#ifndef slic3r_GCode_hpp_ #define slic3r_GCode_hpp_ #include "libslic3r.h" #include "ExPolygon.hpp" #include "GCodeWriter.hpp" #include "Layer.hpp" #include "MotionPlanner.hpp" #include "Point.hpp" #include "PlaceholderParser.hpp" #include "Print.hpp" #include "PrintConfig.hpp" #include "GCode/CoolingBuffer.hpp" #include "GCode/SpiralVase.hpp" #include "GCode/ToolOrdering.hpp" #include "GCode/WipeTower.hpp" #include "GCodeTimeEstimator.hpp" #include "EdgeGrid.hpp" #include "GCode/Analyzer.hpp" #include #include #ifdef HAS_PRESSURE_EQUALIZER #include "GCode/PressureEqualizer.hpp" #endif /* HAS_PRESSURE_EQUALIZER */ namespace Slic3r { // Forward declarations. class GCode; class GCodePreviewData; class AvoidCrossingPerimeters { public: // this flag triggers the use of the external configuration space bool use_external_mp; bool use_external_mp_once; // just for the next travel move // this flag disables avoid_crossing_perimeters just for the next travel move // we enable it by default for the first travel move in print bool disable_once; AvoidCrossingPerimeters() : use_external_mp(false), use_external_mp_once(false), disable_once(true) {} ~AvoidCrossingPerimeters() {} void reset() { m_external_mp.reset(); m_layer_mp.reset(); } void init_external_mp(const Print &print); void init_layer_mp(const ExPolygons &islands) { m_layer_mp = Slic3r::make_unique(islands); } Polyline travel_to(const GCode &gcodegen, const Point &point); private: // For initializing the regions to avoid. static Polygons collect_contours_all_layers(const PrintObjectPtrs& objects); std::unique_ptr m_external_mp; std::unique_ptr m_layer_mp; }; class OozePrevention { public: bool enable; Points standby_points; OozePrevention() : enable(false) {} std::string pre_toolchange(GCode &gcodegen); std::string post_toolchange(GCode &gcodegen); private: int _get_temp(GCode &gcodegen); }; class Wipe { public: bool enable; Polyline path; Wipe() : enable(false) {} bool has_path() const { return !this->path.points.empty(); } void reset_path() { this->path = Polyline(); } std::string wipe(GCode &gcodegen, bool toolchange = false); }; class WipeTowerIntegration { public: WipeTowerIntegration( const PrintConfig &print_config, const std::vector &priming, const std::vector> &tool_changes, const WipeTower::ToolChangeResult &final_purge) : m_left(/*float(print_config.wipe_tower_x.value)*/ 0.f), m_right(float(/*print_config.wipe_tower_x.value +*/ print_config.wipe_tower_width.value)), m_wipe_tower_pos(float(print_config.wipe_tower_x.value), float(print_config.wipe_tower_y.value)), m_wipe_tower_rotation(float(print_config.wipe_tower_rotation_angle)), m_extruder_offsets(print_config.extruder_offset.values), m_priming(priming), m_tool_changes(tool_changes), m_final_purge(final_purge), m_layer_idx(-1), m_tool_change_idx(0), m_brim_done(false) {} std::string prime(GCode &gcodegen); void next_layer() { ++ m_layer_idx; m_tool_change_idx = 0; } std::string tool_change(GCode &gcodegen, int extruder_id, bool finish_layer); std::string finalize(GCode &gcodegen); std::vector used_filament_length() const; private: WipeTowerIntegration& operator=(const WipeTowerIntegration&); std::string append_tcr(GCode &gcodegen, const WipeTower::ToolChangeResult &tcr, int new_extruder_id) const; // Postprocesses gcode: rotates and moves G1 extrusions and returns result std::string post_process_wipe_tower_moves(const WipeTower::ToolChangeResult& tcr, const Vec2f& translation, float angle) const; // Left / right edges of the wipe tower, for the planning of wipe moves. const float m_left; const float m_right; const Vec2f m_wipe_tower_pos; const float m_wipe_tower_rotation; const std::vector m_extruder_offsets; // Reference to cached values at the Printer class. const std::vector &m_priming; const std::vector> &m_tool_changes; const WipeTower::ToolChangeResult &m_final_purge; // Current layer index. int m_layer_idx; int m_tool_change_idx; bool m_brim_done; bool i_have_brim = false; }; class GCode { public: GCode() : m_origin(Vec2d::Zero()), m_enable_loop_clipping(true), m_enable_cooling_markers(false), m_enable_extrusion_role_markers(false), m_enable_analyzer(false), m_last_analyzer_extrusion_role(erNone), m_layer_count(0), m_layer_index(-1), m_layer(nullptr), m_volumetric_speed(0), m_last_pos_defined(false), m_last_extrusion_role(erNone), m_last_mm3_per_mm(GCodeAnalyzer::Default_mm3_per_mm), m_last_width(GCodeAnalyzer::Default_Width), m_last_height(GCodeAnalyzer::Default_Height), m_brim_done(false), m_second_layer_things_done(false), m_normal_time_estimator(GCodeTimeEstimator::Normal), m_silent_time_estimator(GCodeTimeEstimator::Silent), m_silent_time_estimator_enabled(false), m_last_obj_copy(nullptr, Point(std::numeric_limits::max(), std::numeric_limits::max())) {} ~GCode() {} // throws std::runtime_exception on error, // throws CanceledException through print->throw_if_canceled(). void do_export(Print *print, const char *path, GCodePreviewData *preview_data = nullptr); // Exported for the helper classes (OozePrevention, Wipe) and for the Perl binding for unit tests. const Vec2d& origin() const { return m_origin; } void set_origin(const Vec2d &pointf); void set_origin(const coordf_t x, const coordf_t y) { this->set_origin(Vec2d(x, y)); } const Point& last_pos() const { return m_last_pos; } Vec2d point_to_gcode(const Point &point) const; Point gcode_to_point(const Vec2d &point) const; const FullPrintConfig &config() const { return m_config; } const Layer* layer() const { return m_layer; } GCodeWriter& writer() { return m_writer; } PlaceholderParser& placeholder_parser() { return m_placeholder_parser; } const PlaceholderParser& placeholder_parser() const { return m_placeholder_parser; } // Process a template through the placeholder parser, collect error messages to be reported // inside the generated string and after the G-code export finishes. std::string placeholder_parser_process(const std::string &name, const std::string &templ, unsigned int current_extruder_id, const DynamicConfig *config_override = nullptr); bool enable_cooling_markers() const { return m_enable_cooling_markers; } // For Perl bindings, to be used exclusively by unit tests. unsigned int layer_count() const { return m_layer_count; } void set_layer_count(unsigned int value) { m_layer_count = value; } void apply_print_config(const PrintConfig &print_config); // append full config to the given string static void append_full_config(const Print& print, std::string& str); protected: void _do_export(Print &print, FILE *file); // Object and support extrusions of the same PrintObject at the same print_z. struct LayerToPrint { LayerToPrint() : object_layer(nullptr), support_layer(nullptr) {} const Layer *object_layer; const SupportLayer *support_layer; const Layer* layer() const { return (object_layer != nullptr) ? object_layer : support_layer; } const PrintObject* object() const { return (this->layer() != nullptr) ? this->layer()->object() : nullptr; } coordf_t print_z() const { return (object_layer != nullptr && support_layer != nullptr) ? 0.5 * (object_layer->print_z + support_layer->print_z) : this->layer()->print_z; } }; static std::vector collect_layers_to_print(const PrintObject &object); static std::vector>> collect_layers_to_print(const Print &print); void process_layer( // Write into the output file. FILE *file, const Print &print, // Set of object & print layers of the same PrintObject and with the same print_z. const std::vector &layers, const LayerTools &layer_tools, // If set to size_t(-1), then print all copies of all objects. // Otherwise print a single copy of a single object. const size_t single_object_idx = size_t(-1)); void set_last_pos(const Point &pos) { m_last_pos = pos; m_last_pos_defined = true; } bool last_pos_defined() const { return m_last_pos_defined; } void set_extruders(const std::vector &extruder_ids); std::string preamble(); std::string change_layer(coordf_t print_z); std::string extrude_entity(const ExtrusionEntity &entity, std::string description = "", double speed = -1., std::unique_ptr *lower_layer_edge_grid = nullptr); std::string extrude_loop(ExtrusionLoop loop, std::string description, double speed = -1., std::unique_ptr *lower_layer_edge_grid = nullptr); std::string extrude_multi_path(ExtrusionMultiPath multipath, std::string description = "", double speed = -1.); std::string extrude_path(ExtrusionPath path, std::string description = "", double speed = -1.); typedef std::vector ExtruderPerCopy; // Extruding multiple objects with soluble / non-soluble / combined supports // on a multi-material printer, trying to minimize tool switches. // Following structures sort extrusions by the extruder ID, by an order of objects and object islands. struct ObjectByExtruder { ObjectByExtruder() : support(nullptr), support_extrusion_role(erNone) {} const ExtrusionEntityCollection *support; // erSupportMaterial / erSupportMaterialInterface or erMixed. ExtrusionRole support_extrusion_role; struct Island { struct Region { ExtrusionEntityCollection perimeters; ExtrusionEntityCollection infills; std::vector infills_overrides; std::vector perimeters_overrides; // Appends perimeter/infill entities and writes don't indices of those that are not to be extruder as part of perimeter/infill wiping void append(const std::string& type, const ExtrusionEntityCollection* eec, const ExtruderPerCopy* copy_extruders, unsigned int object_copies_num); }; std::vector by_region; // all extrusions for this island, grouped by regions const std::vector& by_region_per_copy(unsigned int copy, int extruder, bool wiping_entities = false); // returns reference to subvector of by_region private: std::vector by_region_per_copy_cache; // caches vector generated by function above to avoid copying and recalculating }; std::vector islands; }; std::string