#include "Layer.hpp" #include #include "ClipperUtils.hpp" #include "Print.hpp" #include "Fill/Fill.hpp" #include "ShortestPath.hpp" #include "SVG.hpp" #include "BoundingBox.hpp" #include namespace Slic3r { Layer::~Layer() { this->lower_layer = this->upper_layer = nullptr; for (LayerRegion *region : m_regions) delete region; m_regions.clear(); } // Test whether whether there are any slices assigned to this layer. bool Layer::empty() const { for (const LayerRegion *layerm : m_regions) if (layerm != nullptr && ! layerm->slices().empty()) // Non empty layer. return false; return true; } LayerRegion* Layer::add_region(const PrintRegion *print_region) { m_regions.emplace_back(new LayerRegion(this, print_region)); return m_regions.back(); } // merge all regions' slices to get islands void Layer::make_slices() { ExPolygons slices; if (m_regions.size() == 1) { // optimization: if we only have one region, take its slices slices = to_expolygons(m_regions.front()->slices().surfaces); } else { Polygons slices_p; for (LayerRegion *layerm : m_regions) polygons_append(slices_p, to_polygons(layerm->slices().surfaces)); slices = union_safety_offset_ex(slices_p); } this->lslices.clear(); this->lslices.reserve(slices.size()); // prepare ordering points Points ordering_points; ordering_points.reserve(slices.size()); for (const ExPolygon &ex : slices) ordering_points.push_back(ex.contour.first_point()); // sort slices std::vector order = chain_points(ordering_points); // populate slices vector for (size_t i : order) this->lslices.emplace_back(std::move(slices[i])); } // used by Layer::build_up_down_graph() [[nodiscard]] static ClipperLib_Z::Paths expolygons_to_zpaths(const ExPolygons &expolygons, coord_t isrc) { size_t num_paths = 0; for (const ExPolygon &expolygon : expolygons) num_paths += expolygon.num_contours(); ClipperLib_Z::Paths out; out.reserve(num_paths); for (const ExPolygon &expolygon : expolygons) { for (size_t icontour = 0; icontour < expolygon.num_contours(); ++ icontour) { const Polygon &contour = expolygon.contour_or_hole(icontour); out.emplace_back(); ClipperLib_Z::Path &path = out.back(); path.reserve(contour.size()); for (const Point &p : contour.points) path.push_back({ p.x(), p.y(), isrc }); } ++ isrc; } return out; } // used by Layer::build_up_down_graph() static void connect_layer_slices( Layer &below, Layer &above, const ClipperLib_Z::PolyTree &polytree, const std::vector> &intersections, const coord_t offset_below, const coord_t offset_above #ifndef NDEBUG , const coord_t offset_end #endif // NDEBUG ) { class Visitor { public: Visitor(const std::vector> &intersections, Layer &below, Layer &above, const coord_t offset_below, const coord_t offset_above #ifndef NDEBUG , const coord_t offset_end #endif // NDEBUG ) : m_intersections(intersections), m_below(below), m_above(above), m_offset_below(offset_below), m_offset_above(offset_above) #ifndef NDEBUG , m_offset_end(offset_end) #endif // NDEBUG {} void visit(const ClipperLib_Z::PolyNode &polynode) { #ifndef NDEBUG auto assert_intersection_valid = [this](int i, int j) { assert(i != j); if (i > j) std::swap(i, j); assert(i >= m_offset_below); assert(i < m_offset_above); assert(j >= m_offset_above); assert(j < m_offset_end); return true; }; #endif // NDEBUG if (polynode.Contour.size() >= 3) { // If there is an intersection point, it should indicate which contours (one from layer below, the other from layer above) intersect. // Otherwise the contour is fully inside another contour. int32_t i = 0, j = 0; for (int icontour = 0; icontour <= polynode.ChildCount(); ++ icontour) { const bool first = icontour == 0; const ClipperLib_Z::Path &contour = first ? polynode.Contour : polynode.Childs[icontour - 1]->Contour; if (contour.size() >= 3) { if (first) { i = contour.front().z(); j = i; if (i < 0) { std::tie(i, j) = m_intersections[-i - 1]; assert(assert_intersection_valid(i, j)); goto end; } } for (const ClipperLib_Z::IntPoint& pt : contour) { j = pt.z(); if (j < 0) { std::tie(i, j) = m_intersections[-j - 1]; assert(assert_intersection_valid(i, j)); goto