#ifndef SLASUPPORTTREEALGORITHM_H #define SLASUPPORTTREEALGORITHM_H #include <cstdint> #include <libslic3r/SLA/SupportTreeBuilder.hpp> #include <libslic3r/SLA/Clustering.hpp> #include <libslic3r/SLA/SpatIndex.hpp> namespace Slic3r { namespace sla { // The minimum distance for two support points to remain valid. const double /*constexpr*/ D_SP = 0.1; enum { // For indexing Eigen vectors as v(X), v(Y), v(Z) instead of numbers X, Y, Z }; inline Vec2d to_vec2(const Vec3d &v3) { return {v3(X), v3(Y)}; } inline std::pair<double, double> dir_to_spheric(const Vec3d &n, double norm = 1.) { double z = n.z(); double r = norm; double polar = std::acos(z / r); double azimuth = std::atan2(n(1), n(0)); return {polar, azimuth}; } inline Vec3d spheric_to_dir(double polar, double azimuth) { return {std::cos(azimuth) * std::sin(polar), std::sin(azimuth) * std::sin(polar), std::cos(polar)}; } inline Vec3d spheric_to_dir(const std::tuple<double, double> &v) { auto [plr, azm] = v; return spheric_to_dir(plr, azm); } inline Vec3d spheric_to_dir(const std::pair<double, double> &v) { return spheric_to_dir(v.first, v.second); } inline Vec3d spheric_to_dir(const std::array<double, 2> &v) { return spheric_to_dir(v[0], v[1]); } // Give points on a 3D ring with given center, radius and orientation // method based on: // https://math.stackexchange.com/questions/73237/parametric-equation-of-a-circle-in-3d-space template<size_t N> class PointRing { std::array<double, N> m_phis; // Two vectors that will be perpendicular to each other and to the // axis. Values for a(X) and a(Y) are now arbitrary, a(Z) is just a // placeholder. // a and b vectors are perpendicular to the ring direction and to each other. // Together they define the plane where we have to iterate with the // given angles in the 'm_phis' vector Vec3d a = {0, 1, 0}, b; double m_radius = 0.; static inline bool constexpr is_one(double val) { return std::abs(std::abs(val) - 1) < 1e-20; } public: PointRing(const Vec3d &n) { m_phis = linspace_array<N>(0., 2 * PI); // We have to address the case when the direction vector v (same as // dir) is coincident with one of the world axes. In this case two of // its components will be completely zero and one is 1.0. Our method // becomes dangerous here due to division with zero. Instead, vector // 'a' can be an element-wise rotated version of 'v' if(is_one(n(X)) || is_one(n(Y)) || is_one(n(Z))) { a = {n(Z), n(X), n(Y)}; b = {n(Y), n(Z), n(X)}; } else { a(Z) = -(n(Y)*a(Y)) / n(Z); a.normalize(); b = a.cross(n); } } Vec3d get(size_t idx, const Vec3d src, double r) const { double phi = m_phis[idx]; double sinphi = std::sin(phi); double cosphi = std::cos(phi); double rpscos = r * cosphi; double rpssin = r * sinphi; // Point on the sphere return {src(X) + rpscos * a(X) + rpssin * b(X), src(Y) + rpscos * a(Y) + rpssin * b(Y), src(Z) + rpscos * a(Z) + rpssin * b(Z)}; } }; //IndexedMesh::hit_result query_hit(const SupportableMesh &msh, const Bridge &br, double safety_d = std::nan("")); //IndexedMesh::hit_result query_hit(const SupportableMesh &msh, const Head &br, double safety_d = std::nan("")); inline Vec3d dirv(const Vec3d& startp, const Vec3d& endp) { return (endp - startp).normalized(); } class PillarIndex { PointIndex m_index; using Mutex = ccr::BlockingMutex; mutable Mutex m_mutex; public: template<class...Args> inline void guarded_insert(Args&&...args) { std::lock_guard<Mutex> lck(m_mutex); m_index.insert(std::forward<Args>(args)...); } template<class...Args> inline std::vector<PointIndexEl> guarded_query(Args&&...args) const { std::lock_guard<Mutex> lck(m_mutex); return m_index.query(std::forward<Args>(args)...); } template<class...Args> inline void insert(Args&&...args) { m_index.insert(std::forward<Args>(args)...); } template<class...Args> inline std::vector<PointIndexEl> query(Args&&...args) const { return m_index.query(std::forward<Args>(args)...); } template<class Fn> inline void foreach(Fn fn) { m_index.foreach(fn); } template<class Fn> inline void guarded_foreach(Fn fn) { std::lock_guard<Mutex> lck(m_mutex); m_index.foreach(fn); } PointIndex guarded_clone() { std::lock_guard<Mutex> lck(m_mutex); return m_index; } }; // Helper function for pillar interconnection where pairs of already connected // pillars should be checked for not to be processed again. This can be done // in constant time with a set of hash values uniquely representing a pair of // integers. The order of numbers within the pair should not matter, it has // the same unique hash. The hash value has to have twice as many bits as the // arguments need. If the same integral type is used for args and return val, // make sure the arguments use only the half of the type's bit depth. template<class I, class DoubleI = IntegerOnly<I>> IntegerOnly<DoubleI> pairhash(I a, I b) { using std::ceil; using std::log2; using std::max; using std::min; static const auto constexpr Ibits = int(sizeof(I) * CHAR_BIT); static const auto constexpr DoubleIbits = int(sizeof(DoubleI) * CHAR_BIT); static const auto constexpr shift = DoubleIbits / 2 < Ibits ? Ibits / 2 : Ibits; I g = min(a, b), l = max(a, b); // Assume the hash will fit into the output variable assert((g ? (ceil(log2(g))) : 0) <= shift); assert((l ? (ceil(log2(l))) : 0) <= shift); return (DoubleI(g) << shift) + l; } class SupportTreeBuildsteps { const SupportTreeConfig& m_cfg; const IndexedMesh& m_mesh; const