (opt == nullptr) throw_on_missing_variable(opt_key, "perimeter_extrusion_width"); } #endif if (opt->value == 0.) { // The role specific extrusion width value was set to zero, try the role non-specific extrusion width. opt = config.option("extrusion_width"); if (opt == nullptr) throw_on_missing_variable(opt_key, "extrusion_width"); // Use the "layer_height" instead of "first_layer_height". first_layer = false; } if (opt->percent) { auto opt_key_layer_height = first_layer ? "first_layer_height" : "layer_height"; auto opt_layer_height = config.option(opt_key_layer_height); if (opt_layer_height == nullptr) throw_on_missing_variable(opt_key, opt_key_layer_height); double layer_height = opt_layer_height->getFloat(); if (first_layer && static_cast(opt_layer_height)->percent) { // first_layer_height depends on layer_height. opt_layer_height = config.option("layer_height"); if (opt_layer_height == nullptr) throw_on_missing_variable(opt_key, "layer_height"); layer_height *= 0.01 * opt_layer_height->getFloat(); } return opt->get_abs_value(layer_height); } if (opt->value == 0.) { // If user left option to 0, calculate a sane default width. auto opt_nozzle_diameters = config.option("nozzle_diameter"); if (opt_nozzle_diameters == nullptr) throw_on_missing_variable(opt_key, "nozzle_diameter"); return auto_extrusion_width(opt_key_to_flow_role(opt_key), float(opt_nozzle_diameters->get_at(first_printing_extruder))); } return opt->value; } // Used to provide hints to the user on default extrusion width values, and to provide reasonable values to the PlaceholderParser. double Flow::extrusion_width(const std::string& opt_key, const ConfigOptionResolver &config, const unsigned int first_printing_extruder) { return extrusion_width(opt_key, config.option(opt_key), config, first_printing_extruder); } // This constructor builds a Flow object from an extrusion width config setting // and other context properties. Flow Flow::new_from_config_width(FlowRole role, const ConfigOptionFloatOrPercent &width, float nozzle_diameter, float height) { if (height <= 0) throw Slic3r::InvalidArgument("Invalid flow height supplied to new_from_config_width()"); float w; if (! width.percent && width.value == 0.) { // If user left option to 0, calculate a sane default width. w = auto_extrusion_width(role, nozzle_diameter); } else { // If user set a manual value, use it. w = float(width.get_abs_value(height)); } return Flow(w, height, nozzle_diameter, false); } // This constructor builds a Flow object from a given centerline spacing. Flow Flow::new_from_spacing(float spacing, float nozzle_diameter, float height) { if (height <= 0) throw Slic3r::InvalidArgument("Invalid flow height supplied to new_from_spacing()"); // Calculate width from spacing. // For normal extrusons, extrusion width is wider than the spacing due to the rounding and squishing of the extrusions. float width = float( #ifdef HAS_PERIMETER_LINE_OVERLAP (spacing + PERIMETER_LINE_OVERLAP_FACTOR * height * (1. - 0.25 * PI)); #else (spacing + height * (1. - 0.25 * PI))); #endif return Flow(width, height, nozzle_diameter); } // This method returns the centerline spacing between two adjacent extrusions // having the same extrusion width (and other properties). float Flow::spacing() const { #ifdef HAS_PERIMETER_LINE_OVERLAP if (m_bridge) return m_width + BRIDGE_EXTRA_SPACING; // rectangle with semicircles at the ends float min_flow_spacing = m_width - m_height * (1. - 0.25 * PI); float res = m_width - PERIMETER_LINE_OVERLAP_FACTOR * (m_width - min_flow_spacing); #else float res = float(m_bridge ? (m_width + BRIDGE_EXTRA_SPACING) : (m_width - m_height * (1. - 0.25 * PI))); #endif // assert(res > 0.f); if (res <= 0.f) throw FlowErrorNegativeSpacing(); return res; } // This method returns the centerline spacing between an extrusion using this // flow and another one using another flow. // this->spacing(other) shall return the same value as other.spacing(*this) float Flow::spacing(const Flow &other) const { assert(m_height == other.m_height); assert(m_bridge == other.m_bridge); float res = float(m_bridge ? 0.5 * m_width + 0.5 * other.m_width + BRIDGE_EXTRA_SPACING : 0.5 * this->spacing() + 0.5 * other.spacing()); // assert(res > 0.f); if (res <= 0.f) throw FlowErrorNegativeSpacing(); return res; } // This method returns extrusion volume per head move unit. double Flow::mm3_per_mm() const { float res = m_bridge ? // Area of a circle with dmr of this->width. float((m_width * m_width) * 0.25 * PI) : // Rectangle with semicircles at the ends. ~ h (w - 0.215 h) float(m_height * (m_width - m_height * (1. - 0.25 * PI))); //assert(res > 0.); if (res <= 0.) throw FlowErrorNegativeFlow(); return res; } Flow support_material_flow(const PrintObject *object, float layer_height) { return Flow::new_from_config_width( frSupportMaterial, // The width parameter accepted by new_from_config_width is of type ConfigOptionFloatOrPercent, the Flow class takes care of the percent to value substitution. (object->config().support_material_extrusion_width.value > 0) ? object->config().support_material_extrusion_width : object->config().extrusion_width, // if object->config().support_material_extruder == 0 (which means to not trigger tool change, but use the current extruder instead), get_at will return the 0th component. float(object->print()->config().nozzle_diameter.get_at(object->config().support_material_extruder-1)), (layer_height > 0.f) ? layer_height : float(object->config().layer_height.value)); } Flow support_material_1st_layer_flow(const PrintObject *object, float layer_height) { const auto &width = (object->print()->config().first_layer_extrusion_width.value > 0) ? object->print()->config().first_layer_extrusion_width : object->config().support_material_extrusion_width; return Flow::new_from_config_width( frSupportMaterial, // The width parameter accepted by new_from_config_width is of type ConfigOptionFloatOrPercent, the Flow class takes care of the percent to value substitution. (width.value > 0) ? width : object->config().extrusion_width, float(object->print()->config().nozzle_diameter.get_at(object->config().support_material_extruder-1)), (layer_height > 0.f) ? layer_height : float(object->config().first_layer_height.get_abs_value(object->config().layer_height.value))); } Flow support_material_interface_flow(const PrintObject *object, float layer_height) { return Flow::new_from_config_width( frSupportMaterialInterface, // The width parameter accepted by new_from_config_width is of type ConfigOptionFloatOrPercent, the Flow class takes care of the percent to value substitution. (object->config().support_material_extrusion_width > 0) ? object->config().support_material_extrusion_width : object->config().extrusion_width, // if object->config().support_material_interface_extruder == 0 (which means to not trigger tool change, but use the current extruder instead), get_at will return the 0th component. float(object->print()->config().nozzle_diameter.get_at(object->config().support_material_interface_extruder-1)), (layer_height > 0.f) ? layer_height : float(object->config().layer_height.value)); } }