#include "Print.hpp" #include "BoundingBox.hpp" #include "ClipperUtils.hpp" #include "Flow.hpp" #include "Geometry.hpp" #include "SupportMaterial.hpp" #include namespace Slic3r { template bool PrintState::is_started(StepClass step) const { return this->started.find(step) != this->started.end(); } template bool PrintState::is_done(StepClass step) const { return this->done.find(step) != this->done.end(); } template void PrintState::set_started(StepClass step) { this->started.insert(step); } template void PrintState::set_done(StepClass step) { this->done.insert(step); } template bool PrintState::invalidate(StepClass step) { bool invalidated = this->started.erase(step) > 0; this->done.erase(step); return invalidated; } template class PrintState; template class PrintState; Print::Print() : total_used_filament(0), total_extruded_volume(0) { } Print::~Print() { clear_objects(); clear_regions(); } void Print::clear_objects() { for (int i = this->objects.size()-1; i >= 0; --i) this->delete_object(i); this->clear_regions(); } PrintObject* Print::get_object(size_t idx) { return objects.at(idx); } void Print::delete_object(size_t idx) { PrintObjectPtrs::iterator i = this->objects.begin() + idx; // before deleting object, invalidate all of its steps in order to // invalidate all of the dependent ones in Print (*i)->invalidate_all_steps(); // destroy object and remove it from our container delete *i; this->objects.erase(i); // TODO: purge unused regions } void Print::reload_object(size_t idx) { /* TODO: this method should check whether the per-object config and per-material configs have changed in such a way that regions need to be rearranged or we can just apply the diff and invalidate something. Same logic as apply_config() For now we just re-add all objects since we haven't implemented this incremental logic yet. This should also check whether object volumes (parts) have changed. */ // collect all current model objects ModelObjectPtrs model_objects; FOREACH_OBJECT(this, object) { model_objects.push_back((*object)->model_object()); } // remove our print objects this->clear_objects(); // re-add model objects for (ModelObjectPtrs::iterator it = model_objects.begin(); it != model_objects.end(); ++it) { this->add_model_object(*it); } } bool Print::reload_model_instances() { bool invalidated = false; FOREACH_OBJECT(this, object) { if ((*object)->reload_model_instances()) invalidated = true; } return invalidated; } void Print::clear_regions() { for (int i = this->regions.size()-1; i >= 0; --i) this->delete_region(i); } PrintRegion* Print::get_region(size_t idx) { return regions.at(idx); } PrintRegion* Print::add_region() { PrintRegion *region = new PrintRegion(this); regions.push_back(region); return region; } void Print::delete_region(size_t idx) { PrintRegionPtrs::iterator i = this->regions.begin() + idx; delete *i; this->regions.erase(i); } bool Print::invalidate_state_by_config_options(const std::vector &opt_keys) { std::set steps; std::set osteps; // this method only accepts PrintConfig option keys for (std::vector::const_iterator opt_key = opt_keys.begin(); opt_key != opt_keys.end(); ++opt_key) { if (*opt_key == "skirts" || *opt_key == "skirt_height" || *opt_key == "skirt_distance" || *opt_key == "min_skirt_length" || *opt_key == "ooze_prevention") { steps.insert(psSkirt); } else if (*opt_key == "brim_width") { steps.insert(psBrim); steps.insert(psSkirt); } else if (*opt_key == "nozzle_diameter") { osteps.insert(posSlice); } else if (*opt_key == "avoid_crossing_perimeters" || *opt_key == "bed_shape" || *opt_key == "bed_temperature" || *opt_key == "bridge_acceleration" || *opt_key == "bridge_fan_speed" || *opt_key == "complete_objects" || *opt_key == "cooling" || *opt_key == "default_acceleration" || *opt_key == "disable_fan_first_layers" || *opt_key == "duplicate_distance" || *opt_key == "end_gcode" || *opt_key == "extruder_clearance_height" || *opt_key == "extruder_clearance_radius" || *opt_key == "extruder_offset" || *opt_key == "extrusion_axis" || *opt_key == "extrusion_multiplier" || *opt_key == "fan_always_on" || *opt_key == "fan_below_layer_time" || *opt_key == "filament_diameter" || *opt_key == "first_layer_acceleration" || *opt_key == "first_layer_bed_temperature" || *opt_key == "first_layer_speed" || *opt_key == "first_layer_temperature" || *opt_key == "gcode_arcs" || *opt_key == "gcode_comments" || *opt_key == "gcode_flavor" || *opt_key == "infill_acceleration" || *opt_key == "infill_first" || *opt_key == "layer_gcode" || *opt_key == "min_fan_speed" || *opt_key == "max_fan_speed" || *opt_key == "min_print_speed" || *opt_key == "notes" || *opt_key == "only_retract_when_crossing_perimeters" || *opt_key == "output_filename_format" || *opt_key == "perimeter_acceleration" || *opt_key == "post_process" || *opt_key == "pressure_advance" || *opt_key == "retract_before_travel" || *opt_key == "retract_layer_change" || *opt_key == "retract_length" || *opt_key == "retract_length_toolchange" || *opt_key == "retract_lift" || *opt_key == "retract_restart_extra" || *opt_key == "retract_restart_extra_toolchange" || *opt_key == "retract_speed" || *opt_key == "slowdown_below_layer_time" || *opt_key == "spiral_vase" || *opt_key == "standby_temperature_delta" || *opt_key == "start_gcode" || *opt_key == "temperature" || *opt_key == "threads" || *opt_key == "toolchange_gcode" || *opt_key == "travel_speed" || *opt_key == "use_firmware_retraction" || *opt_key == "use_relative_e_distances" || *opt_key == "vibration_limit" || *opt_key == "wipe" || *opt_key == "z_offset") { // these options only affect G-code export, so nothing to invalidate } else if (*opt_key == "first_layer_extrusion_width") { osteps.insert(posPerimeters); osteps.insert(posInfill); osteps.insert(posSupportMaterial); steps.insert(psSkirt); steps.insert(psBrim); } else { // for legacy, if we can't handle this option let's invalidate all steps return this->invalidate_all_steps(); } } bool invalidated = false; for (std::set::const_iterator step = steps.begin(); step != steps.end(); ++step) { if (this->invalidate_step(*step)) invalidated = true; } for (std::set::const_iterator ostep = osteps.begin(); ostep != osteps.end(); ++ostep) { FOREACH_OBJECT(this, object) { if ((*object)->invalidate_step(*ostep)) invalidated = true; } } return invalidated; } bool Print::invalidate_step(PrintStep step) { bool invalidated = this->state.invalidate(step); // propagate to dependent steps if (step == psSkirt) { this->invalidate_step(psBrim); } return invalidated; } bool Print::invalidate_all_steps() { // make a copy because when invalidating steps the iterators are not working anymore std::set steps = this->state.started; bool invalidated = false; for (std::set::const_iterator step = steps.begin(); step != steps.end(); ++step) { if (this->invalidate_step(*step)) invalidated = true; } return invalidated; } // returns true if an object step is done on all objects // and there's at least one object bool Print::step_done(PrintObjectStep step) const { if (this->objects.empty()) return false; FOREACH_OBJECT(this, object) { if (!(*object)->state.is_done(step)) return false; } return true; } // returns 0-based indices of used extruders std::set Print::object_extruders() const { std::set extruders; FOREACH_REGION(this, region) { // these checks reflect the same logic used in the GUI for enabling/disabling // extruder selection fields if ((*region)->config.perimeters.value > 0 || this->config.brim_width.value > 0) extruders.insert((*region)->config.perimeter_extruder - 1); if ((*region)->config.fill_density.value > 0) extruders.insert((*region)->config.infill_extruder - 1); if ((*region)->config.top_solid_layers.value > 0 || (*region)->config.bottom_solid_layers.value > 0) extruders.insert((*region)->config.solid_infill_extruder - 1); } return extruders; } // returns 0-based indices of used extruders std::set Print::support_material_extruders() const { std::set extruders; FOREACH_OBJECT(this, object) { if ((*object)->has_support_material()) { extruders.insert((*object)->config.support_material_extruder - 1); extruders.insert((*object)->config.support_material_interface_extruder - 1); } } return extruders; } // returns 0-based indices of used extruders std::set Print::extruders() const { std::set extruders = this->object_extruders(); std::set s_extruders = this->support_material_extruders(); extruders.insert(s_extruders.begin(), s_extruders.end()); return extruders; } void Print::_simplify_slices(double distance) { FOREACH_OBJECT(this, object) { FOREACH_LAYER(*object, layer) { (*layer)->slices.simplify(distance); FOREACH_LAYERREGION(*layer, layerm) { (*layerm)->slices.simplify(distance); } } } } double Print::max_allowed_layer_height() const { std::vector nozzle_diameter; std::set extruders = this->extruders(); for (std::set::const_iterator e = extruders.begin(); e != extruders.end(); ++e) { nozzle_diameter.push_back(this->config.nozzle_diameter.get_at(*e)); } return *std::max_element(nozzle_diameter.begin(), nozzle_diameter.end()); } /* Caller is responsible for supplying models whose objects don't collide and have explicit instance positions */ void Print::add_model_object(ModelObject* model_object, int idx) { DynamicPrintConfig object_config = model_object->config; // clone object_config.normalize(); // initialize print object and store it at the given position