#include "libslic3r/libslic3r.h" #include "GLGizmo.hpp" #include "GUI.hpp" #include "GUI_App.hpp" #include "../../libslic3r/Utils.hpp" #include "PresetBundle.hpp" #include #include "libslic3r/Geometry.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include "GUI.hpp" #include "GUI_Utils.hpp" #include "GUI_App.hpp" // TODO: Display tooltips quicker on Linux static const float DEFAULT_BASE_COLOR[3] = { 0.625f, 0.625f, 0.625f }; static const float DEFAULT_DRAG_COLOR[3] = { 1.0f, 1.0f, 1.0f }; static const float DEFAULT_HIGHLIGHT_COLOR[3] = { 1.0f, 0.38f, 0.0f }; static const float AXES_COLOR[3][3] = { { 1.0f, 0.0f, 0.0f }, { 0.0f, 1.0f, 0.0f }, { 0.0f, 0.0f, 1.0f } }; namespace Slic3r { namespace GUI { const float GLGizmoBase::Grabber::SizeFactor = 0.025f; const float GLGizmoBase::Grabber::MinHalfSize = 1.5f; const float GLGizmoBase::Grabber::DraggingScaleFactor = 1.25f; GLGizmoBase::Grabber::Grabber() : center(Vec3d::Zero()) , angles(Vec3d::Zero()) , dragging(false) , enabled(true) { color[0] = 1.0f; color[1] = 1.0f; color[2] = 1.0f; } void GLGizmoBase::Grabber::render(bool hover, float size) const { float render_color[3]; if (hover) { render_color[0] = 1.0f - color[0]; render_color[1] = 1.0f - color[1]; render_color[2] = 1.0f - color[2]; } else ::memcpy((void*)render_color, (const void*)color, 3 * sizeof(float)); render(size, render_color, true); } float GLGizmoBase::Grabber::get_half_size(float size) const { return std::max(size * SizeFactor, MinHalfSize); } float GLGizmoBase::Grabber::get_dragging_half_size(float size) const { return std::max(size * SizeFactor * DraggingScaleFactor, MinHalfSize); } void GLGizmoBase::Grabber::render(float size, const float* render_color, bool use_lighting) const { float half_size = dragging ? get_dragging_half_size(size) : get_half_size(size); if (use_lighting) ::glEnable(GL_LIGHTING); ::glColor3fv(render_color); ::glPushMatrix(); ::glTranslated(center(0), center(1), center(2)); ::glRotated(Geometry::rad2deg(angles(2)), 0.0, 0.0, 1.0); ::glRotated(Geometry::rad2deg(angles(1)), 0.0, 1.0, 0.0); ::glRotated(Geometry::rad2deg(angles(0)), 1.0, 0.0, 0.0); // face min x ::glPushMatrix(); ::glTranslatef(-(GLfloat)half_size, 0.0f, 0.0f); ::glRotatef(-90.0f, 0.0f, 1.0f, 0.0f); render_face(half_size); ::glPopMatrix(); // face max x ::glPushMatrix(); ::glTranslatef((GLfloat)half_size, 0.0f, 0.0f); ::glRotatef(90.0f, 0.0f, 1.0f, 0.0f); render_face(half_size); ::glPopMatrix(); // face min y ::glPushMatrix(); ::glTranslatef(0.0f, -(GLfloat)half_size, 0.0f); ::glRotatef(90.0f, 1.0f, 0.0f, 0.0f); render_face(half_size); ::glPopMatrix(); // face max y ::glPushMatrix(); ::glTranslatef(0.0f, (GLfloat)half_size, 0.0f); ::glRotatef(-90.0f, 1.0f, 0.0f, 0.0f); render_face(half_size); ::glPopMatrix(); // face min z ::glPushMatrix(); ::glTranslatef(0.0f, 0.0f, -(GLfloat)half_size); ::glRotatef(180.0f, 1.0f, 0.0f, 0.0f); render_face(half_size); ::glPopMatrix(); // face max z ::glPushMatrix(); ::glTranslatef(0.0f, 0.0f, (GLfloat)half_size); render_face(half_size); ::glPopMatrix(); ::glPopMatrix(); if (use_lighting) ::glDisable(GL_LIGHTING); } void GLGizmoBase::Grabber::render_face(float half_size) const { ::glBegin(GL_TRIANGLES); ::glNormal3f(0.0f, 0.0f, 1.0f); ::glVertex3f(-(GLfloat)half_size, -(GLfloat)half_size, 0.0f); ::glVertex3f((GLfloat)half_size, -(GLfloat)half_size, 0.0f); ::glVertex3f((GLfloat)half_size, (GLfloat)half_size, 0.0f); ::glVertex3f((GLfloat)half_size, (GLfloat)half_size, 0.0f); ::glVertex3f(-(GLfloat)half_size, (GLfloat)half_size, 0.0f); ::glVertex3f(-(GLfloat)half_size, -(GLfloat)half_size, 0.0f); ::glEnd(); } GLGizmoBase::GLGizmoBase(GLCanvas3D& parent) : m_parent(parent) , m_group_id(-1) , m_state(Off) , m_hover_id(-1) , m_dragging(false) { ::memcpy((void*)m_base_color, (const void*)DEFAULT_BASE_COLOR, 3 * sizeof(float)); ::memcpy((void*)m_drag_color, (const void*)DEFAULT_DRAG_COLOR, 3 * sizeof(float)); ::memcpy((void*)m_highlight_color, (const void*)DEFAULT_HIGHLIGHT_COLOR, 3 * sizeof(float)); } void GLGizmoBase::set_hover_id(int id) { if (m_grabbers.empty() || (id < (int)m_grabbers.size())) { m_hover_id = id; on_set_hover_id(); } } void GLGizmoBase::set_highlight_color(const float* color) { if (color != nullptr) ::memcpy((void*)m_highlight_color, (const void*)color, 3 * sizeof(float)); } void GLGizmoBase::enable_grabber(unsigned int id) { if ((0 <= id) && (id < (unsigned int)m_grabbers.size())) m_grabbers[id].enabled = true; on_enable_grabber(id); } void GLGizmoBase::disable_grabber(unsigned int id) { if ((0 <= id) && (id < (unsigned int)m_grabbers.size())) m_grabbers[id].enabled = false; on_disable_grabber(id); } void GLGizmoBase::start_dragging(const GLCanvas3D::Selection& selection) { m_dragging = true; for (int i = 0; i < (int)m_grabbers.size(); ++i) { m_grabbers[i].dragging = (m_hover_id == i); } on_start_dragging(selection); } void GLGizmoBase::stop_dragging() { m_dragging = false; for (int i = 0; i < (int)m_grabbers.size(); ++i) { m_grabbers[i].dragging = false; } on_stop_dragging(); } void GLGizmoBase::update(const UpdateData& data) { if (m_hover_id != -1) on_update(data); } float GLGizmoBase::picking_color_component(unsigned int id) const { int color = 254 - (int)id; if (m_group_id > -1) color -= m_group_id; return (float)color / 255.0f; } void GLGizmoBase::render_grabbers(const BoundingBoxf3& box) const { float size = (float)box.max_size(); for (int i = 0; i < (int)m_grabbers.size(); ++i) { if (m_grabbers[i].enabled) m_grabbers[i].render((m_hover_id == i), size); } } void GLGizmoBase::render_grabbers_for_picking(const BoundingBoxf3& box) const { float size = (float)box.max_size(); for (unsigned int i = 0; i < (unsigned int)m_grabbers.size(); ++i) { if (m_grabbers[i].enabled) { m_grabbers[i].color[0] = 1.0f; m_grabbers[i].color[1] = 1.0f; m_grabbers[i].color[2] = picking_color_component(i); m_grabbers[i].render_for_picking(size); } } } void GLGizmoBase::create_external_gizmo_widgets(wxWindow *parent) {} void GLGizmoBase::set_tooltip(const std::string& tooltip) const { m_parent.set_tooltip(tooltip); } std::string GLGizmoBase::format(float value, unsigned int decimals) const { return Slic3r::string_printf("%.