end; } else if (i != j) goto end; } } } end: bool found = false; if (i == j) { // The contour is completely inside another contour. Point pt(polynode.Contour.front().x(), polynode.Contour.front().y()); if (i < m_offset_above) { // Index of an island below. Look-it up in the island above. assert(i >= m_offset_below); i -= m_offset_below; for (int l = int(m_above.lslices_ex.size()) - 1; l >= 0; -- l) { LayerSlice &lslice = m_above.lslices_ex[l]; if (lslice.bbox.contains(pt) && m_above.lslices[l].contains(pt)) { found = true; j = l; assert(i >= 0 && i < m_below.lslices_ex.size()); assert(j >= 0 && j < m_above.lslices_ex.size()); break; } } } else { // Index of an island above. Look-it up in the island below. assert(j < m_offset_end); j -= m_offset_above; for (int l = int(m_below.lslices_ex.size()) - 1; l >= 0; -- l) { LayerSlice &lslice = m_below.lslices_ex[l]; if (lslice.bbox.contains(pt) && m_below.lslices[l].contains(pt)) { found = true; i = l; assert(i >= 0 && i < m_below.lslices_ex.size()); assert(j >= 0 && j < m_above.lslices_ex.size()); break; } } } } else { assert(assert_intersection_valid(i, j)); if (i > j) std::swap(i, j); i -= m_offset_below; j -= m_offset_above; assert(i >= 0 && i < m_below.lslices_ex.size()); assert(j >= 0 && j < m_above.lslices_ex.size()); found = true; } if (found) { // Subtract area of holes from the area of outer contour. double area = ClipperLib_Z::Area(polynode.Contour); for (int icontour = 0; icontour < polynode.ChildCount(); ++ icontour) area -= ClipperLib_Z::Area(polynode.Childs[icontour]->Contour); // Store the links and area into the contours. LayerSlice::Links &links_below = m_below.lslices_ex[i].overlaps_above; LayerSlice::Links &links_above = m_above.lslices_ex[j].overlaps_below; LayerSlice::Link key{ j }; auto it_below = std::lower_bound(links_below.begin(), links_below.end(), key, [](auto &l, auto &r){ return l.slice_idx < r.slice_idx; }); if (it_below != links_below.end() && it_below->slice_idx == j) { it_below->area += area; } else { auto it_above = std::lower_bound(links_above.begin(), links_above.end(), key, [](auto &l, auto &r){ return l.slice_idx < r.slice_idx; }); if (it_above != links_above.end() && it_above->slice_idx == i) { it_above->area += area; } else { // Insert into one of the two vectors. bool take_below = false; if (links_below.size() < LayerSlice::LinksStaticSize) take_below = false; else if (links_above.size() >= LayerSlice::LinksStaticSize) { size_t shift_below = links_below.end() - it_below; size_t shift_above = links_above.end() - it_above; take_below = shift_below < shift_above; } if (take_below) links_below.insert(it_below, { j, float(area) }); else links_above.insert(it_above, { i, float(area) }); } } } } for (int i = 0; i < polynode.ChildCount(); ++ i) for (int j = 0; j < polynode.Childs[i]->ChildCount(); ++ j) this->visit(*polynode.Childs[i]->Childs[j]); } private: const std::vector> &m_intersections; Layer &m_below; Layer &m_above; const coord_t m_offset_below; const coord_t m_offset_above; #ifndef NDEBUG const coord_t m_offset_end; #endif // NDEBUG } visitor(intersections, below, above, offset_below, offset_above #ifndef NDEBUG , offset_end #endif // NDEBUG ); for (int i = 0; i < polytree.ChildCount(); ++ i) visitor.visit(*polytree.Childs[i]); #ifndef NDEBUG // Verify that only one directional link is stored: either from bottom slice up or from upper slice down. for (int32_t islice = 0; islice < below.lslices_ex.size(); ++ islice) { LayerSlice::Links &links1 = below.lslices_ex[islice].overlaps_above; for (LayerSlice::Link &link1 : links1) { LayerSlice::Links &links2 = above.lslices_ex[link1.slice_idx].overlaps_below; assert(! std::binary_search(links2.begin(), links2.end(), link1, [](auto &l, auto &r){ return l.slice_idx < r.slice_idx; })); } } for (int32_t islice = 0; islice < above.lslices_ex.size(); ++ islice) { LayerSlice::Links &links1 = above.lslices_ex[islice].overlaps_below; for (LayerSlice::Link &link1 : links1) { LayerSlice::Links &links2 = below.lslices_ex[link1.slice_idx].overlaps_above; assert(! std::binary_search(links2.begin(), links2.end(), link1, [](auto &l, auto &r){ return l.slice_idx < r.slice_idx; })); } } #endif // NDEBUG // Scatter the links, but don't sort them yet. for (int32_t islice = 0; islice < below.lslices_ex.size(); ++ islice) for (LayerSlice::Link &link : below.lslices_ex[islice].overlaps_above) above.lslices_ex[link.slice_idx].overlaps_below.push_back({ islice, link.area }); for (int32_t islice = 0; islice < above.lslices_ex.size(); ++ islice) for (LayerSlice::Link &link : above.lslices_ex[islice].overlaps_below) below.lslices_ex[link.slice_idx].overlaps_above.push_back({ islice, link.area }); // Sort the links. for (LayerSlice &lslice : below.lslices_ex) std::sort(lslice.overlaps_above.begin(), lslice.overlaps_above.end(), [](const LayerSlice::Link &l, const LayerSlice::Link &r){ return l.slice_idx < r.slice_idx; }); for (LayerSlice &lslice : above.lslices_ex) std::sort(lslice.overlaps_below.begin(), lslice.overlaps_below.end(), [](const LayerSlice::Link &l, const LayerSlice::Link &r){ return l.slice_idx < r.slice_idx; }); } void Layer::build_up_down_graph(Layer& below, Layer& above) { coord_t paths_below_offset = 0; ClipperLib_Z::Paths paths_below = expolygons_to_zpaths(below.lslices, paths_below_offset); coord_t paths_above_offset = paths_below_offset + coord_t(below.lslices.size()); ClipperLib_Z::Paths paths_above = expolygons_to_zpaths(above.lslices, paths_above_offset); #ifndef NDEBUG coord_t paths_end = paths_above_offset + coord_t(above.lslices.size()); #endif // NDEBUG class ZFill { public: ZFill() = default; void reset() { m_intersections.clear(); } void operator()( const ClipperLib_Z::IntPoint& e1bot, const ClipperLib_Z::IntPoint& e1top, const ClipperLib_Z::IntPoint& e2bot, const ClipperLib_Z::IntPoint& e2top, ClipperLib_Z::IntPoint& pt) { coord_t srcs[4]{ e1bot.z(), e1top.z(), e2bot.z(), e2top.z() }; coord_t* begin = srcs; coord_t* end = srcs + 4; std::sort(begin, end); end = std::unique(begin, end); assert(begin + 2 == end); if (begin + 1 == end) pt.z() = *begin; else if (begin + 2 <= end) { // store a -1 based negative index into the "intersections" vector here. m_intersections.emplace_back(srcs[0], srcs[1]); pt.z() = -coord_t(m_intersections.size()); } } const std::vector>& intersections() const { return m_intersections; } private: std::vector> m_intersections; } zfill; ClipperLib_Z::Clipper clipper; ClipperLib_Z::PolyTree result; clipper.ZFillFunction( [&zfill](const ClipperLib_Z::IntPoint &e1bot, const ClipperLib_Z::IntPoint &e1top, const ClipperLib_Z::IntPoint &e2bot, const ClipperLib_Z::IntPoint &e2top, ClipperLib_Z::IntPoint &pt) { return zfill(e1bot, e1top, e2bot, e2top, pt); }); clipper.AddPaths(paths_below, ClipperLib_Z::ptSubject, true); clipper.AddPaths(paths_above, ClipperLib_Z::ptClip, true); clipper.Execute(ClipperLib_Z::ctIntersection, result, ClipperLib_Z::pftNonZero, ClipperLib_Z::pftNonZero); connect_layer_slices(below, above, result, zfill.intersections(), paths_below_offset, paths_above_offset #ifndef NDEBUG , paths_end #endif // NDEBUG ); } static inline bool layer_needs_raw_backup(const Layer *layer) { return ! (layer->regions().size() == 1 && (layer->id() > 0 || layer->object()->config().elefant_foot_compensation.value == 0)); } void Layer::backup_untyped_slices() { if (layer_needs_raw_backup(this)) { for (LayerRegion *layerm : m_regions) layerm->m_raw_slices = to_expolygons(layerm->slices().surfaces); } else { assert(m_regions.size() == 1); m_regions.front()->m_raw_slices.clear(); } } void Layer::restore_untyped_slices() { if (layer_needs_raw_backup(this)) { for (LayerRegion *layerm : m_regions) layerm->m_slices.set(layerm->m_raw_slices, stInternal); } else { assert(m_regions.size() == 1); m_regions.front()->m_slices.set(this->lslices, stInternal); } } // Similar to Layer::restore_untyped_slices() // To improve robustness of detect_surfaces_type() when reslicing (working with typed slices), see GH issue #7442. // Only resetting layerm->slices if Slice::extra_perimeters is always zero or it will