package Slic3r::TriangleMesh; use Moo; use Slic3r::Geometry qw(X Y Z A B PI epsilon same_point points_coincide angle3points merge_collinear_lines); use XXX; has 'facets' => (is => 'ro', default => sub { [] }); has 'edges' => (is => 'ro', default => sub { [] }); has 'edge_table' => (is => 'ro', default => sub { {} }); has 'edge_facets' => (is => 'ro', default => sub { {} }); use constant MIN => 0; use constant MAX => 1; sub make_edge_table { my $self = shift; @{$self->edges} = (); %{$self->edge_table} = (); %{$self->edge_facets} = (); for (my $facet_index = 0; $facet_index <= $#{$self->facets}; $facet_index++) { my $facet = $self->facets->[$facet_index]; foreach my $edge ($self->facet_edges($facet)) { my $edge_id = $self->edge_id($edge); if (!exists $self->edge_table->{$edge_id}) { push @{$self->edges}, $edge; $self->edge_table->{$edge_id} = $#{$self->edges}; $self->edge_facets->{$edge_id} = []; } my $edge_index = $self->edge_table->{$edge_id}; push @{$self->edge_facets->{$edge_id}}, $facet_index; } } } sub check_manifoldness { my $self = shift; $self->make_edge_table; if (grep { @$_ != 2 } values %{$self->edge_facets}) { warn "Warning: The input file is not manifold. You might want to check the " . "resulting gcode before printing.\n"; } } sub make_loops { my $self = shift; my ($layer) = @_; my @lines = @{$layer->lines}; # remove tangent edges { for (my $i = 0; $i <= $#lines; $i++) { next unless defined $lines[$i] && $lines[$i]->facet_edge; # if the line is a facet edge, find another facet edge # having the same endpoints but in reverse order for (my $j = $i+1; $j <= $#lines; $j++) { next unless defined $lines[$j] && defined $lines[$j]->facet_edge; next unless $lines[$j]->facet_edge eq $lines[$i]->facet_edge; if (same_point($lines[$i]->a, $lines[$j]->b) && same_point($lines[$i]->b, $lines[$j]->a)) { $lines[$j] = undef; last; } } } } my $sparse_lines = [ map $_->line, @lines ]; # detect closed loops if (0) { printf "Layer was sliced at z = %f\n", $self->slice_z * $Slic3r::resolution; require "Slic3r/SVG.pm"; Slic3r::SVG::output(undef, "lines.svg", lines => [ grep !$_->isa('Slic3r::Line::FacetEdge'), @lines ], red_lines => [ grep $_->isa('Slic3r::Line::FacetEdge'), @lines ], ); } my (@polygons, %visited_lines, @discarded_lines, @discarded_polylines) = (); my $detect = sub { my @lines = @$sparse_lines; (@polygons, %visited_lines, @discarded_lines, @discarded_polylines) = (); my $get_point_id = sub { sprintf "%.0f,%.0f", @{$_[0]} }; my (%pointmap, @pointmap_keys) = (); foreach my $line (@lines) { my $point_id = $get_point_id->($line->[A]); if (!exists $pointmap{$point_id}) { $pointmap{$point_id} = []; push @pointmap_keys, $line->[A]; } push @{ $pointmap{$point_id} }, $line; } my $n = 0; while (my $first_line = shift @lines) { next if $visited_lines{ $first_line->id }; my @points = @$first_line; my @seen_lines = ($first_line); my %seen_points = map { $get_point_id->($points[$_]) => $_ } 0..1; CYCLE: while (1) { my $next_lines = $pointmap{ $get_point_id->($points[-1]) }; # shouldn't we find the point, let's try with a slower algorithm # as approximation may make the coordinates differ if (!