*f", decimals, value); } const float GLGizmoRotate::Offset = 5.0f; const unsigned int GLGizmoRotate::CircleResolution = 64; const unsigned int GLGizmoRotate::AngleResolution = 64; const unsigned int GLGizmoRotate::ScaleStepsCount = 72; const float GLGizmoRotate::ScaleStepRad = 2.0f * (float)PI / GLGizmoRotate::ScaleStepsCount; const unsigned int GLGizmoRotate::ScaleLongEvery = 2; const float GLGizmoRotate::ScaleLongTooth = 0.1f; // in percent of radius const unsigned int GLGizmoRotate::SnapRegionsCount = 8; const float GLGizmoRotate::GrabberOffset = 0.15f; // in percent of radius GLGizmoRotate::GLGizmoRotate(GLCanvas3D& parent, GLGizmoRotate::Axis axis) : GLGizmoBase(parent) , m_axis(axis) , m_angle(0.0) , m_center(0.0, 0.0, 0.0) , m_radius(0.0f) , m_snap_coarse_in_radius(0.0f) , m_snap_coarse_out_radius(0.0f) , m_snap_fine_in_radius(0.0f) , m_snap_fine_out_radius(0.0f) { } void GLGizmoRotate::set_angle(double angle) { if (std::abs(angle - 2.0 * (double)PI) < EPSILON) angle = 0.0; m_angle = angle; } bool GLGizmoRotate::on_init() { m_grabbers.push_back(Grabber()); return true; } void GLGizmoRotate::on_start_dragging(const GLCanvas3D::Selection& selection) { const BoundingBoxf3& box = selection.get_bounding_box(); m_center = box.center(); m_radius = Offset + box.radius(); m_snap_coarse_in_radius = m_radius / 3.0f; m_snap_coarse_out_radius = 2.0f * m_snap_coarse_in_radius; m_snap_fine_in_radius = m_radius; m_snap_fine_out_radius = m_snap_fine_in_radius + m_radius * ScaleLongTooth; } void GLGizmoRotate::on_update(const UpdateData& data) { Vec2d mouse_pos = to_2d(mouse_position_in_local_plane(data.mouse_ray)); Vec2d orig_dir = Vec2d::UnitX(); Vec2d new_dir = mouse_pos.normalized(); double theta = ::acos(clamp(-1.0, 1.0, new_dir.dot(orig_dir))); if (cross2(orig_dir, new_dir) < 0.0) theta = 2.0 * (double)PI - theta; double len = mouse_pos.norm(); // snap to coarse snap region if ((m_snap_coarse_in_radius <= len) && (len <= m_snap_coarse_out_radius)) { double step = 2.0 * (double)PI / (double)SnapRegionsCount; theta = step * (double)std::round(theta / step); } else { // snap to fine snap region (scale) if ((m_snap_fine_in_radius <= len) && (len <= m_snap_fine_out_radius)) { double step = 2.0 * (double)PI / (double)ScaleStepsCount; theta = step * (double)std::round(theta / step); } } if (theta == 2.0 * (double)PI) theta = 0.0; m_angle = theta; } void GLGizmoRotate::on_render(const GLCanvas3D::Selection& selection) const { if (!m_grabbers[0].enabled) return; const BoundingBoxf3& box = selection.get_bounding_box(); bool single_selection = selection.is_single_full_instance() || selection.is_single_modifier() || selection.is_single_volume(); std::string axis; switch (m_axis) { case X: { axis = "X: "; break; } case Y: { axis = "Y: "; break; } case Z: { axis = "Z: "; break; } } if ((single_selection && (m_hover_id == 0)) || m_dragging) set_tooltip(axis + format((float)Geometry::rad2deg(m_angle), 4) + "\u00B0"); else { m_center = box.center(); m_radius = Offset + box.radius(); m_snap_coarse_in_radius = m_radius / 3.0f; m_snap_coarse_out_radius = 2.0f * m_snap_coarse_in_radius; m_snap_fine_in_radius = m_radius; m_snap_fine_out_radius = m_radius * (1.0f + ScaleLongTooth); } ::glEnable(GL_DEPTH_TEST); ::glPushMatrix(); transform_to_local(); ::glLineWidth((m_hover_id != -1) ? 2.0f : 1.5f); ::glColor3fv((m_hover_id != -1) ? m_drag_color : m_highlight_color); render_circle(); if (m_hover_id != -1) { render_scale(); render_snap_radii(); render_reference_radius(); } ::glColor3fv(m_highlight_color); if (m_hover_id != -1) render_angle(); render_grabber(box); ::glPopMatrix(); } void GLGizmoRotate::on_render_for_picking(const GLCanvas3D::Selection& selection) const { ::glDisable(GL_DEPTH_TEST); ::glPushMatrix(); transform_to_local(); render_grabbers_for_picking(selection.get_bounding_box()); ::glPopMatrix(); } void GLGizmoRotate::render_circle() const { ::glBegin(GL_LINE_LOOP); for (unsigned int i = 0; i < ScaleStepsCount; ++i) { float angle = (float)i * ScaleStepRad; float x = ::cos(angle) * m_radius; float y = ::sin(angle) * m_radius; float z = 0.0f; ::glVertex3f((GLfloat)x, (GLfloat)y, (GLfloat)z); } ::glEnd(); } void GLGizmoRotate::render_scale() const { float out_radius_long = m_snap_fine_out_radius; float out_radius_short = m_radius * (1.0f + 0.5f * ScaleLongTooth); ::glBegin(GL_LINES); for (unsigned int i = 0; i < ScaleStepsCount; ++i) { float angle = (float)i * ScaleStepRad; float cosa = ::cos(angle); float sina = ::sin(angle); float in_x = cosa * m_radius; float in_y = sina * m_radius; float in_z = 0.0f; float out_x = (i % ScaleLongEvery == 0) ? cosa * out_radius_long : cosa * out_radius_short; float out_y = (i % ScaleLongEvery == 0) ? sina * out_radius_long : sina * out_radius_short; float out_z = 0.0f; ::glVertex3f((GLfloat)in_x, (GLfloat)in_y, (GLfloat)in_z); ::glVertex3f((GLfloat)out_x, (GLfloat)out_y, (GLfloat)out_z); } ::glEnd(); } void GLGizmoRotate::render_snap_radii() const { float step = 2.0f * (float)PI / (float)SnapRegionsCount; float in_radius = m_radius / 3.0f; float out_radius = 2.0f * in_radius; ::glBegin(GL_LINES); for (unsigned int i = 0; i < SnapRegionsCount; ++i) { float angle = (float)i * step; float cosa = ::cos(angle); float sina = ::sin(angle); float in_x = cosa * in_radius; float in_y = sina * in_radius; float in_z = 0.0f; float out_x = cosa * out_radius; float out_y = sina * out_radius; float out_z = 0.0f; ::glVertex3f((GLfloat)in_x, (GLfloat)in_y, (GLfloat)in_z); ::glVertex3f((GLfloat)out_x, (GLfloat)out_y, (GLfloat)out_z); } ::glEnd(); } void GLGizmoRotate::render_reference_radius() const { ::glBegin(GL_LINES); ::glVertex3f(0.0f, 0.0f, 0.0f); ::glVertex3f((GLfloat)(m_radius * (1.0f + GrabberOffset)), 0.0f, 0.0f); ::glEnd(); } void GLGizmoRotate::render_angle() const { float step_angle = (float)m_angle / AngleResolution; float ex_radius = m_radius * (1.0f + GrabberOffset); ::glBegin(GL_LINE_STRIP); for (unsigned int i = 0; i <= AngleResolution; ++i) { float angle = (float)i * step_angle; float x = ::cos(angle) * ex_radius; float y = ::sin(angle) * ex_radius; float z = 0.0f; ::glVertex3f((GLfloat)x, (GLfloat)y, (GLfloat)z); } ::glEnd(); } void GLGizmoRotate::render_grabber(const BoundingBoxf3& box) const { double grabber_radius = (double)m_radius * (1.0 + (double)GrabberOffset) + 2.0 * (double)m_axis * (double)m_grabbers[0].get_half_size((float)box.max_size()); m_grabbers[0].center = Vec3d(::cos(m_angle) * grabber_radius, ::sin(m_angle) * grabber_radius, 0.0); m_grabbers[0].angles(2) = m_angle; ::glColor3fv((m_hover_id != -1) ? m_drag_color : m_highlight_color); ::glBegin(GL_LINES); ::glVertex3f(0.0f, 0.0f, 0.0f); ::glVertex3dv(m_grabbers[0].center.data()); ::glEnd(); ::memcpy((void*)m_grabbers[0].color, (const void*)m_highlight_color, 3 * sizeof(float)); render_grabbers(box); } void GLGizmoRotate::transform_to_local() const { ::glTranslated(m_center(0), m_center(1), m_center(2)); switch (m_axis) { case X: { ::glRotatef(90.0f, 0.0f, 1.0f, 0.0f); ::glRotatef(90.0f, 0.0f, 0.0f, 1.0f); break; } case Y: { ::glRotatef(-90.0f, 1.0f, 0.0f, 0.0f); ::glRotatef(180.0f, 0.0f, 0.0f, 1.0f); break; } default: case Z: { // no rotation break; } } } Vec3d GLGizmoRotate::mouse_position_in_local_plane(const Linef3& mouse_ray) const { double half_pi = 0.5 * (double)PI; Transform3d m = Transform3d::Identity(); switch (m_axis) { case X: { m.rotate(Eigen::AngleAxisd(-half_pi, Vec3d::UnitZ())); m.rotate(Eigen::AngleAxisd(-half_pi, Vec3d::UnitY())); break; } case Y: { m.rotate(Eigen::AngleAxisd(-(double)PI, Vec3d::UnitZ())); m.rotate(Eigen::AngleAxisd(half_pi, Vec3d::UnitX())); break; } default: case Z: { // no