not be used anymore // after the perimeter generator. void Layer::restore_untyped_slices_no_extra_perimeters() { if (layer_needs_raw_backup(this)) { for (LayerRegion *layerm : m_regions) if (! layerm->region().config().extra_perimeters.value) layerm->m_slices.set(layerm->m_raw_slices, stInternal); } else { assert(m_regions.size() == 1); LayerRegion *layerm = m_regions.front(); // This optimization is correct, as extra_perimeters are only reused by prepare_infill() with multi-regions. //if (! layerm->region().config().extra_perimeters.value) layerm->m_slices.set(this->lslices, stInternal); } } ExPolygons Layer::merged(float offset_scaled) const { assert(offset_scaled >= 0.f); // If no offset is set, apply EPSILON offset before union, and revert it afterwards. float offset_scaled2 = 0; if (offset_scaled == 0.f) { offset_scaled = float( EPSILON); offset_scaled2 = float(- EPSILON); } Polygons polygons; for (LayerRegion *layerm : m_regions) { const PrintRegionConfig &config = layerm->region().config(); // Our users learned to bend Slic3r to produce empty volumes to act as subtracters. Only add the region if it is non-empty. if (config.bottom_solid_layers > 0 || config.top_solid_layers > 0 || config.fill_density > 0. || config.perimeters > 0) append(polygons, offset(layerm->slices().surfaces, offset_scaled)); } ExPolygons out = union_ex(polygons); if (offset_scaled2 != 0.f) out = offset_ex(out, offset_scaled2); return out; } // Here the perimeters are created cummulatively for all layer regions sharing the same parameters influencing the perimeters. // The perimeter paths and the thin fills (ExtrusionEntityCollection) are assigned to the first compatible layer region. // The resulting fill surface is split back among the originating regions. void Layer::make_perimeters() { BOOST_LOG_TRIVIAL(trace) << "Generating perimeters for layer " << this->id(); // keep track of regions whose perimeters we have already generated std::vector done(m_regions.size(), false); std::vector layer_region_ids; std::vector> perimeter_and_gapfill_ranges; ExPolygons fill_expolygons; std::vector fill_expolygons_ranges; SurfacesPtr surfaces_to_merge; SurfacesPtr surfaces_to_merge_temp; auto layer_region_reset_perimeters = [](LayerRegion &layerm) { layerm.m_perimeters.clear(); layerm.m_fills.clear(); layerm.m_thin_fills.clear(); layerm.m_fill_expolygons.clear(); layerm.m_fill_expolygons_bboxes.clear(); layerm.m_fill_expolygons_composite.clear(); layerm.m_fill_expolygons_composite_bboxes.clear(); }; // Remove layer islands, remove references to perimeters and fills from these layer islands to LayerRegion ExtrusionEntities. for (LayerSlice &lslice : this->lslices_ex) lslice.islands.clear(); for (LayerRegionPtrs::iterator layerm = m_regions.begin(); layerm != m_regions.end(); ++ layerm) if (size_t region_id = layerm - m_regions.begin(); ! done[region_id]) { layer_region_reset_perimeters(**layerm); if (! (*layerm)->slices().empty()) { BOOST_LOG_TRIVIAL(trace) << "Generating perimeters for layer " << this->id() << ", region " << region_id; done[region_id] = true; const PrintRegionConfig &config = (*layerm)->region().config(); perimeter_and_gapfill_ranges.clear(); fill_expolygons.clear(); fill_expolygons_ranges.clear(); surfaces_to_merge.clear(); // find compatible regions layer_region_ids.clear(); layer_region_ids.push_back(region_id); for (LayerRegionPtrs::const_iterator it = layerm + 1; it != m_regions.end(); ++it) if (! (*it)->slices().empty()) { LayerRegion* other_layerm = *it; const PrintRegionConfig &other_config = other_layerm->region().config(); if (config.perimeter_extruder == other_config.perimeter_extruder && config.perimeters == other_config.perimeters && config.perimeter_speed == other_config.perimeter_speed && config.external_perimeter_speed == other_config.external_perimeter_speed && (config.gap_fill_enabled ? config.gap_fill_speed.value : 0.) == (other_config.gap_fill_enabled ? other_config.gap_fill_speed.value : 0.) && config.overhangs == other_config.overhangs && config.opt_serialize("perimeter_extrusion_width") == other_config.opt_serialize("perimeter_extrusion_width") && config.thin_walls == other_config.thin_walls && config.external_perimeters_first == other_config.external_perimeters_first && config.infill_overlap == other_config.infill_overlap && config.fuzzy_skin == other_config.fuzzy_skin && config.fuzzy_skin_thickness == other_config.fuzzy_skin_thickness && config.fuzzy_skin_point_dist == other_config.fuzzy_skin_point_dist) { layer_region_reset_perimeters(*other_layerm); layer_region_ids.push_back(it - m_regions.begin()); done[it - m_regions.begin()] = true; } } if (layer_region_ids.size() == 1) { // optimization (*layerm)->make_perimeters((*layerm)->slices(), perimeter_and_gapfill_ranges, fill_expolygons, fill_expolygons_ranges); this->sort_perimeters_into_islands((*layerm)->slices(), region_id, perimeter_and_gapfill_ranges, std::move(fill_expolygons), fill_expolygons_ranges, layer_region_ids); } else { SurfaceCollection new_slices; // Use the region with highest infill rate, as the make_perimeters() function below decides on the gap fill based on the infill existence. LayerRegion *layerm_config = m_regions[layer_region_ids.front()]; { // Merge slices (surfaces) according to number of extra perimeters. for (uint32_t region_id : layer_region_ids) { LayerRegion &layerm = *m_regions[region_id]; for (const Surface &surface : layerm.slices()) surfaces_to_merge.emplace_back(&surface); if (layerm.region().config().fill_density > layerm_config->region().config().fill_density) layerm_config = &layerm; } std::sort(surfaces_to_merge.begin(), surfaces_to_merge.end(), [](const Surface *l, const Surface *r){ return l->extra_perimeters < r->extra_perimeters; }); for (size_t i = 0; i < surfaces_to_merge.size();) { size_t j = i; const Surface &first = *surfaces_to_merge[i]; size_t extra_perimeters = first.extra_perimeters; for (; j < surfaces_to_merge.size() && surfaces_to_merge[j]->extra_perimeters == extra_perimeters; ++ j) ; if (i + 1 == j) // Nothing to merge, just copy. new_slices.surfaces.emplace_back(*surfaces_to_merge[i]); else { surfaces_to_merge_temp.assign(surfaces_to_merge.begin() + i, surfaces_to_merge.begin() + j); new_slices.append(offset_ex(surfaces_to_merge_temp, ClipperSafetyOffset), first); } i = j; } } // make perimeters layerm_config->make_perimeters(new_slices, perimeter_and_gapfill_ranges, fill_expolygons, fill_expolygons_ranges); this->sort_perimeters_into_islands(new_slices, region_id, perimeter_and_gapfill_ranges, std::move(fill_expolygons), fill_expolygons_ranges, layer_region_ids); } } } BOOST_LOG_TRIVIAL(trace) << "Generating perimeters for layer " << this->id() << " - Done"; } void Layer::sort_perimeters_into_islands( // Slices for which perimeters and fill_expolygons were just created. // The slices may have been created by merging multiple source slices with the same perimeter parameters. const SurfaceCollection &slices, // Region where the perimeters, gap fills and fill expolygons are stored. const uint32_t region_id, // Perimeters and gap fills produced by the perimeter generator for the slices, // sorted by the source slices. const std::vector> &perimeter_and_gapfill_ranges, // Fill expolygons produced for all source slices above. ExPolygons &&fill_expolygons, // Fill expolygon ranges sorted by the source slices. const std::vector &fill_expolygons_ranges, // If the current layer consists of multiple regions, then the fill_expolygons above are split by the source LayerRegion surfaces. const std::vector &layer_region_ids) { LayerRegion &this_layer_region = *m_regions[region_id]; // Bounding boxes of fill_expolygons. BoundingBoxes fill_expolygons_bboxes; fill_expolygons_bboxes.reserve(fill_expolygons.size()); for (const ExPolygon &expolygon : fill_expolygons) fill_expolygons_bboxes.emplace_back(get_extents(expolygon)); // Take one sample point for each source slice, to be used to sort source slices into layer slices. // source slice index + its sample. std::vector> perimeter_slices_queue; perimeter_slices_queue.reserve(slices.size()); for (uint32_t islice = 0; islice < uint32_t(slices.size()); ++ islice) { const std::pair &extrusions = perimeter_and_gapfill_ranges[islice]; Point sample; bool sample_set = false; if (! extrusions.first.empty()) { sample = this_layer_region.perimeters().entities[*extrusions.first.begin()]->first_point(); sample_set = true; } else if (! extrusions.second.empty()) { sample = this_layer_region.thin_fills().entities[*extrusions.second.begin()]->first_point(); sample_set = true; } else { for (uint32_t iexpoly : fill_expolygons_ranges[islice]) if (const ExPolygon &expoly = fill_expolygons[iexpoly]; ! expoly.empty()) { sample = expoly.contour.points.front(); sample_set = true; break; } } // There may be a valid empty island. // assert(sample_set); if (sample_set) perimeter_slices_queue.emplace_back(islice, sample); } // Map of source fill_expolygon into region and fill_expolygon of that region. // -1: not set std::vector> map_expolygon_to_region_and_fill; const bool has_multiple_regions = layer_region_ids.size() > 1; assert(has_multiple_regions || layer_region_ids.size() == 1); // assign fill_surfaces to each layer if (! fill_expolygons.empty()) { if (has_multiple_regions) { // Sort the bounding boxes lexicographically. std::vector fill_expolygons_bboxes_sorted(fill_expolygons_bboxes.size()); std::iota(fill_expolygons_bboxes_sorted.begin(), fill_expolygons_bboxes_sorted.end(), 0); std::sort(fill_expolygons_bboxes_sorted.begin(), fill_expolygons_bboxes_sorted.end(), [&fill_expolygons_bboxes](uint32_t lhs, uint32_t rhs){ const BoundingBox &bbl = fill_expolygons_bboxes[lhs]; const BoundingBox &bbr = fill_expolygons_bboxes[rhs]; return bbl.min < bbr.min || (bbl.min == bbr.min && bbl.max < bbr.max); }); map_expolygon_to_region_and_fill.assign(fill_expolygons.size(), std::make_pair(-1, -1)); for (uint32_t region_idx : layer_region_ids) { LayerRegion &l = *m_regions[region_idx]; l.m_fill_expolygons = intersection_ex(l.slices().surfaces, fill_expolygons); l.m_fill_expolygons_bboxes.reserve(l.fill_expolygons().size()); for (const ExPolygon &expolygon : l.fill_expolygons()) { BoundingBox bbox = get_extents(expolygon); l.m_fill_expolygons_bboxes.emplace_back(bbox); auto it_bbox = std::lower_bound(fill_expolygons_bboxes_sorted.begin(), fill_expolygons_bboxes_sorted.end(), bbox, [&fill_expolygons_bboxes](uint32_t lhs, const BoundingBox &bbr){ const BoundingBox &bbl = fill_expolygons_bboxes[lhs]; return bbl.min < bbr.min || (bbl.min == bbr.min && bbl.max < bbr.max); }); if (it_bbox != fill_expolygons_bboxes_sorted.end()) if (uint32_t fill_id = *it_bbox; fill_expolygons_bboxes[fill_id] == bbox) { // With a very high probability the two expolygons match exactly. Confirm that. if (expolygons_match(expolygon, fill_expolygons[fill_id])) { std::pair &ref = map_expolygon_to_region_and_fill[fill_id]; // Only one expolygon produced by intersection with LayerRegion surface may match an expolygon of fill_expolygons. assert(ref.first == -1); ref.first = region_idx; ref.second = int(&expolygon - l.fill_expolygons().data()); } } } } } else { this_layer_region.m_fill_expolygons = std::move(fill_expolygons); this_layer_region.m_fill_expolygons_bboxes = std::move(fill_expolygons_bboxes); } } // Sort perimeter extrusions, thin fill extrusions and fill expolygons into islands. std::vector region_fill_sorted_last; auto insert_into_island = [ // Region where the perimeters, gap fills and fill expolygons are stored. region_id, // Whether there are infills with different regions generated for this LayerSlice. has_multiple_regions, // Perimeters and gap fills to be sorted into islands. &perimeter_and_gapfill_ranges, // Infill regions to be sorted into islands. &fill_expolygons, &fill_expolygons_bboxes, &fill_expolygons_ranges, // Mapping of fill_expolygon to region and its infill. &map_expolygon_to_region_and_fill, // Output ®ions = m_regions, &lslices_ex = this->lslices_ex, // fill_expolygons and fill_expolygons_bboxes need to be sorted into contiguous sequence by island, // thus region_fill_sorted_last contains last fill_expolygon processed (meaning sorted). ®ion_fill_sorted_last] (int lslice_idx, int source_slice_idx) { lslices_ex[lslice_idx].islands.push_back({}); LayerIsland &island = lslices_ex[lslice_idx].islands.back(); island.perimeters = LayerExtrusionRange(region_id, perimeter_and_gapfill_ranges[source_slice_idx].first); island.thin_fills = perimeter_and_gapfill_ranges[source_slice_idx].second; if (ExPolygonRange fill_range = fill_expolygons_ranges[source_slice_idx]; ! fill_range.empty()) { if (has_multiple_regions) { // Check whether the fill expolygons of this island were split into multiple regions. island.fill_region_id = LayerIsland::fill_region_composite_id; for (uint32_t fill_idx : fill_range) { const std::pair &kvp = map_expolygon_to_region_and_fill[fill_idx]; if (kvp.first == -1 || (island.fill_region_id != -1 && island.fill_region_id != kvp.second)) { island.fill_region_id = LayerIsland::fill_region_composite_id; break; } else island.fill_region_id = kvp.second; } if (island.fill_expolygons_composite()) { // They were split, thus store the unsplit "composite" expolygons into the region of perimeters. LayerRegion &this_layer_region = *regions[region_id]; auto begin = uint32_t(this_layer_region.fill_expolygons_composite().size()); this_layer_region.m_fill_expolygons_composite.reserve(this_layer_region.fill_expolygons_composite().size() + fill_range.size()); std::move(fill_expolygons.begin() + *fill_range.begin(), fill_expolygons.begin() + *fill_range.end(), std::back_inserter(this_layer_region.m_fill_expolygons_composite)); this_layer_region.m_fill_expolygons_composite_bboxes.insert(this_layer_region.m_fill_expolygons_composite_bboxes.end(), fill_expolygons_bboxes.begin() + *fill_range.begin(), fill_expolygons_bboxes.begin() + *fill_range.end()); island.fill_expolygons = ExPolygonRange(begin, uint32_t(this_layer_region.fill_expolygons_composite().size())); } else { if (region_fill_sorted_last.empty()) region_fill_sorted_last.assign(regions.size(), 0); uint32_t &last = region_fill_sorted_last[island.fill_region_id]; // They were not split and they belong to the same region. // Sort the region m_fill_expolygons to a continuous span. uint32_t begin = last; LayerRegion &layerm = *regions[island.fill_region_id]; for (uint32_t fill_id : fill_range) { uint32_t region_fill_id = map_expolygon_to_region_and_fill[fill_id].second; assert(region_fill_id >= last); if (region_fill_id > last) { std::swap(layerm.m_fill_expolygons[region_fill_id], layerm.m_fill_expolygons[last]); std::swap(layerm.m_fill_expolygons_bboxes[region_fill_id], layerm.m_fill_expolygons_bboxes[last]); } ++ last; } island.fill_expolygons = ExPolygonRange(begin, last); } } else { // Layer island is made of one fill region only. island.fill_expolygons = fill_range; island.fill_region_id = region_id; } } }; // First sort into islands using exact fit. // Traverse the slices in an increasing order of bounding box size, so that the islands inside another islands are tested first, // so we can just test a point inside ExPolygon::contour and we may skip testing the holes. auto point_inside_surface = [&lslices = this->lslices, &lslices_ex = this->lslices_ex](size_t lslice_idx, const Point &point) { const BoundingBox &bbox = lslices_ex[lslice_idx].bbox; return point.x() >= bbox.min.x() && point.x() < bbox.max.x() && point.y() >= bbox.min.y() && point.y() < bbox.max.y() && // Exact match: Don't just test whether a point is inside the outer contour of an island, // test also whether the point is not inside some hole of the same expolygon. // This is unfortunatelly necessary because the point may be inside an expolygon of one of this expolygon's hole // and missed due to numerical issues. lslices[lslice_idx].contains(point); }; for (int lslice_idx = int(lslices_ex.size()) - 1; lslice_idx >= 0 && ! perimeter_slices_queue.empty(); -- lslice_idx) for (auto it_source_slice = perimeter_slices_queue.begin(); it_source_slice != perimeter_slices_queue.end(); ++ it_source_slice) if (point_inside_surface(lslice_idx, it_source_slice->second)) { insert_into_island(lslice_idx, it_source_slice->first); if (std::next(it_source_slice) != perimeter_slices_queue.end()) // Remove the current slice & point pair from the queue. *it_source_slice = perimeter_slices_queue.back(); perimeter_slices_queue.pop_back(); break; } // If anything fails to be sorted in using exact fit, try to find a closest island. auto point_inside_surface_dist2 = [&lslices = this->lslices, &lslices_ex = this->lslices_ex, bbox_eps = scaled(this->object()->print()->config().gcode_resolution.value) + SCALED_EPSILON] (const size_t lslice_idx, const Point &point) { const BoundingBox &bbox = lslices_ex[lslice_idx].bbox; return point.x() < bbox.min.x() - bbox_eps || point.x() > bbox.max.x() + bbox_eps || point.y() < bbox.min.y() - bbox_eps || point.y() > bbox.max.y() + bbox_eps ? std::numeric_limits::max() : (lslices[lslice_idx].point_projection(point) - point).cast().squaredNorm(); }; for (auto it_source_slice = perimeter_slices_queue.begin(); it_source_slice != perimeter_slices_queue.end(); ++ it_source_slice) { double d2min = std::numeric_limits::max(); int lslice_idx_min = -1; for (int lslice_idx = int(lslices_ex.size()) - 1; lslice_idx >= 0; -- lslice_idx) if (double d2 = point_inside_surface_dist2(lslice_idx, it_source_slice->second); d2 < d2min) { d2min = d2; lslice_idx_min = lslice_idx; } assert(lslice_idx_min != -1); insert_into_island(lslice_idx_min, it_source_slice->first); } } void Layer::export_region_slices_to_svg(const char *path) const { BoundingBox bbox; for (const auto *region : m_regions) for (const auto &surface : region->slices()) bbox.merge(get_extents(surface.expolygon)); Point legend_size = export_surface_type_legend_to_svg_box_size(); Point legend_pos(bbox.min(0), bbox.max(1)); bbox.merge(Point(std::max(bbox.min(0) + legend_size(0), bbox.max(0)), bbox.max(1) + legend_size(1))); SVG svg(path, bbox); const float transparency = 0.5f; for (const auto *region : m_regions) for (const auto &surface : region->slices()) svg.draw(surface.expolygon, surface_type_to_color_name(surface.surface_type), transparency); export_surface_type_legend_to_svg(svg, legend_pos); svg.Close(); } // Export to "out/LayerRegion-name-%d.svg" with an increasing index with every export. void Layer::export_region_slices_to_svg_debug(const char *name) const { static size_t idx = 0; this->export_region_slices_to_svg(debug_out_path("Layer-slices-%s-%d.svg", name, idx ++).c_str()); } void Layer::export_region_fill_surfaces_to_svg(const char *path) const { BoundingBox bbox; for (const auto *region : m_regions) for (const auto &surface : region->slices()) bbox.merge(get_extents(surface.expolygon)); Point legend_size = export_surface_type_legend_to_svg_box_size(); Point legend_pos(bbox.min(0), bbox.max(1)); bbox.merge(Point(std::max(bbox.min(0) + legend_size(0), bbox.max(0)), bbox.max(1) + legend_size(1))); SVG svg(path, bbox); const float transparency = 0.5f; for (const auto *region : m_regions) for (const auto &surface : region->slices()) svg.draw(surface.expolygon, surface_type_to_color_name(surface.surface_type), transparency); export_surface_type_legend_to_svg(svg, legend_pos); svg.Close(); } // Export to "out/LayerRegion-name-%d.svg" with an increasing index with every export. void Layer::export_region_fill_surfaces_to_svg_debug(const char *name) const { static size_t idx = 0; this->export_region_fill_surfaces_to_svg(debug_out_path("Layer-fill_surfaces-%s-%d.svg", name, idx ++).c_str()); } BoundingBox get_extents(const LayerRegion &layer_region) { BoundingBox bbox; if (! layer_region.slices().empty()) { bbox = get_extents(layer_region.slices().surfaces.front()); for (auto it = layer_region.slices().surfaces.cbegin() + 1; it != layer_region.slices().surfaces.cend(); ++ it) bbox.merge(get_extents(*it)); } return bbox; } BoundingBox get_extents(const LayerRegionPtrs &layer_regions) { BoundingBox bbox; if (!layer_regions.empty()) { bbox = get_extents(*layer_regions.front()); for (auto it = layer_regions.begin() + 1; it != layer_regions.end(); ++it) bbox.merge(get_extents(**it)); } return bbox; } }