#ifndef slic3r_Line_hpp_ #define slic3r_Line_hpp_ #include "libslic3r.h" #include "Point.hpp" #include namespace Slic3r { class BoundingBox; class Line; class Line3; class Linef3; class Polyline; class ThickLine; typedef std::vector Lines; typedef std::vector Lines3; typedef std::vector ThickLines; Linef3 transform(const Linef3& line, const Transform3d& t); namespace line_alg { template struct Traits { static constexpr int Dim = L::Dim; using Scalar = typename L::Scalar; static Vec& get_a(L &l) { return l.a; } static Vec& get_b(L &l) { return l.b; } static const Vec& get_a(const L &l) { return l.a; } static const Vec& get_b(const L &l) { return l.b; } }; template const constexpr int Dim = Traits>::Dim; template using Scalar = typename Traits>::Scalar; template auto get_a(L &&l) { return Traits>::get_a(l); } template auto get_b(L &&l) { return Traits>::get_b(l); } // Distance to the closest point of line. template double distance_to_squared(const L &line, const Vec, Scalar> &point, Vec, Scalar> *nearest_point) { const Vec, double> v = (get_b(line) - get_a(line)).template cast(); const Vec, double> va = (point - get_a(line)).template cast(); const double l2 = v.squaredNorm(); // avoid a sqrt if (l2 == 0.0) { // a == b case *nearest_point = get_a(line); return va.squaredNorm(); } // Consider the line extending the segment, parameterized as a + t (b - a). // We find projection of this point onto the line. // It falls where t = [(this-a) . (b-a)] / |b-a|^2 const double t = va.dot(v) / l2; if (t < 0.0) { // beyond the 'a' end of the segment *nearest_point = get_a(line); return va.squaredNorm(); } else if (t > 1.0) { // beyond the 'b' end of the segment *nearest_point = get_b(line); return (point - get_b(line)).template cast().squaredNorm(); } *nearest_point = (get_a(line).template cast() + t * v).template cast>(); return (t * v - va).squaredNorm(); } // Distance to the closest point of line. template double distance_to_squared(const L &line, const Vec, Scalar> &point) { Vec, Scalar> nearest_point; return distance_to_squared(line, point, &nearest_point); } template double distance_to(const L &line, const Vec, Scalar> &point) { return std::sqrt(distance_to_squared(line, point)); } // Returns a squared distance to the closest point on the infinite. // Returned nearest_point (and returned squared distance to this point) could be beyond the 'a' and 'b' ends of the segment. template double distance_to_infinite_squared(const L &line, const Vec, Scalar> &point, Vec, Scalar> *closest_point) { const Vec, double> v = (get_b(line) - get_a(line)).template cast(); const Vec, double> va = (point - get_a(line)).template cast(); const double l2 = v.squaredNorm(); // avoid a sqrt if (l2 == 0.) { // a == b case *closest_point = get_a(line); return va.squaredNorm(); } // Consider the line extending the segment, parameterized as a + t (b - a). // We find projection of this point onto the line. // It falls where t = [(this-a) . (b-a)] / |b-a|^2 const double t = va.dot(v) / l2; *closest_point = (get_a(line).template cast() + t * v).template cast>(); return (t * v - va).squaredNorm(); } // Returns a squared distance to the closest point on the infinite. // Closest point (and returned squared distance to this point) could be beyond the 'a' and 'b' ends of the segment. template double distance_to_infinite_squared(const L &line, const Vec, Scalar> &point) { Vec, Scalar> nearest_point; return distance_to_infinite_squared(line, point, &nearest_point); } // Returns a distance to the closest point on the infinite. // Closest point (and returned squared distance to this point) could be beyond the 'a' and 'b' ends of the segment. template double distance_to_infinite(const L &line, const Vec, Scalar> &point) { return std::sqrt(distance_to_infinite_squared(line, point)); } } // namespace line_alg class Line { public: Line() {} Line(const Point& _a, const Point& _b) : a(_a), b(_b) {} explicit operator Lines() const { Lines lines; lines.emplace_back(*this); return lines; } void scale(double factor) { this->a *= factor; this->b *= factor; } void translate(const Point &v) { this->a += v; this->b += v; } void translate(double x, double y) { this->translate(Point(x, y)); } void rotate(double angle, const Point ¢er) { this->a.rotate(angle, center); this->b.rotate(angle, center); } void reverse() { std::swap(this->a, this->b); } double