rotation applied break; } } m.translate(-m_center); return transform(mouse_ray, m).intersect_plane(0.0); } GLGizmoRotate3D::GLGizmoRotate3D(GLCanvas3D& parent) : GLGizmoBase(parent) { m_gizmos.emplace_back(parent, GLGizmoRotate::X); m_gizmos.emplace_back(parent, GLGizmoRotate::Y); m_gizmos.emplace_back(parent, GLGizmoRotate::Z); for (unsigned int i = 0; i < 3; ++i) { m_gizmos[i].set_group_id(i); } } bool GLGizmoRotate3D::on_init() { for (GLGizmoRotate& g : m_gizmos) { if (!g.init()) return false; } for (unsigned int i = 0; i < 3; ++i) { m_gizmos[i].set_highlight_color(AXES_COLOR[i]); } std::string path = resources_dir() + "/icons/overlay/"; if (!m_textures[Off].load_from_file(path + "rotate_off.png", false)) return false; if (!m_textures[Hover].load_from_file(path + "rotate_hover.png", false)) return false; if (!m_textures[On].load_from_file(path + "rotate_on.png", false)) return false; return true; } std::string GLGizmoRotate3D::on_get_name() const { return L("Rotate"); } void GLGizmoRotate3D::on_start_dragging(const GLCanvas3D::Selection& selection) { if ((0 <= m_hover_id) && (m_hover_id < 3)) m_gizmos[m_hover_id].start_dragging(selection); } void GLGizmoRotate3D::on_stop_dragging() { if ((0 <= m_hover_id) && (m_hover_id < 3)) m_gizmos[m_hover_id].stop_dragging(); } void GLGizmoRotate3D::on_render(const GLCanvas3D::Selection& selection) const { #if ENABLE_GIZMOS_ON_TOP ::glClear(GL_DEPTH_BUFFER_BIT); #endif // ENABLE_GIZMOS_ON_TOP if ((m_hover_id == -1) || (m_hover_id == 0)) m_gizmos[X].render(selection); if ((m_hover_id == -1) || (m_hover_id == 1)) m_gizmos[Y].render(selection); if ((m_hover_id == -1) || (m_hover_id == 2)) m_gizmos[Z].render(selection); } const float GLGizmoScale3D::Offset = 5.0f; GLGizmoScale3D::GLGizmoScale3D(GLCanvas3D& parent) : GLGizmoBase(parent) , m_scale(Vec3d::Ones()) , m_snap_step(0.05) , m_starting_scale(Vec3d::Ones()) { } bool GLGizmoScale3D::on_init() { std::string path = resources_dir() + "/icons/overlay/"; if (!m_textures[Off].load_from_file(path + "scale_off.png", false)) return false; if (!m_textures[Hover].load_from_file(path + "scale_hover.png", false)) return false; if (!m_textures[On].load_from_file(path + "scale_on.png", false)) return false; for (int i = 0; i < 10; ++i) { m_grabbers.push_back(Grabber()); } double half_pi = 0.5 * (double)PI; // x axis m_grabbers[0].angles(1) = half_pi; m_grabbers[1].angles(1) = half_pi; // y axis m_grabbers[2].angles(0) = half_pi; m_grabbers[3].angles(0) = half_pi; return true; } std::string GLGizmoScale3D::on_get_name() const { return L("Scale"); } void GLGizmoScale3D::on_start_dragging(const GLCanvas3D::Selection& selection) { if (m_hover_id != -1) { m_starting_drag_position = m_grabbers[m_hover_id].center; m_starting_box = selection.get_bounding_box(); } } void GLGizmoScale3D::on_update(const UpdateData& data) { if ((m_hover_id == 0) || (m_hover_id == 1)) do_scale_x(data); else if ((m_hover_id == 2) || (m_hover_id == 3)) do_scale_y(data); else if ((m_hover_id == 4) || (m_hover_id == 5)) do_scale_z(data); else if (m_hover_id >= 6) do_scale_uniform(data); } #if ENABLE_GIZMOS_RESET void GLGizmoScale3D::on_process_double_click() { if (m_hover_id >= 6) m_scale = Vec3d::Ones(); } #endif // ENABLE_GIZMOS_RESET void GLGizmoScale3D::on_render(const GLCanvas3D::Selection& selection) const { bool single_instance = selection.is_single_full_instance(); bool single_volume = selection.is_single_modifier() || selection.is_single_volume(); bool single_selection = single_instance || single_volume; Vec3f scale = 100.0f * Vec3f::Ones(); #if ENABLE_MODELVOLUME_TRANSFORM if (single_instance) scale = 100.0f * selection.get_volume(*selection.get_volume_idxs().begin())->get_instance_scaling_factor().cast(); else if (single_volume) scale = 100.0f * selection.get_volume(*selection.get_volume_idxs().begin())->get_volume_scaling_factor().cast(); #else Vec3f scale = single_instance ? 100.0f * selection.get_volume(*selection.get_volume_idxs().begin())->get_scaling_factor().cast() : 100.0f * m_scale.cast(); #endif // ENABLE_MODELVOLUME_TRANSFORM if ((single_selection && ((m_hover_id == 0) || (m_hover_id == 1))) || m_grabbers[0].dragging || m_grabbers[1].dragging) set_tooltip("X: " + format(scale(0), 4) + "%"); else if ((single_selection && ((m_hover_id == 2) || (m_hover_id == 3))) || m_grabbers[2].dragging || m_grabbers[3].dragging) set_tooltip("Y: " + format(scale(1), 4) + "%"); else if ((single_selection && ((m_hover_id == 4) || (m_hover_id == 5))) || m_grabbers[4].dragging || m_grabbers[5].dragging) set_tooltip("Z: " + format(scale(2), 4) + "%"); else if ((single_selection && ((m_hover_id == 6) || (m_hover_id == 7) || (m_hover_id == 8) || (m_hover_id == 9))) || m_grabbers[6].dragging || m_grabbers[7].dragging || m_grabbers[8].dragging || m_grabbers[9].dragging) { std::string tooltip = "X: " + format(scale(0), 4) + "%\n"; tooltip += "Y: " + format(scale(1), 4) + "%\n"; tooltip += "Z: " + format(scale(2), 4) + "%"; set_tooltip(tooltip); } #if ENABLE_GIZMOS_ON_TOP ::glClear(GL_DEPTH_BUFFER_BIT); #endif // ENABLE_GIZMOS_ON_TOP ::glEnable(GL_DEPTH_TEST); BoundingBoxf3 box; Transform3d transform = Transform3d::Identity(); Vec3d angles = Vec3d::Zero(); Transform3d offsets_transform = Transform3d::Identity(); if (single_instance) { // calculate bounding box in instance local reference system const GLCanvas3D::Selection::IndicesList& idxs = selection.get_volume_idxs(); for (unsigned int idx : idxs) { box.merge(selection.get_volume(idx)->bounding_box); } // gets transform from first selected volume const GLVolume* v = selection.get_volume(*idxs.begin()); #if ENABLE_MODELVOLUME_TRANSFORM transform = v->world_matrix(); // gets angles from first selected volume angles = v->get_instance_rotation(); // consider rotation+mirror only components of the transform for offsets offsets_transform = Geometry::assemble_transform(Vec3d::Zero(), angles, Vec3d::Ones(), v->get_instance_mirror()); #else transform = v->world_matrix().cast(); // gets angles from first selected volume angles = v->get_rotation(); // consider rotation+mirror only components of the transform for offsets offsets_transform = Geometry::assemble_transform(Vec3d::Zero(), angles, Vec3d::Ones(), v->get_mirror()); #endif // ENABLE_MODELVOLUME_TRANSFORM } else if (single_volume) { const GLVolume* v = selection.get_volume(*selection.get_volume_idxs().begin()); box = v->bounding_box; #if ENABLE_MODELVOLUME_TRANSFORM transform = v->world_matrix(); angles = Geometry::extract_euler_angles(transform); // consider rotation+mirror only components of the transform for offsets offsets_transform = Geometry::assemble_transform(Vec3d::Zero(), angles, Vec3d::Ones(), v->get_instance_mirror()); #else transform = v->world_matrix().cast(); angles = Geometry::extract_euler_angles(transform); // consider rotation+mirror only components of the transform for offsets offsets_transform = Geometry::assemble_transform(Vec3d::Zero(), angles, Vec3d::Ones(), v->get_mirror()); #endif // ENABLE_MODELVOLUME_TRANSFORM } else box = selection.get_bounding_box(); m_box = box; const Vec3d& center = m_box.center(); Vec3d offset_x = offsets_transform * Vec3d((double)Offset, 0.0, 0.0); Vec3d offset_y = offsets_transform * Vec3d(0.0, (double)Offset, 0.0); Vec3d offset_z = offsets_transform * Vec3d(0.0, 0.0, (double)Offset); // x axis m_grabbers[0].center = transform * Vec3d(m_box.min(0), center(1), center(2)) - offset_x; m_grabbers[1].center = transform * Vec3d(m_box.max(0), center(1), center(2)) + offset_x; ::memcpy((void*)m_grabbers[0].color, (const void*)&AXES_COLOR[0], 3 * sizeof(float)); ::memcpy((void*)m_grabbers[1].color, (const void*)&AXES_COLOR[0], 3 * sizeof(float)); // y axis m_grabbers[2].center = transform * Vec3d(center(0), m_box.min(1), center(2)) - offset_y; m_grabbers[3].center = transform * Vec3d(center(0), m_box.max(1), center(2)) + offset_y; ::memcpy((void*)m_grabbers[2].color, (const void*)&AXES_COLOR[1], 3 * sizeof(float)); ::memcpy((void*)m_grabbers[3].color, (const void*)&AXES_COLOR[1], 3 * sizeof(float)); // z axis m_grabbers[4].center = transform * Vec3d(center(0), center(1), m_box.min(2)) - offset_z; m_grabbers[5].center = transform * Vec3d(center(0), center(1), m_box.max(2)) + offset_z; ::memcpy((void*)m_grabbers[4].color, (const void*)&AXES_COLOR[2], 3 * sizeof(float)); ::memcpy((void*)m_grabbers[5].color, (const void*)&AXES_COLOR[2], 3 * sizeof(float)); // uniform m_grabbers[6].center = transform * Vec3d(m_box.min(0), m_box.min(1), center(2)) - offset_x - offset_y; m_grabbers[7].center = transform * Vec3d(m_box.max(0), m_box.min(1), center(2)) + offset_x - offset_y; m_grabbers[8].center = transform * Vec3d(m_box.max(0), m_box.max(1), center(2)) + offset_x + offset_y; m_grabbers[9].center = transform * Vec3d(m_box.min(0), m_box.max(1), center(2)) - offset_x + offset_y; for (int i = 6; i < 10; ++i) { ::memcpy((void*)m_grabbers[i].color, (const void*)m_highlight_color, 3 * sizeof(float)); } // sets grabbers orientation for (int i = 0; i < 10; ++i) { m_grabbers[i].angles = angles; } ::glLineWidth((m_hover_id != -1) ? 2.0f : 1.5f); float box_max_size = (float)m_box.max_size(); if (m_hover_id == -1) { // draw connections if (m_grabbers[0].enabled && m_grabbers[1].enabled) { ::glColor3fv(m_grabbers[0].color); render_grabbers_connection(0, 1); } if (m_grabbers[2].enabled && m_grabbers[3].enabled) { ::glColor3fv(m_grabbers[2].color); render_grabbers_connection(2, 3); } if (m_grabbers[4].enabled && m_grabbers[5].enabled) { ::glColor3fv(m_grabbers[4].color); render_grabbers_connection(4, 5); } ::glColor3fv(m_base_color); render_grabbers_connection(6, 7); render_grabbers_connection(7, 8); render_grabbers_connection(8, 9); render_grabbers_connection(9, 6); // draw grabbers render_grabbers(m_box); } else if ((m_hover_id == 0) || (m_hover_id == 1)) { // draw connection ::glColor3fv(m_grabbers[0].color); render_grabbers_connection(0, 1); // draw grabbers m_grabbers[0].render(true, box_max_size); m_grabbers[1].render(true, box_max_size); } else if ((m_hover_id == 2) || (m_hover_id == 3)) { // draw connection ::glColor3fv(m_grabbers[2].color); render_grabbers_connection(2, 3); // draw grabbers m_grabbers[2].render(true, box_max_size); m_grabbers[3].render(true, box_max_size); } else if ((m_hover_id == 4) || (m_hover_id == 5)) { // draw connection ::glColor3fv(m_grabbers[4].color); render_grabbers_connection(4, 5); // draw grabbers m_grabbers[4].render(true, box_max_size); m_grabbers[5].render(true, box_max_size); } else if (m_hover_id >= 6) { // draw connection ::glColor3fv(m_drag_color); render_grabbers_connection(6, 7); render_grabbers_connection(7, 8); render_grabbers_connection(8, 9); render_grabbers_connection(9, 6); // draw grabbers for (int i = 6; i < 10; ++i) { m_grabbers[i].render(true, box_max_size); } } } void GLGizmoScale3D::on_render_for_picking(const GLCanvas3D::Selection& selection) const { ::glDisable(GL_DEPTH_TEST); render_grabbers_for_picking(selection.get_bounding_box()); } void GLGizmoScale3D::render_grabbers_connection(unsigned int id_1, unsigned int id_2) const { unsigned int grabbers_count = (unsigned int)m_grabbers.size(); if ((id_1 < grabbers_count) && (id_2 < grabbers_count)) { ::glBegin(GL_LINES); ::glVertex3dv(m_grabbers[id_1].center.data()); ::glVertex3dv(m_grabbers[id_2].center.data()); ::glEnd(); } } void GLGizmoScale3D::do_scale_x(const UpdateData& data) { double ratio = calc_ratio(data); if (ratio > 0.0) m_scale(0) = m_starting_scale(0) * ratio; } void GLGizmoScale3D::do_scale_y(const UpdateData& data) { double ratio = calc_ratio(data); if (ratio > 0.0) m_scale(1) = m_starting_scale(1) * ratio; } void GLGizmoScale3D::do_scale_z(const UpdateData& data) { double ratio = calc_ratio(data); if (ratio > 0.0) m_scale(2) = m_starting_scale(2) * ratio; } void GLGizmoScale3D::do_scale_uniform(const UpdateData& data) { double ratio = calc_ratio(data); if (ratio > 0.0) m_scale = m_starting_scale * ratio; } double GLGizmoScale3D::calc_ratio(const UpdateData& data) const { double ratio = 0.0; // vector from the center to the starting position Vec3d starting_vec = m_starting_drag_position - m_starting_box.center(); double len_starting_vec = starting_vec.norm(); if (len_starting_vec != 0.0) { Vec3d mouse_dir = data.mouse_ray.unit_vector(); // finds the intersection of the mouse ray with the plane parallel to the camera viewport and passing throught the starting position // use ray-plane intersection see i.e. https://en.wikipedia.org/wiki/Line%E2%80%93plane_intersection algebric form // in our case plane normal and ray direction are the same (orthogonal view) // when moving to perspective camera the negative z unit axis of the camera needs to be transformed in world space and used as plane normal Vec3d inters = data.mouse_ray.a + (m_starting_drag_position - data.mouse_ray.a).dot(mouse_dir) / mouse_dir.squaredNorm() * mouse_dir; // vector from the starting position to the found intersection Vec3d inters_vec = inters - m_starting_drag_position; // finds projection of the vector along the staring direction double proj = inters_vec.dot(starting_vec.normalized()); ratio = (len_starting_vec + proj) / len_starting_vec; } if (data.shift_down) ratio = m_snap_step * (double)std::round(ratio / m_snap_step); return ratio; } const double GLGizmoMove3D::Offset = 10.0; GLGizmoMove3D::GLGizmoMove3D(GLCanvas3D& parent) : GLGizmoBase(parent) , m_displacement(Vec3d::Zero()) , m_snap_step(1.0) , m_starting_drag_position(Vec3d::Zero()) , m_starting_box_center(Vec3d::Zero()) , m_starting_box_bottom_center(Vec3d::Zero()) { } bool GLGizmoMove3D::on_init() { std::string path = resources_dir() + "/icons/overlay/"; if (!m_textures[Off].load_from_file(path + "move_off.png", false)) return false; if (!m_textures[Hover].load_from_file(path + "move_hover.png", false)) return false; if (!m_textures[On].load_from_file(path + "move_on.png", false)) return false; for (int i = 0; i < 3; ++i) { m_grabbers.push_back(Grabber()); } return true; } std::string GLGizmoMove3D::on_get_name() const { return L("Move"); } void GLGizmoMove3D::on_start_dragging(const GLCanvas3D::Selection& selection) { if (m_hover_id != -1) { m_displacement = Vec3d::Zero(); const BoundingBoxf3& box = selection.get_bounding_box(); m_starting_drag_position = m_grabbers[m_hover_id].center; m_starting_box_center = box.center(); m_starting_box_bottom_center = box.center(); m_starting_box_bottom_center(2) = box.min(2); } } void GLGizmoMove3D::on_stop_dragging() { m_displacement = Vec3d::Zero(); } void GLGizmoMove3D::on_update(const UpdateData& data) { if (m_hover_id == 0) m_displacement(0) = calc_projection(data); else if (m_hover_id == 1) m_displacement(1) = calc_projection(data); else if (m_hover_id == 2) m_displacement(2) = calc_projection(data); } void GLGizmoMove3D::on_render(const GLCanvas3D::Selection& selection) const { bool show_position = selection.is_single_full_instance(); const Vec3d& position = selection.get_bounding_box().center(); if ((show_position && (m_hover_id == 0)) || m_grabbers[0].dragging) set_tooltip("X: " + format(show_position ? position(0) : m_displacement(0), 2)); else if ((show_position && (m_hover_id == 1)) || m_grabbers[1].dragging) set_tooltip("Y: " + format(show_position ? position(1) : m_displacement(1), 2)); else if ((show_position && (m_hover_id == 2)) || m_grabbers[2].dragging) set_tooltip("Z: " + format(show_position ? position(2) : m_displacement(2), 2)); #if ENABLE_GIZMOS_ON_TOP ::glClear(GL_DEPTH_BUFFER_BIT); #endif // ENABLE_GIZMOS_ON_TOP ::glEnable(GL_DEPTH_TEST); const BoundingBoxf3& box = selection.get_bounding_box(); const Vec3d& center = box.center(); // x axis m_grabbers[0].center = Vec3d(box.max(0) + Offset, center(1), center(2)); ::memcpy((void*)m_grabbers[0].color, (const void*)&AXES_COLOR[0], 3 * sizeof(float)); // y axis m_grabbers[1].center = Vec3d(center(0), box.max(1) + Offset, center(2)); ::memcpy((void*)m_grabbers[1].color, (const void*)&AXES_COLOR[1], 3 * sizeof(float)); // z axis m_grabbers[2].center = Vec3d(center(0), center(1), box.max(2) + Offset); ::memcpy((void*)m_grabbers[2].color, (const void*)&AXES_COLOR[2], 3 * sizeof(float)); ::glLineWidth((m_hover_id != -1) ? 2.0f : 1.5f); if (m_hover_id == -1) { // draw axes for (unsigned int i = 0; i < 3; ++i) { if (m_grabbers[i].enabled) { ::glColor3fv(AXES_COLOR[i]); ::glBegin(GL_LINES); ::glVertex3dv(center.data()); ::glVertex3dv(m_grabbers[i].center.data()); ::glEnd(); } } // draw grabbers render_grabbers(box); } else { // draw axis ::glColor3fv(AXES_COLOR[m_hover_id]); ::glBegin(GL_LINES); ::glVertex3dv(center.data()); ::glVertex3dv(m_grabbers[m_hover_id].center.data()); ::glEnd(); // draw grabber m_grabbers[m_hover_id].render(true, box.max_size()); } } void GLGizmoMove3D::on_render_for_picking(const GLCanvas3D::Selection& selection) const { ::glDisable(GL_DEPTH_TEST); render_grabbers_for_picking(selection.get_bounding_box()); } double GLGizmoMove3D::calc_projection(const UpdateData& data) const { double projection = 0.0; Vec3d starting_vec = m_starting_drag_position - m_starting_box_center; double len_starting_vec = starting_vec.norm(); if (len_starting_vec != 0.0) { Vec3d mouse_dir = data.mouse_ray.unit_vector(); // finds the intersection of the mouse ray with the plane parallel to the camera viewport and passing throught the starting position // use ray-plane intersection see i.e. https://en.wikipedia.org/wiki/Line%E2%80%93plane_intersection algebric form // in our case plane normal and ray direction are the same (orthogonal view) // when moving to perspective camera the negative z unit axis of the camera needs to be transformed in world space and used as plane normal Vec3d inters = data.mouse_ray.a + (m_starting_drag_position - data.mouse_ray.a).dot(mouse_dir) / mouse_dir.squaredNorm() * mouse_dir; // vector from the starting position to the found intersection Vec3d inters_vec = inters - m_starting_drag_position; // finds projection of the vector along the staring direction projection = inters_vec.dot(starting_vec.normalized()); } if (data.shift_down) projection = m_snap_step * (double)std::round(projection / m_snap_step); return projection; } GLGizmoFlatten::GLGizmoFlatten(GLCanvas3D& parent) : GLGizmoBase(parent) , m_normal(Vec3d::Zero()) , m_starting_center(Vec3d::Zero()) { } bool GLGizmoFlatten::on_init() { std::string path = resources_dir() + "/icons/overlay/"; if (!m_textures[Off].load_from_file(path + "layflat_off.png", false)) return false; if (!m_textures[Hover].load_from_file(path + "layflat_hover.png", false)) return false; if (!m_textures[On].load_from_file(path + "layflat_on.png", false)) return false; return true; } std::string GLGizmoFlatten::on_get_name() const { return L("Flatten"); } void GLGizmoFlatten::on_start_dragging(const GLCanvas3D::Selection& selection) { if (m_hover_id != -1) { m_normal = m_planes[m_hover_id].normal; m_starting_center = selection.get_bounding_box().center(); } } void GLGizmoFlatten::on_render(const GLCanvas3D::Selection& selection) const { // The planes are rendered incorrectly when the object is being moved. We better won't render anything in that case. // This indeed has a better solution (to be implemented when there is more time) Vec3d dragged_offset(Vec3d::Zero()); if (m_starting_center == Vec3d::Zero()) m_starting_center = selection.get_bounding_box().center(); dragged_offset = selection.get_bounding_box().center() - m_starting_center; if (dragged_offset.norm() > 0.001) return; ::glEnable(GL_BLEND); ::glEnable(GL_DEPTH_TEST); ::glDisable(GL_CULL_FACE); if (selection.is_from_single_object()) { const std::set& instances_list = selection.get_instance_idxs(); if (!instances_list.empty() && m_model_object) { for (const int instance_idx : instances_list) { Transform3d m = m_model_object->instances[instance_idx]->get_matrix(); for (int i=0; i<(int)m_planes.size(); ++i) { if (i == m_hover_id) ::glColor4f(0.9f, 0.9f, 0.9f, 0.75f); else ::glColor4f(0.9f, 0.9f, 0.9f, 0.5f); m.pretranslate(dragged_offset); ::glPushMatrix(); ::glMultMatrixd(m.data()); ::glBegin(GL_POLYGON); for (const Vec3d& vertex : m_planes[i].vertices) ::glVertex3dv(vertex.data()); ::glEnd(); ::glPopMatrix(); } } } } ::glEnable(GL_CULL_FACE); ::glDisable(GL_BLEND); } void GLGizmoFlatten::on_render_for_picking(const GLCanvas3D::Selection& selection) const { ::glEnable(GL_DEPTH_TEST); ::glDisable(GL_CULL_FACE); if (selection.is_from_single_object()) { const std::set& instances_list = selection.get_instance_idxs(); if (!instances_list.empty() && m_model_object) { for (const int instance_idx : instances_list) { for (int i=0; i<(int)m_planes.size(); ++i) { ::glColor3f(1.0f, 1.0f, picking_color_component(i)); ::glPushMatrix(); ::glMultMatrixd(m_model_object->instances[instance_idx]->get_matrix().data()); ::glBegin(GL_POLYGON); for (const Vec3d& vertex : m_planes[i].vertices) ::glVertex3dv(vertex.data()); ::glEnd(); ::glPopMatrix(); } } } } ::glEnable(GL_CULL_FACE); } void GLGizmoFlatten::set_flattening_data(const ModelObject* model_object) { m_starting_center = Vec3d::Zero(); bool object_changed = m_model_object != model_object; m_model_object = model_object; if (object_changed && is_plane_update_necessary()) update_planes(); } void GLGizmoFlatten::update_planes() { TriangleMesh ch; for (const ModelVolume* vol : m_model_object->volumes) #if ENABLE_MODELVOLUME_TRANSFORM { TriangleMesh vol_ch = vol->get_convex_hull(); vol_ch.transform(vol->get_matrix()); ch.merge(vol_ch); } #else ch.merge(vol->get_convex_hull()); #endif // ENABLE_MODELVOLUME_TRANSFORM ch = ch.convex_hull_3d(); const Vec3d& bb_size = ch.bounding_box().size(); double min_bb_face_area = std::min(bb_size(0) * bb_size(1), std::min(bb_size(0) * bb_size(2), bb_size(1) * bb_size(2))); m_planes.clear(); // Now we'll go through all the facets and append Points of facets sharing the same normal: const int num_of_facets = ch.stl.stats.number_of_facets; std::vector facet_queue(num_of_facets, 0); std::vector facet_visited(num_of_facets, false); int facet_queue_cnt = 0; const stl_normal* normal_ptr = nullptr; while (1) { // Find next unvisited triangle: int facet_idx = 0; for (; facet_idx < num_of_facets; ++ facet_idx) if (!facet_visited[facet_idx]) { facet_queue[facet_queue_cnt ++] = facet_idx; facet_visited[facet_idx] = true; normal_ptr = &ch.stl.facet_start[facet_idx].normal; m_planes.emplace_back(); break; } if (facet_idx == num_of_facets) break; // Everything was visited already while (facet_queue_cnt > 0) { int facet_idx = facet_queue[-- facet_queue_cnt]; const stl_normal& this_normal = ch.stl.facet_start[facet_idx].normal; if (std::abs(this_normal(0) - (*normal_ptr)(0)) < 0.001 && std::abs(this_normal(1) - (*normal_ptr)(1)) < 0.001 && std::abs(this_normal(2) - (*normal_ptr)(2)) < 0.001) { stl_vertex* first_vertex = ch.stl.facet_start[facet_idx].vertex; for (int j=0; j<3; ++j) m_planes.back().vertices.emplace_back((double)first_vertex[j](0), (double)first_vertex[j](1), (double)first_vertex[j](2)); facet_visited[facet_idx] = true; for (int j = 0; j < 3; ++ j) { int neighbor_idx = ch.stl.neighbors_start[facet_idx].neighbor[j]; if (! facet_visited[neighbor_idx]) facet_queue[facet_queue_cnt ++] = neighbor_idx; } } } m_planes.back().normal = Vec3d((double)(*normal_ptr)(0), (double)(*normal_ptr)(1), (double)(*normal_ptr)(2)); // if this is a just a very small triangle, remove it to speed up further calculations (it would be rejected anyway): if (m_planes.back().vertices.size() == 3 && ((m_planes.back().vertices[0] - m_planes.back().vertices[1]).norm() < 1.0 || (m_planes.back().vertices[0] - m_planes.back().vertices[2]).norm() < 1.0 || (m_planes.back().vertices[1] - m_planes.back().vertices[2]).norm() < 1.0)) m_planes.pop_back(); } const float minimal_area = 0.01f * (float)min_bb_face_area; // Now we'll go through all the polygons, transform the points into xy plane to process them: for (unsigned int polygon_id=0; polygon_id < m_planes.size(); ++polygon_id) { Pointf3s& polygon = m_planes[polygon_id].vertices; const Vec3d& normal = m_planes[polygon_id].normal; // We are going to rotate about z and y to flatten the plane Eigen::Quaterniond q; Transform3d m = Transform3d::Identity(); m.matrix().block(0, 0, 3, 3) = q.setFromTwoVectors(normal, Vec3d::UnitZ()).toRotationMatrix(); polygon = transform(polygon, m); polygon = Slic3r::Geometry::convex_hull(polygon); // To remove the inner points // We will calculate area of the polygons and discard ones that are too small // The limit is more forgiving in case the normal is in the direction of the coordinate axes float area_threshold = (std::abs(normal(0)) > 0.999f || std::abs(normal(1)) > 0.999f || std::abs(normal(2)) > 0.999f) ? minimal_area : 10.0f * minimal_area; float& area = m_planes[polygon_id].area; area = 0.f; for (unsigned int i = 0; i < polygon.size(); i++) // Shoelace formula area += polygon[i](0)*polygon[i + 1 < polygon.size() ? i + 1 : 0](1) - polygon[i + 1 < polygon.size() ? i + 1 : 0](0)*polygon[i](1); area = 0.5f * std::abs(area); if (area < area_threshold) { m_planes.erase(m_planes.begin()+(polygon_id--)); continue; } // We check the inner angles and discard polygons with angles smaller than the following threshold const double angle_threshold = ::cos(10.0 * (double)PI / 180.0); bool discard = false; for (unsigned int i = 0; i < polygon.size(); ++i) { const Vec3d& prec = polygon[(i == 0) ? polygon.size() - 1 : i - 1]; const Vec3d& curr = polygon[i]; const Vec3d& next = polygon[(i == polygon.size() - 1) ? 0 : i + 1]; if ((prec - curr).normalized().dot((next - curr).normalized()) > angle_threshold) { discard = true; break; } } if (discard) { m_planes.erase(m_planes.begin() + (polygon_id--)); continue; } // We will shrink the polygon a little bit so it does not touch the object edges: Vec3d centroid = std::accumulate(polygon.begin(), polygon.end(), Vec3d(0.0, 0.0, 0.0)); centroid /= (double)polygon.size(); for (auto& vertex : polygon) vertex = 0.9f*vertex + 0.1f*centroid; // Polygon is now simple and convex, we'll round the corners to make them look nicer. // The algorithm takes a vertex, calculates middles of respective sides and moves the vertex // towards their average (controlled by 'aggressivity'). This is repeated k times. // In next iterations, the neighbours are not always taken at the middle (to increase the // rounding effect at the corners, where we need it most). const unsigned int k = 10; // number of iterations const float aggressivity = 0.2f; // agressivity const unsigned int N = polygon.size(); std::vector> neighbours; if (k != 0) { Pointf3s points_out(2*k*N); // vector long enough to store the future vertices for (unsigned int j=0; jvolumes) m_source_data.bounding_boxes.push_back(vol->get_convex_hull().bounding_box()); const float* first_vertex = m_model_object->volumes.front()->get_convex_hull().first_vertex(); m_source_data.mesh_first_point = Vec3d((double)first_vertex[0], (double)first_vertex[1], (double)first_vertex[2]); } // Check if the bounding boxes of each volume's convex hull is the same as before // and that scaling and rotation has not changed. In that case we don't have to recalculate it. bool GLGizmoFlatten::is_plane_update_necessary() const { if (m_state != On || !m_model_object || m_model_object->instances.empty()) return false; if (m_model_object->volumes.size() != m_source_data.bounding_boxes.size()) return true; // now compare the bounding boxes: for (unsigned int i=0; ivolumes.size(); ++i) if (m_model_object->volumes[i]->get_convex_hull().bounding_box() != m_source_data.bounding_boxes[i]) return true; const float* first_vertex = m_model_object->volumes.front()->get_convex_hull().first_vertex(); Vec3d