$next_lines) { my $nearest_point = nearest_point($points[-1], \@pointmap_keys); #printf " we have a nearest point: %f,%f (%s)\n", @$nearest_point, $get_point_id->($nearest_point); if ($nearest_point) { local $Slic3r::Geometry::epsilon = 1000000; $next_lines = $pointmap{$get_point_id->($nearest_point)} if points_coincide($points[-1], $nearest_point); } } if (0 && !$next_lines) { require "Slic3r/SVG.pm"; Slic3r::SVG::output(undef, "no_lines.svg", lines => [ grep !$_->isa('Slic3r::Line::FacetEdge'), @lines ], red_lines => [ grep $_->isa('Slic3r::Line::FacetEdge'), @lines ], points => [ $points[-1] ], no_arrows => 1, ); } $next_lines or die sprintf("No lines start at point %s. This shouldn't happen. Please check the model for manifoldness.\n", $get_point_id->($points[-1])); last CYCLE if !@$next_lines; my @ordered_next_lines = sort { angle3points($points[-1], $points[-2], $next_lines->[$a][B]) <=> angle3points($points[-1], $points[-2], $next_lines->[$b][B]) } 0..$#$next_lines; #if (@$next_lines > 1) { # Slic3r::SVG::output(undef, "next_line.svg", # lines => $next_lines, # red_lines => [ polyline_lines([@points]) ], # green_lines => [ $next_lines->[ $ordered_next_lines[0] ] ], # ); #} my ($next_line) = splice @$next_lines, $ordered_next_lines[0], 1; push @seen_lines, $next_line; push @points, $next_line->[B]; my $point_id = $get_point_id->($points[-1]); if ($seen_points{$point_id}) { splice @points, 0, $seen_points{$point_id}; last CYCLE; } $seen_points{$point_id} = $#points; } if (@points < 4 || !points_coincide($points[0], $points[-1])) { # discarding polyline push @discarded_lines, @seen_lines; if (@points > 2) { push @discarded_polylines, [@points]; } next; } $visited_lines{ $_->id } = 1 for @seen_lines; pop @points; Slic3r::debugf "Discovered polygon of %d points\n", scalar(@points); push @polygons, Slic3r::Polygon->new(@points); $polygons[-1]->cleanup; } }; $detect->(); # Now, if we got a clean and manifold model then @polygons would contain everything # we need to draw our layer. In real life, sadly, things are different and it is likely # that the above algorithm wasn't able to detect every polygon. This may happen because # of non-manifoldness or because of many close lines, often overlapping; both situations # make a head-to-tail search difficult. # On the other hand, we can safely assume that every polygon we detected is correct, as # the above algorithm is quite strict. We can take a brute force approach to connect any # other line. # So, let's first check what lines were not detected as part of polygons. if (@discarded_lines) { Slic3r::debugf " %d lines out of %d were discarded and %d polylines were not closed\n", scalar(@discarded_lines), scalar(@lines), scalar(@discarded_polylines); print " Warning: errors while parsing this layer (dirty or non-manifold model).\n"; print " Retrying with slower algorithm.\n"; if (0) { require "Slic3r/SVG.pm"; Slic3r::SVG::output(undef, "layer" . $self->id . "_detected.svg", white_polygons => \@polygons, ); Slic3r::SVG::output(undef, "layer" . $self->id . "_discarded_lines.svg", red_lines => \@discarded_lines, ); Slic3r::SVG::output(undef, "layer" . $self->id . "_discarded_polylines.svg", polylines => \@discarded_polylines, ); } $sparse_lines = merge_collinear_lines($sparse_lines); eval { $detect->(); }; warn $@ if $@; if (@discarded_lines) { print " Warning: even slow detection algorithm threw errors. Review the output before printing.