length() const { return (b - a).cast().norm(); } Point midpoint() const { return (this->a + this->b) / 2; } bool intersection_infinite(const Line &other, Point* point) const; bool operator==(const Line &rhs) const { return this->a == rhs.a && this->b == rhs.b; } double distance_to_squared(const Point &point) const { return distance_to_squared(point, this->a, this->b); } double distance_to_squared(const Point &point, Point *closest_point) const { return line_alg::distance_to_squared(*this, point, closest_point); } double distance_to(const Point &point) const { return distance_to(point, this->a, this->b); } double distance_to_infinite_squared(const Point &point, Point *closest_point) const { return line_alg::distance_to_infinite_squared(*this, point, closest_point); } double perp_distance_to(const Point &point) const; bool parallel_to(double angle) const; bool parallel_to(const Line& line) const; bool perpendicular_to(double angle) const; bool perpendicular_to(const Line& line) const; double atan2_() const { return atan2(this->b(1) - this->a(1), this->b(0) - this->a(0)); } double orientation() const; double direction() const; Vector vector() const { return this->b - this->a; } Vector normal() const { return Vector((this->b(1) - this->a(1)), -(this->b(0) - this->a(0))); } bool intersection(const Line& line, Point* intersection) const; // Clip a line with a bounding box. Returns false if the line is completely outside of the bounding box. bool clip_with_bbox(const BoundingBox &bbox); // Extend the line from both sides by an offset. void extend(double offset); static inline double distance_to_squared(const Point &point, const Point &a, const Point &b) { return line_alg::distance_to_squared(Line{a, b}, Vec<2, coord_t>{point}); } static double distance_to(const Point &point, const Point &a, const Point &b) { return sqrt(distance_to_squared(point, a, b)); } // Returns a distance to the closest point on the infinite. // Closest point (and returned squared distance to this point) could be beyond the 'a' and 'b' ends of the segment. static inline double distance_to_infinite_squared(const Point &point, const Point &a, const Point &b) { return line_alg::distance_to_infinite_squared(Line{a, b}, Vec<2, coord_t>{point}); } static double distance_to_infinite(const Point &point, const Point &a, const Point &b) { return sqrt(distance_to_infinite_squared(point, a, b)); } Point a; Point b; static const constexpr int Dim = 2; using Scalar = Point::Scalar; }; class ThickLine : public Line { public: ThickLine() : a_width(0), b_width(0) {} ThickLine(const Point& a, const Point& b) : Line(a, b), a_width(0), b_width(0) {} ThickLine(const Point& a, const Point& b, double wa, double wb) : Line(a, b), a_width(wa), b_width(wb) {} double a_width, b_width; }; class Line3 { public: Line3() : a(Vec3crd::Zero()), b(Vec3crd::Zero()) {} Line3(const Vec3crd& _a, const Vec3crd& _b) : a(_a), b(_b) {} double length() const { return (this->a - this->b).cast().norm(); } Vec3crd vector() const { return this->b - this->a; } Vec3crd a; Vec3crd b; static const constexpr int Dim = 3; using Scalar = Vec3crd::Scalar; }; class Linef { public: Linef() : a(Vec2d::Zero()), b(Vec2d::Zero()) {} Linef(const Vec2d& _a, const Vec2d& _b) : a(_a), b(_b) {} Vec2d a; Vec2d b; static const constexpr int Dim = 2; using Scalar = Vec2d::Scalar; }; class Linef3 { public: Linef3() : a(Vec3d::Zero()), b(Vec3d::Zero()) {} Linef3(const Vec3d& _a, const Vec3d& _b) : a(_a), b(_b) {} Vec3d intersect_plane(double z) const; void scale(double factor) { this->a *= factor; this->b *= factor; } Vec3d vector() const { return this->b - this->a; } Vec3d unit_vector() const { return (length() == 0.0) ? Vec3d::Zero() : vector().normalized(); } double length() const { return vector().norm(); } Vec3d a; Vec3d b; static const constexpr int Dim = 3; using Scalar = Vec3d::Scalar; }; BoundingBox get_extents(const Lines &lines); } // namespace Slic3r // start Boost #include namespace boost { namespace polygon { template <> struct geometry_concept { typedef segment_concept type; }; template <> struct segment_traits { typedef coord_t coordinate_type; typedef Slic3r::Point point_type; static inline point_type get(const Slic3r::Line& line, direction_1d dir) { return dir.to_int() ? line.b : line.a; } }; } } // end Boost #endif // slic3r_Line_hpp_