first_point((double)first_vertex[0], (double)first_vertex[1], (double)first_vertex[2]); if (first_point != m_source_data.mesh_first_point) return true; return false; } Vec3d GLGizmoFlatten::get_flattening_normal() const { Vec3d out = m_normal; m_normal = Vec3d::Zero(); m_starting_center = Vec3d::Zero(); return out; } GLGizmoSlaSupports::GLGizmoSlaSupports(GLCanvas3D& parent) : GLGizmoBase(parent), m_starting_center(Vec3d::Zero()) { } bool GLGizmoSlaSupports::on_init() { std::string path = resources_dir() + "/icons/overlay/"; if (!m_textures[Off].load_from_file(path + "sla_support_points_off.png", false)) return false; if (!m_textures[Hover].load_from_file(path + "sla_support_points_hover.png", false)) return false; if (!m_textures[On].load_from_file(path + "sla_support_points_on.png", false)) return false; return true; } void GLGizmoSlaSupports::set_model_object_ptr(ModelObject* model_object) { if (model_object != nullptr) { m_starting_center = Vec3d::Zero(); m_model_object = model_object; m_model_object_matrix = model_object->instances.front()->get_matrix(); if (is_mesh_update_necessary()) update_mesh(); } } void GLGizmoSlaSupports::on_render(const GLCanvas3D::Selection& selection) const { ::glEnable(GL_BLEND); ::glEnable(GL_DEPTH_TEST); // the dragged_offset is a vector measuring where was the object moved // with the gizmo being on. This is reset in set_flattening_data and // does not work correctly when there are multiple copies. if (m_starting_center == Vec3d::Zero()) m_starting_center = selection.get_bounding_box().center(); Vec3d dragged_offset = selection.get_bounding_box().center() - m_starting_center; for (auto& g : m_grabbers) { g.color[0] = 1.f; g.color[1] = 0.f; g.color[2] = 0.f; } ::glPushMatrix(); ::glTranslatef((GLfloat)dragged_offset(0), (GLfloat)dragged_offset(1), (GLfloat)dragged_offset(2)); render_grabbers(); ::glPopMatrix(); render_tooltip_texture(); ::glDisable(GL_BLEND); } void GLGizmoSlaSupports::on_render_for_picking(const GLCanvas3D::Selection& selection) const { ::glEnable(GL_DEPTH_TEST); for (unsigned int i=0; iinstances.empty()) return false; if ((m_model_object->instances.front()->get_matrix() * m_source_data.matrix.inverse() * Vec3d(1., 1., 1.) - Vec3d(1., 1., 1.)).norm() > 0.001) return true; // following should detect direct mesh changes (can be removed after the mesh is made completely immutable): /*const float* first_vertex = m_model_object->volumes.front()->get_convex_hull().first_vertex(); Vec3d first_point((double)first_vertex[0], (double)first_vertex[1], (double)first_vertex[2]); if (first_point != m_source_data.mesh_first_point) return true;*/ return false; } void GLGizmoSlaSupports::update_mesh() { Eigen::MatrixXf& V = m_V; Eigen::MatrixXi& F = m_F; TriangleMesh mesh(m_model_object->mesh()); const stl_file& stl = mesh.stl; V.resize(3 * stl.stats.number_of_facets, 3); F.resize(stl.stats.number_of_facets, 3); for (unsigned int i=0; ivertex[0](0); V(3*i+0, 1) = facet->vertex[0](1); V(3*i+0, 2) = facet->vertex[0](2); V(3*i+1, 0) = facet->vertex[1](0); V(3*i+1, 1) = facet->vertex[1](1); V(3*i+1, 2) = facet->vertex[1](2); V(3*i+2, 0) = facet->vertex[2](0); V(3*i+2, 1) = facet->vertex[2](1); V(3*i+2, 2) = facet->vertex[2](2); F(i, 0) = 3*i+0; F(i, 1) = 3*i+1; F(i, 2) = 3*i+2; } m_source_data.matrix = m_model_object->instances.front()->get_matrix(); const float* first_vertex = m_model_object->volumes.front()->get_convex_hull().first_vertex(); m_source_data.mesh_first_point = Vec3d((double)first_vertex[0], (double)first_vertex[1], (double)first_vertex[2]); // we'll now reload Grabbers (selection might have changed): m_grabbers.clear(); for (const Vec3f& point : m_model_object->sla_support_points) { m_grabbers.push_back(Grabber()); m_grabbers.back().center = point.cast(); } } Vec3f GLGizmoSlaSupports::unproject_on_mesh(const Vec2d& mouse_pos) { // if the gizmo doesn't have the V, F structures for igl, calculate them first: if (m_V.size() == 0 || is_mesh_update_necessary()) update_mesh(); Eigen::Matrix viewport; ::glGetIntegerv(GL_VIEWPORT, viewport.data()); Eigen::Matrix modelview_matrix; ::glGetDoublev(GL_MODELVIEW_MATRIX, modelview_matrix.data()); Eigen::Matrix projection_matrix; ::glGetDoublev(GL_PROJECTION_MATRIX, projection_matrix.data()); int fid = 0; Eigen::Vector3f bc(0, 0, 0); if (!igl::unproject_onto_mesh(Vec2f(mouse_pos(0), viewport(3)-mouse_pos(1)), modelview_matrix.cast(), projection_matrix.cast(), viewport.cast(), m_V, m_F, fid, bc)) /*if (!igl::embree::unproject_onto_mesh(Vec2f(mouse_pos(0), viewport(3)-mouse_pos(1)), m_F, modelview_matrix.cast(), projection_matrix.cast(), viewport.cast(), m_intersector, fid, bc))*/ throw "unable to unproject_onto_mesh"; const Vec3f& a = m_V.row(m_F(fid, 0)); const Vec3f& b = m_V.row(m_F(fid, 1)); const Vec3f& c = m_V.row(m_F(fid, 2)); Vec3f point = bc(0)*a + bc(1)*b + bc(2)*c; return m_model_object->instances.front()->get_matrix().inverse().cast() * point; } void GLGizmoSlaSupports::clicked_on_object(const Vec2d& mouse_position) { Vec3f new_pos; try { new_pos = unproject_on_mesh(mouse_position); // this can throw - we don't want to create a new grabber in that case m_grabbers.push_back(Grabber()); m_grabbers.back().center = new_pos.cast(); m_model_object->sla_support_points.push_back(new_pos); // This should trigger the support generation // wxGetApp().plater()->reslice(); } catch (...) {} } void GLGizmoSlaSupports::delete_current_grabber(bool delete_all) { if (delete_all) { m_grabbers.clear(); m_model_object->sla_support_points.clear(); // This should trigger the support generation // wxGetApp().plater()->reslice(); } else if (m_hover_id != -1) { m_grabbers.erase(m_grabbers.begin() + m_hover_id); m_model_object->sla_support_points.erase(m_model_object->sla_support_points.begin() + m_hover_id); m_hover_id = -1; // This should trigger the support generation // wxGetApp().plater()->reslice(); } } void GLGizmoSlaSupports::on_update(const UpdateData& data) { if (m_hover_id != -1 && data.mouse_pos) { Vec3f new_pos; try { new_pos = unproject_on_mesh(Vec2d((*data.mouse_pos)(0), (*data.mouse_pos)(1))); m_grabbers[m_hover_id].center = new_pos.cast(); m_model_object->sla_support_points[m_hover_id] = new_pos; } catch (...) {} } } void GLGizmoSlaSupports::render_tooltip_texture() const { if (m_tooltip_texture.get_id() == 0) if (!m_tooltip_texture.load_from_file(resources_dir() + "/icons/variable_layer_height_tooltip.png", false)) return; if (m_reset_texture.get_id() == 0) if (!m_reset_texture.load_from_file(resources_dir() + "/icons/variable_layer_height_reset.png", false)) return; float zoom = m_parent.get_camera_zoom(); float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f; float gap = 30.0f * inv_zoom; const Size& cnv_size = m_parent.get_canvas_size(); float l = gap - cnv_size.get_width()/2.f * inv_zoom; float r = l + (float)m_tooltip_texture.get_width() * inv_zoom; float b = gap - cnv_size.get_height()/2.f * inv_zoom; float t = b + (float)m_tooltip_texture.get_height() * inv_zoom; Rect reset_rect = m_parent.get_gizmo_reset_rect(m_parent, true); ::glDisable(GL_DEPTH_TEST); ::glPushMatrix(); ::glLoadIdentity(); GLTexture::render_texture(m_tooltip_texture.get_id(), l, r, b, t); GLTexture::render_texture(m_reset_texture.get_id(), reset_rect.get_left(), reset_rect.get_right(), reset_rect.get_bottom(), reset_rect.get_top()); ::glPopMatrix(); ::glEnable(GL_DEPTH_TEST); } bool GLGizmoSlaSupports::on_is_activable(const GLCanvas3D::Selection& selection) const { return (wxGetApp().preset_bundle->printers.get_edited_preset().printer_technology() == ptSLA); } std::string GLGizmoSlaSupports::on_get_name() const { return L("SLA Support Points"); } // GLGizmoCut class GLGizmoCutPanel : public wxPanel { public: GLGizmoCutPanel(wxWindow *parent); void display(bool display); private: bool m_active; wxCheckBox *m_cb_rotate; wxButton *m_btn_cut; wxButton *m_btn_cancel; }; GLGizmoCutPanel::GLGizmoCutPanel(wxWindow *parent) : wxPanel(parent) , m_active(false) , m_cb_rotate(new wxCheckBox(this, wxID_ANY, _(L("Rotate lower part upwards")))) , m_btn_cut(new wxButton(this, wxID_OK, _(L("Perform cut")))) , m_btn_cancel(new wxButton(this, wxID_CANCEL, _(L("Cancel")))) { enum { MARGIN = 5 }; auto *sizer = new wxBoxSizer(wxHORIZONTAL); auto *label = new wxStaticText(this, wxID_ANY, _(L("Cut object:"))); sizer->Add(label, 0, wxALL | wxALIGN_CENTER, MARGIN); sizer->Add(m_cb_rotate, 0, wxALL | wxALIGN_CENTER, MARGIN); sizer->AddStretchSpacer(); sizer->Add(m_btn_cut, 0, wxALL | wxALIGN_CENTER, MARGIN); sizer->Add(m_btn_cancel, 0, wxALL | wxALIGN_CENTER, MARGIN); SetSizer(sizer); } void GLGizmoCutPanel::display(bool display) { Show(display); GetParent()->Layout(); } const double GLGizmoCut::Offset = 10.0; const double GLGizmoCut::Margin = 20.0; const std::array GLGizmoCut::GrabberColor = { 1.0, 0.5, 0.0 }; GLGizmoCut::GLGizmoCut(GLCanvas3D& parent) : GLGizmoBase(parent) , m_cut_z(0.0) , m_panel(nullptr) {} void GLGizmoCut::create_external_gizmo_widgets(wxWindow *parent) { wxASSERT(m_panel == nullptr); m_panel = new GLGizmoCutPanel(parent); parent->GetSizer()->Add(m_panel, 0, wxEXPAND); parent->Layout(); parent->Fit(); auto prev_heigh = parent->GetMinSize().GetHeight(); parent->SetMinSize(wxSize(-1, std::max(prev_heigh, m_panel->GetSize().GetHeight()))); m_panel->Hide(); m_panel->Bind(wxEVT_BUTTON, [this](wxCommandEvent&) { perform_cut(); }, wxID_OK); } bool GLGizmoCut::on_init() { // TODO: icon std::string path = resources_dir() + "/icons/overlay/"; if (!m_textures[Off].load_from_file(path + "cut_off.png", false)) { return false; } if (!m_textures[Hover].load_from_file(path + "cut_hover.png", false)) { return false; } if (!m_textures[On].load_from_file(path + "cut_on.png", false)) { return false; } m_grabbers.emplace_back(); return true; } std::string GLGizmoCut::on_get_name() const { return L("Cut"); } void GLGizmoCut::on_set_state() { // Reset m_cut_z on gizmo activation if (get_state() == On) { m_cut_z = 0.0; } // Display or hide the extra panel if (m_panel != nullptr) { m_panel->display(get_state() == On); } } bool GLGizmoCut::on_is_activable(const GLCanvas3D::Selection& selection) const { return selection.is_single_full_instance() && !selection.is_wipe_tower(); } void GLGizmoCut::on_start_dragging(const GLCanvas3D::Selection& selection) { if (m_hover_id == -1) { return; } const BoundingBoxf3& box = selection.get_bounding_box(); m_start_z = m_cut_z; m_max_z = box.size()(2) / 2.0; m_drag_pos = m_grabbers[m_hover_id].center; m_drag_center = box.center(); m_drag_center(2) += m_cut_z; } void GLGizmoCut::on_update(const UpdateData& data) { if (m_hover_id != -1) { // Clamp the plane to the object's bounding box const double new_z = m_start_z + calc_projection(data.mouse_ray); m_cut_z = std::max(-m_max_z, std::min(m_max_z, new_z)); } } void GLGizmoCut::on_render(const GLCanvas3D::Selection& selection) const { if (m_grabbers[0].dragging) { set_tooltip("Z: " + format(m_cut_z, 2)); } const BoundingBoxf3& box = selection.get_bounding_box(); Vec3d plane_center = box.center(); plane_center(2) += m_cut_z; const float min_x = box.min(0) - Margin; const float max_x = box.max(0) + Margin; const float min_y = box.min(1) - Margin; const float max_y = box.max(1) + Margin; ::glEnable(GL_DEPTH_TEST); ::glDisable(GL_CULL_FACE); ::glEnable(GL_BLEND); ::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // Draw the cutting plane ::glBegin(GL_QUADS); ::glColor4f(0.8f, 0.8f, 0.8f, 0.5f); ::glVertex3f(min_x, min_y, plane_center(2)); ::glVertex3f(max_x, min_y, plane_center(2)); ::glVertex3f(max_x, max_y, plane_center(2)); ::glVertex3f(min_x, max_y, plane_center(2)); ::glEnd(); ::glEnable(GL_CULL_FACE); ::glDisable(GL_BLEND); // TODO: draw cut part contour? // Draw the grabber and the connecting line m_grabbers[0].center = plane_center; m_grabbers[0].center(2) = plane_center(2) + Offset; ::glDisable(GL_DEPTH_TEST); ::glLineWidth(m_hover_id != -1 ? 2.0f : 1.5f); ::glColor3f(1.0, 1.0, 0.0); ::glBegin(GL_LINES); ::glVertex3dv(plane_center.data()); ::glVertex3dv(m_grabbers[0].center.data()); ::glEnd(); std::copy(std::begin(GrabberColor), std::end(GrabberColor), m_grabbers[0].color); m_grabbers[0].render(m_hover_id == 0, box.max_size()); } void GLGizmoCut::on_render_for_picking(const GLCanvas3D::Selection& selection) const { ::glDisable(GL_DEPTH_TEST); render_grabbers_for_picking(selection.get_bounding_box()); } void GLGizmoCut::perform_cut() { const auto &selection = m_parent.get_selection(); const auto instance_idx = selection.get_instance_idx(); const auto object_idx = selection.get_object_idx(); wxCHECK_RET(instance_idx >= 0 && object_idx >= 0, "GLGizmoCut: Invalid object selection"); wxGetApp().plater()->cut(object_idx, instance_idx, m_cut_z); } double GLGizmoCut::calc_projection(const Linef3& mouse_ray) const { double projection = 0.0; const Vec3d starting_vec = m_drag_pos - m_drag_center; const double len_starting_vec = starting_vec.norm(); if (len_starting_vec != 0.0) { Vec3d mouse_dir = mouse_ray.unit_vector(); // finds the intersection of the mouse ray with the plane parallel to the camera viewport and passing throught the starting position // use ray-plane intersection see i.e. https://en.wikipedia.org/wiki/Line%E2%80%93plane_intersection algebric form // in our case plane normal and ray direction are the same (orthogonal view) // when moving to perspective camera the negative z unit axis of the camera needs to be transformed in world space and used as plane normal Vec3d inters = mouse_ray.a + (m_drag_pos - mouse_ray.a).dot(mouse_dir) / mouse_dir.squaredNorm() * mouse_dir; // vector from the starting position to the found intersection Vec3d inters_vec = inters - m_drag_pos; // finds projection of the vector along the staring direction projection = inters_vec.dot(starting_vec.normalized()); } return projection; } } // namespace GUI } // namespace Slic3r