PrintObject* o; { BoundingBoxf3 bb = model_object->raw_bounding_box(); if (idx != -1) { // replacing existing object PrintObjectPtrs::iterator old_it = this->objects.begin() + idx; // before deleting object, invalidate all of its steps in order to // invalidate all of the dependent ones in Print (*old_it)->invalidate_all_steps(); delete *old_it; this->objects[idx] = o = new PrintObject(this, model_object, bb); } else { o = new PrintObject(this, model_object, bb); objects.push_back(o); // invalidate steps this->invalidate_step(psSkirt); this->invalidate_step(psBrim); } } for (ModelVolumePtrs::const_iterator v_i = model_object->volumes.begin(); v_i != model_object->volumes.end(); ++v_i) { size_t volume_id = v_i - model_object->volumes.begin(); ModelVolume* volume = *v_i; // get the config applied to this volume PrintRegionConfig config = this->_region_config_from_model_volume(*volume); // find an existing print region with the same config int region_id = -1; for (PrintRegionPtrs::const_iterator region = this->regions.begin(); region != this->regions.end(); ++region) { if (config.equals((*region)->config)) { region_id = region - this->regions.begin(); break; } } // if no region exists with the same config, create a new one if (region_id == -1) { PrintRegion* r = this->add_region(); r->config.apply(config); region_id = this->regions.size() - 1; } // assign volume to region o->add_region_volume(region_id, volume_id); } // apply config to print object o->config.apply(this->default_object_config); o->config.apply(object_config, true); } bool Print::apply_config(DynamicPrintConfig config) { // we get a copy of the config object so we can modify it safely config.normalize(); // apply variables to placeholder parser this->placeholder_parser.apply_config(config); bool invalidated = false; // handle changes to print config t_config_option_keys print_diff = this->config.diff(config); if (!print_diff.empty()) { this->config.apply(config, true); if (this->invalidate_state_by_config_options(print_diff)) invalidated = true; } // handle changes to object config defaults this->default_object_config.apply(config, true); FOREACH_OBJECT(this, obj_ptr) { // we don't assume that config contains a full ObjectConfig, // so we base it on the current print-wise default PrintObjectConfig new_config = this->default_object_config; new_config.apply(config, true); // we override the new config with object-specific options { DynamicPrintConfig model_object_config = (*obj_ptr)->model_object()->config; model_object_config.normalize(); new_config.apply(model_object_config, true); } // check whether the new config is different from the current one t_config_option_keys diff = (*obj_ptr)->config.diff(new_config); if (!diff.empty()) { (*obj_ptr)->config.apply(new_config, true); if ((*obj_ptr)->invalidate_state_by_config_options(diff)) invalidated = true; } } // handle changes to regions config defaults this->default_region_config.apply(config, true); // All regions now have distinct settings. // Check whether applying the new region config defaults we'd get different regions. bool rearrange_regions = false; std::vector other_region_configs; FOREACH_REGION(this, it_r) { size_t region_id = it_r - this->regions.begin(); PrintRegion* region = *it_r; std::vector this_region_configs; FOREACH_OBJECT(this, it_o) { PrintObject* object = *it_o; std::vector ®ion_volumes = object->region_volumes[region_id]; for (std::vector::const_iterator volume_id = region_volumes.begin(); volume_id != region_volumes.end(); ++volume_id) { ModelVolume* volume = object->model_object()->volumes.at(*volume_id); PrintRegionConfig new_config = this->_region_config_from_model_volume(*volume); for (std::vector::iterator it = this_region_configs.begin(); it != this_region_configs.end(); ++it) { // if the new config for this volume differs from the other // volume configs currently associated to this region, it means // the region subdivision does not make sense anymore if (!it->equals(new_config)) { rearrange_regions = true; goto NEXT_REGION; } } this_region_configs.push_back(new_config); for (std::vector::iterator it = other_region_configs.begin(); it != other_region_configs.end(); ++it) { // if the new config for this volume equals any of the other // volume configs that are not currently associated to this // region, it means the region subdivision does not make // sense anymore if (it->equals(new_config)) { rearrange_regions = true; goto NEXT_REGION; } } // if we're here and the new region config is different from the old // one, we need to apply the new config and invalidate all objects // (possible optimization: only invalidate objects using this