\n"; } } return [@polygons]; } sub rotate { my $self = shift; my ($deg) = @_; return if $deg == 0; my $rad = Slic3r::Geometry::deg2rad($deg); foreach my $facet (@{$self->facets}) { my ($normal, @vertices) = @$facet; foreach my $vertex (@vertices) { @$vertex = (@{ +(Slic3r::Geometry::rotate_points($rad, undef, [ $vertex->[X], $vertex->[Y] ]))[0] }, $vertex->[Z]); } } } sub scale { my $self = shift; my ($factor) = @_; return if $factor == 1; foreach my $facet (@{$self->facets}) { # transform vertex coordinates my ($normal, @vertices) = @$facet; foreach my $vertex (@vertices) { $vertex->[$_] *= $factor for X,Y,Z; } } } sub move { my $self = shift; my (@shift) = @_; foreach my $facet (@{$self->facets}) { # transform vertex coordinates my ($normal, @vertices) = @$facet; foreach my $vertex (@vertices) { $vertex->[$_] += $shift[$_] for X,Y,Z; } } } sub duplicate { my $self = shift; my (@shift) = @_; my @new_facets = (); foreach my $facet (@{$self->facets}) { # transform vertex coordinates my ($normal, @vertices) = @$facet; push @new_facets, [ $normal ]; foreach my $vertex (@vertices) { push @{$new_facets[-1]}, [ map $vertex->[$_] + ($shift[$_] || 0), (X,Y,Z) ]; } } push @{$self->facets}, @new_facets; } sub bounding_box { my $self = shift; my @extents = (map [99999999999, -99999999999], X,Y,Z); foreach my $facet (@{$self->facets}) { my ($normal, @vertices) = @$facet; foreach my $vertex (@vertices) { for (X,Y,Z) { $extents[$_][MIN] = $vertex->[$_] if $vertex->[$_] < $extents[$_][MIN]; $extents[$_][MAX] = $vertex->[$_] if $vertex->[$_] > $extents[$_][MAX]; } } } return @extents; } sub size { my $self = shift; my @extents = $self->bounding_box; return map $extents[$_][MAX] - $extents[$_][MIN], (X,Y,Z); } sub _facet { my $self = shift; my ($print, $facet_index, $normal, @vertices) = @_; Slic3r::debugf "\n==> FACET %d (%f,%f,%f - %f,%f,%f - %f,%f,%f):\n", $facet_index, map @$_, @vertices if $Slic3r::debug; # find the vertical extents of the facet my ($min_z, $max_z) = (99999999999, -99999999999); foreach my $vertex (@vertices) { $min_z = $vertex->[Z] if $vertex->[Z] < $min_z; $max_z = $vertex->[Z] if $vertex->[Z] > $max_z; } Slic3r::debugf "z: min = %.0f, max = %.0f\n", $min_z, $max_z; if ($min_z == $max_z) { Slic3r::debugf "Facet is horizontal; ignoring\n"; return; } # calculate the layer extents # (the -1 and +1 here are used as a quick and dirty replacement for some # complex calculation of the first layer height ratio logic) my $min_layer = int($min_z * $Slic3r::resolution / $Slic3r::layer_height) - 1; $min_layer = 0 if $min_layer < 0; my $max_layer = int($max_z * $Slic3r::resolution / $Slic3r::layer_height) + 1; Slic3r::debugf "layers: min = %s, max = %s\n", $min_layer, $max_layer; # reorder vertices so that the first one is the one with lowest Z # this is needed to get all intersection lines in a consistent order # (external on the right of the line) { my @z_order = sort { $vertices[$a][Z] <=> $vertices[$b][Z] } 0..2; @vertices = (splice(@vertices, $z_order[0]), splice(@vertices, 0, $z_order[0])); } for (my $layer_id = $min_layer; $layer_id <= $max_layer; $layer_id++) { my $layer = $print->layer($layer_id); my @intersections = $self->intersect_facet($facet_index, \@vertices, $layer->slice_z); if ($facet_index =~ /^(488)$/ && $layer_id == 14) { printf "z = %f\n", $layer->slice_z; YYY \@intersections; #exit if $facet_index == 488; } $layer->add_line($_) for @intersections; } } sub intersect_facet { my $self = shift; my ($facet_index, $vertices, $z) = @_; # build the three segments of the triangle facet my @edges = $self->facet_edges($vertices); my (@lines, @points, @intersection_points, @points_on_layer) = (); foreach my $edge (@edges) { my ($a, $b) = @$edge; my $edge_id = $self->edge_id($edge); #printf "Az = %f, Bz = %f, z = %f\n", $a->[Z], $b->[Z], $z; if (abs($a->[Z] - $b->[Z]) < epsilon && abs($a->[Z] - $z) < epsilon) { # edge is horizontal and belongs to the current layer my $edge_type = (grep $_->[Z] > $z, @$vertices) ? 'bottom' : 'top'; ($a, $b) = ($b, $a) if $edge_type eq 'bottom'; push @lines, Slic3r::TriangleMesh::IntersectionLine->new( a => [$a->[X], $a->[Y]], b => [$b->[X], $b->[Y]], a_id => sprintf("%f,%f", @$a[X,Y]), b_id => sprintf("%f,%f", @$b[X,Y]), facet_edge => $edge_type, facet_index => $facet_index, ); #print "Horizontal edge at $z!\n"; } elsif (abs($a->[Z] - $z) < epsilon) { #print "A point on plane $z!\n"; push @points, [ $a->[X], $a->[Y], sprintf("%f,%f", @$a[X,Y]) ]; push @points_on_layer, $#points; } elsif (abs($b->[Z] - $z) < epsilon) { #print "B point on plane $z!\n"; push @points, [ $b->[X], $b->[Y], sprintf("%f,%f", @$b[X,Y]) ]; push @points_on_layer, $#points; } elsif (($a->[Z] < ($z - epsilon) && $b->[Z] > ($z + epsilon)) || ($b->[Z] < ($z - epsilon) && $a->[Z] > ($z + epsilon))) { # edge intersects the current layer; calculate intersection push @points, [ $b->[X] + ($a->[X] - $b->[X]) * ($z - $b->[Z]) / ($a->[Z] - $b->[Z]), $b->[Y] + ($a->[Y] - $b->[Y]) * ($z - $b->[Z]) / ($a->[Z] - $b->[Z]), $edge_id, $edge_id, ]; push @intersection_points, $#points; #print "Intersects at $z!\n"; } } return @lines if @lines; if (@points_on_layer == 2 && @intersection_points == 1) { $points[ $points_on_layer[1] ] = undef; @points = grep $_, @points; } if (@points_on_layer == 2 && @intersection_points == 0) { if (same_point(map $points[$_], @points_on_layer)) { return (); } } if (@points) { # defensive programming: die "Facets must intersect each plane 0 or 2 times" if @points != 2; # connect points: return Slic3r::TriangleMesh::IntersectionLine->new( a => [$points[A][X], $points[A][Y]], b => [$points[B][X], $points[B][Y]], a_id => $points[A][2], b_id => $points[B][2], facet_index => $facet_index, prev_facet_index => ($points[A][3] ? +(grep $_ != $facet_index, @{$self->edge_facets->{$points[A][3]}})[0] || undef : undef), next_facet_index => ($points[B][3] ? +(grep $_ != $facet_index, @{$self->edge_facets->{$points[B][3]}})[0] || undef : undef), ); #printf " intersection points at z = %f: %f,%f - %f,%f\n", $z, map @$_, @intersection_points; } return (); } sub facet_edges { my $self = shift; my ($facet) = @_; # ignore the normal if provided my @vertices = @$facet[-3..-1]; return ( [ $vertices[0], $vertices[1] ], [ $vertices[1], $vertices[2] ], [ $vertices[2], $vertices[0] ], ) } sub edge_id { my $self = shift; my ($edge) = @_; my @point_ids = map sprintf("%f,%f,%f", @$_), @$edge; return join "-", sort @point_ids; } 1;