extrude_perimeters(const Print &print, const std::vector &by_region, std::unique_ptr &lower_layer_edge_grid); std::string extrude_infill(const Print &print, const std::vector &by_region); std::string extrude_support(const ExtrusionEntityCollection &support_fills); std::string travel_to(const Point &point, ExtrusionRole role, std::string comment); bool needs_retraction(const Polyline &travel, ExtrusionRole role = erNone); std::string retract(bool toolchange = false); std::string unretract() { return m_writer.unlift() + m_writer.unretract(); } std::string set_extruder(unsigned int extruder_id, double print_z); /* Origin of print coordinates expressed in unscaled G-code coordinates. This affects the input arguments supplied to the extrude*() and travel_to() methods. */ Vec2d m_origin; FullPrintConfig m_config; GCodeWriter m_writer; PlaceholderParser m_placeholder_parser; // Collection of templates, on which the placeholder substitution failed. std::set m_placeholder_parser_failed_templates; OozePrevention m_ooze_prevention; Wipe m_wipe; AvoidCrossingPerimeters m_avoid_crossing_perimeters; bool m_enable_loop_clipping; // If enabled, the G-code generator will put following comments at the ends // of the G-code lines: _EXTRUDE_SET_SPEED, _WIPE, _BRIDGE_FAN_START, _BRIDGE_FAN_END // Those comments are received and consumed (removed from the G-code) by the CoolingBuffer.pm Perl module. bool m_enable_cooling_markers; // Markers for the Pressure Equalizer to recognize the extrusion type. // The Pressure Equalizer removes the markers from the final G-code. bool m_enable_extrusion_role_markers; // Enableds the G-code Analyzer. // Extended markers will be added during G-code generation. // The G-code Analyzer will remove these comments from the final G-code. bool m_enable_analyzer; ExtrusionRole m_last_analyzer_extrusion_role; // How many times will change_layer() be called? // change_layer() will update the progress bar. unsigned int m_layer_count; // Progress bar indicator. Increments from -1 up to layer_count. int m_layer_index; // Current layer processed. Insequential printing mode, only a single copy will be printed. // In non-sequential mode, all its copies will be printed. const Layer* m_layer; std::map m_seam_position; double m_volumetric_speed; // Support for the extrusion role markers. Which marker is active? ExtrusionRole m_last_extrusion_role; // Support for G-Code Analyzer double m_last_mm3_per_mm; float m_last_width; float m_last_height; Point m_last_pos; bool m_last_pos_defined; std::unique_ptr m_cooling_buffer; std::unique_ptr m_spiral_vase; #ifdef HAS_PRESSURE_EQUALIZER std::unique_ptr m_pressure_equalizer; #endif /* HAS_PRESSURE_EQUALIZER */ std::unique_ptr m_wipe_tower; // Heights at which the skirt has already been extruded. std::vector m_skirt_done; // Has the brim been extruded already? Brim is being extruded only for the first object of a multi-object print. bool m_brim_done; // Flag indicating whether the nozzle temperature changes from 1st to 2nd layer were performed. bool m_second_layer_things_done; // Index of a last object copy extruded. std::pair m_last_obj_copy; // Layer heights for colorprint - updated before the export and erased during the process // so no toolchange occurs twice. std::vector m_colorprint_heights; // Time estimators GCodeTimeEstimator m_normal_time_estimator; GCodeTimeEstimator m_silent_time_estimator; bool m_silent_time_estimator_enabled; // Analyzer GCodeAnalyzer m_analyzer; // Write a string into a file. void _write(FILE* file, const std::string& what) { this->_write(file, what.c_str()); } void _write(FILE* file, const char *what); // Write a string into a file. // Add a newline, if the string does not end with a newline already. // Used to export a custom G-code section processed by the PlaceholderParser. void _writeln(FILE* file, const std::string& what); // Formats and write into a file the given data. void _write_format(FILE* file, const char* format, ...); std::string _extrude(const ExtrusionPath &path, std::string description = "", double speed = -1); void print_machine_envelope(FILE *file, Print &print); void _print_first_layer_bed_temperature(FILE *file, Print &print, const std::string &gcode, unsigned int first_printing_extruder_id, bool wait); void _print_first_layer_extruder_temperatures(FILE *file, Print &print, const std::string &gcode, unsigned int first_printing_extruder_id, bool wait); // this flag triggers first layer speeds bool on_first_layer() const { return m_layer != nullptr && m_layer->id() == 0; } friend ObjectByExtruder& object_by_extruder( std::map> &by_extruder, unsigned int extruder_id, size_t object_idx, size_t num_objects); friend std::vector& object_islands_by_extruder( std::map> &by_extruder, unsigned int extruder_id, size_t object_idx, size_t num_objects, size_t num_islands); friend class Wipe; friend class WipeTowerIntegration; }; } #endif