region) t_config_option_keys region_config_diff = region->config.diff(new_config); if (!region_config_diff.empty()) { region->config.apply(new_config); FOREACH_OBJECT(this, o) { if ((*o)->invalidate_state_by_config_options(region_config_diff)) invalidated = true; } } } } other_region_configs.insert(other_region_configs.end(), this_region_configs.begin(), this_region_configs.end()); NEXT_REGION: continue; } if (rearrange_regions) { // the current subdivision of regions does not make sense anymore. // we need to remove all objects and re-add them ModelObjectPtrs model_objects; FOREACH_OBJECT(this, o) { model_objects.push_back((*o)->model_object()); } this->clear_objects(); for (ModelObjectPtrs::iterator it = model_objects.begin(); it != model_objects.end(); ++it) { this->add_model_object(*it); } invalidated = true; } return invalidated; } bool Print::has_infinite_skirt() const { return (this->config.skirt_height == -1 && this->config.skirts > 0) || (this->config.ooze_prevention && this->extruders().size() > 1); } bool Print::has_skirt() const { return (this->config.skirt_height > 0 && this->config.skirts > 0) || this->has_infinite_skirt(); } void Print::validate() const { if (this->config.complete_objects) { // check horizontal clearance { Polygons a; FOREACH_OBJECT(this, i_object) { PrintObject* object = *i_object; /* get convex hull of all meshes assigned to this print object (this is the same as model_object()->raw_mesh.convex_hull() but probably more efficient */ Polygon convex_hull; { Polygons mesh_convex_hulls; for (size_t i = 0; i < this->regions.size(); ++i) { for (std::vector::const_iterator it = object->region_volumes[i].begin(); it != object->region_volumes[i].end(); ++it) { Polygon hull = object->model_object()->volumes[*it]->mesh.convex_hull(); mesh_convex_hulls.push_back(hull); } } // make a single convex hull for all of them convex_hull = Slic3r::Geometry::convex_hull(mesh_convex_hulls); } // apply the same transformations we apply to the actual meshes when slicing them object->model_object()->instances.front()->transform_polygon(&convex_hull); // grow convex hull with the clearance margin { Polygons grown_hull; offset(convex_hull, &grown_hull, scale_(this->config.extruder_clearance_radius.value)/2, 1, jtRound, scale_(0.1)); convex_hull = grown_hull.front(); } // now we check that no instance of convex_hull intersects any of the previously checked object instances for (Points::const_iterator copy = object->_shifted_copies.begin(); copy != object->_shifted_copies.end(); ++copy) { Polygon p = convex_hull; p.translate(*copy); if (intersects(a, p)) throw PrintValidationException("Some objects are too close; your extruder will collide with them."); union_(a, p, &a); } } } // check vertical clearance { std::vector object_height; FOREACH_OBJECT(this, i_object) { PrintObject* object = *i_object; object_height.insert(object_height.end(), object->copies().size(), object->size.z); } std::sort(object_height.begin(), object_height.end()); // ignore the tallest *copy* (this is why we repeat height for all of them): // it will be printed as last one so its height doesn't matter object_height.pop_back(); if (!object_height.empty() && object_height.back() > scale_(this->config.extruder_clearance_height.value)) throw PrintValidationException("Some objects are too tall and cannot be printed without extruder collisions."); } } if (this->config.spiral_vase) { size_t total_copies_count = 0; FOREACH_OBJECT(this, i_object) total_copies_count += (*i_object)->copies().size(); if (total_copies_count > 1) throw PrintValidationException("The Spiral Vase option can only be used when printing a single object."); if (this->regions.size() > 1) throw PrintValidationException("The Spiral Vase option can only be used when printing single material objects."); } { // find the smallest nozzle diameter std::set extruders = this->extruders(); if (extruders.empty()) throw PrintValidationException("The supplied settings will cause an empty print."); std::set nozzle_diameters; for (std::set::iterator it = extruders.begin(); it != extruders.end(); ++it) nozzle_diameters.insert(this->config.nozzle_diameter.get_at(*it)); double min_nozzle_diameter = *std::min_element(nozzle_diameters.begin(), nozzle_diameters.end()); FOREACH_OBJECT(this, i_object) { PrintObject* object = *i_object; // validate first_layer_height double first_layer_height = object->config.get_abs_value("first_layer_height"); double first_layer_min_nozzle_diameter; if (object->config.raft_layers > 0) { // if we have raft layers, only support material extruder is used on first layer size_t first_layer_extruder = object->config.raft_layers == 1 ? object->config.support_material_interface_extruder-1 : object->config.support_material_extruder-1; first_layer_min_nozzle_diameter = this->config.nozzle_diameter.get_at(first_layer_extruder); } else { // if we don't have raft layers, any nozzle diameter is potentially used in first layer first_layer_min_nozzle_diameter = min_nozzle_diameter; } if (first_layer_height > first_layer_min_nozzle_diameter) throw PrintValidationException("First layer height can't be greater than nozzle diameter"); // validate layer_height if (object->config.layer_height.value > min_nozzle_diameter) throw PrintValidationException("Layer height can't be greater than nozzle diameter"); } } } // the bounding box of objects placed in copies position // (without taking skirt/brim/support material into account) BoundingBox Print::bounding_box() const { BoundingBox bb; FOREACH_OBJECT(this, object) { for (Points::const_iterator copy = (*object)->_shifted_copies.begin(); copy != (*object)->_shifted_copies.end(); ++copy) { bb.merge(*copy); Point p = *copy; p.translate((*object)->size); bb.merge(p); } } return bb; } // the total bounding box of extrusions, including skirt/brim/support material // this methods needs to be called even when no steps were processed, so it should // only use configuration values BoundingBox Print::total_bounding_box() const { // get objects bounding box BoundingBox bb = this->bounding_box(); // we need to offset the objects bounding box by at least half the perimeters extrusion width Flow perimeter_flow = this->objects.front()->get_layer(0)->get_region(0)->flow(frPerimeter); double extra = perimeter_flow.width/2; // consider support material if (this->has_support_material()) { extra = std::max(extra, SUPPORT_MATERIAL_MARGIN); } // consider brim and skirt if (this->config.brim_width.value > 0) { Flow brim_flow = this->brim_flow(); extra = std::max(extra, this->config.brim_width.value + brim_flow.width/2); } if (this->has_skirt()) { int skirts = this->config.skirts.value; if (skirts == 0 && this->has_infinite_skirt()) skirts = 1; Flow skirt_flow = this->skirt_flow(); extra = std::max( extra, this->config.brim_width.value + this->config.skirt_distance.value + skirts * skirt_flow.spacing() + skirt_flow.width/2 ); } if (extra > 0) bb.offset(scale_(extra)); return bb; } double Print::skirt_first_layer_height() const { if (this->objects.empty()) CONFESS("skirt_first_layer_height() can't be called without PrintObjects"); return this->objects.front()->config.get_abs_value("first_layer_height"); } Flow Print::brim_flow() const { ConfigOptionFloatOrPercent width = this->config.first_layer_extrusion_width; if (width.value == 0) width = this->regions.front()->config.perimeter_extrusion_width; /* We currently use a random region's perimeter extruder. While this works for most cases, we should probably consider all of the perimeter extruders and take the one with, say, the smallest index. The same logic should be applied to the code that selects the extruder during G-code generation as well. */ return Flow::new_from_config_width( frPerimeter, width, this->config.nozzle_diameter.get_at(this->regions.front()->config.perimeter_extruder-1), this->skirt_first_layer_height(), 0 ); } Flow Print::skirt_flow() const { ConfigOptionFloatOrPercent width = this->config.first_layer_extrusion_width; if (width.value == 0) width = this->regions.front()->config.perimeter_extrusion_width; /* We currently use a random object's support material extruder. While this works for most cases, we should probably consider all of the support material extruders and take the one with, say, the smallest index; The same logic should be applied to the code that selects the extruder during G-code generation as well. */ return Flow::new_from_config_width( frPerimeter, width, this->config.nozzle_diameter.get_at(this->objects.front()->config.support_material_extruder-1), this->skirt_first_layer_height(), 0 ); } PrintRegionConfig Print::_region_config_from_model_volume(const ModelVolume &volume) { PrintRegionConfig config = this->default_region_config; { DynamicPrintConfig other_config = volume.get_object()->config; other_config.normalize(); config.apply(other_config, true); } { DynamicPrintConfig other_config = volume.config; other_config.normalize(); config.apply(other_config, true); } if (!volume.material_id().empty()) { DynamicPrintConfig material_config = volume.material()->config; material_config.normalize(); config.apply(material_config, true); } return config; } bool Print::has_support_material() const { FOREACH_OBJECT(this, object) { if ((*object)->has_support_material()) return true; } return false; } #ifdef SLIC3RXS REGISTER_CLASS(Print, "Print"); #endif }