std::vector<SupportPoint>& m_support_pts; using PtIndices = std::vector<unsigned>; PtIndices m_iheads; // support points with pinhead PtIndices m_iheads_onmodel; PtIndices m_iheadless; // headless support points std::map<unsigned, IndexedMesh::hit_result> m_head_to_ground_scans; // normals for support points from model faces. PointSet m_support_nmls; // Clusters of points which can reach the ground directly and can be // bridged to one central pillar std::vector<PtIndices> m_pillar_clusters; // This algorithm uses the SupportTreeBuilder class to fill gradually // the support elements (heads, pillars, bridges, ...) SupportTreeBuilder& m_builder; // support points in Eigen/IGL format PointSet m_points; // throw if canceled: It will be called many times so a shorthand will // come in handy. ThrowOnCancel m_thr; // A spatial index to easily find strong pillars to connect to. PillarIndex m_pillar_index; // When bridging heads to pillars... TODO: find a cleaner solution ccr::BlockingMutex m_bridge_mutex; inline IndexedMesh::hit_result ray_mesh_intersect(const Vec3d& s, const Vec3d& dir) { return m_mesh.query_ray_hit(s, dir); } // This function will test if a future pinhead would not collide with the // model geometry. It does not take a 'Head' object because those are // created after this test. Parameters: s: The touching point on the model // surface. dir: This is the direction of the head from the pin to the back // r_pin, r_back: the radiuses of the pin and the back sphere width: This // is the full width from the pin center to the back center m: The object // mesh. // The return value is the hit result from the ray casting. If the starting // point was inside the model, an "invalid" hit_result will be returned // with a zero distance value instead of a NAN. This way the result can // be used safely for comparison with other distances. IndexedMesh::hit_result pinhead_mesh_intersect( const Vec3d& s, const Vec3d& dir, double r_pin, double r_back, double width, double safety_d); IndexedMesh::hit_result pinhead_mesh_intersect( const Vec3d& s, const Vec3d& dir, double r_pin, double r_back, double width) { return pinhead_mesh_intersect(s, dir, r_pin, r_back, width, r_back * m_cfg.safety_distance_mm / m_cfg.head_back_radius_mm); } // Checking bridge (pillar and stick as well) intersection with the model. // If the function is used for headless sticks, the ins_check parameter // have to be true as the beginning of the stick might be inside the model // geometry. // The return value is the hit result from the ray casting. If the starting // point was inside the model, an "invalid" hit_result will be returned // with a zero distance value instead of a NAN. This way the result can // be used safely for comparison with other distances. IndexedMesh::hit_result bridge_mesh_intersect( const Vec3d& s, const Vec3d& dir, double r, double safety_d); IndexedMesh::hit_result bridge_mesh_intersect( const Vec3d& s, const Vec3d& dir, double r) { return bridge_mesh_intersect(s, dir, r, r * m_cfg.safety_distance_mm / m_cfg.head_back_radius_mm); } template<class...Args> inline double bridge_mesh_distance(Args&&...args) { return bridge_mesh_intersect(std::forward<Args>(args)...).distance(); } // Helper function for interconnecting two pillars with zig-zag bridges. bool interconnect(const Pillar& pillar, const Pillar& nextpillar); // For connecting a head to a nearby pillar. bool connect_to_nearpillar(const Head& head, long nearpillar_id); // Find route for a head to the ground. Inserts additional bridge from the // head to the pillar if cannot create pillar directly. // The optional dir parameter is the direction of the bridge which is the // direction of the pinhead if omitted. bool connect_to_ground(Head& head, const Vec3d &dir); inline bool connect_to_ground(Head& head); bool connect_to_model_body(Head &head); bool search_pillar_and_connect(const Head& source); // This is a proxy function for pillar creation which will mind the gap // between the pad and the model bottom in zero elevation mode. // jp is the starting junction point which needs to be routed down. // sourcedir is the allowed direction of an optional bridge between the // jp junction and the final pillar. bool create_ground_pillar(const Vec3d &jp, const Vec3d &sourcedir, double radius, long head_id = SupportTreeNode::ID_UNSET); void add_pillar_base(long pid) { m_builder.add_pillar_base(pid, m_cfg.base_height_mm, m_cfg.base_radius_mm); } std::optional<DiffBridge> search_widening_path(const Vec3d &jp, const Vec3d &dir, double radius, double new_radius); public: SupportTreeBuildsteps(SupportTreeBuilder & builder, const SupportableMesh &sm); // Now let's define the individual steps of the support generation algorithm // Filtering step: here we will discard inappropriate support points // and decide the future of the appropriate ones. We will check if a // pinhead is applicable and adjust its angle at each support point. We // will also merge the support points that are just too close and can // be considered as one. void filter(); // Pinhead creation: based on the filtering results, the Head objects // will be constructed (together with their triangle meshes). void add_pinheads(); // Further classification of the support points with pinheads. If the // ground is directly reachable through a vertical line parallel to the // Z axis we consider a support point as pillar candidate. If touches // the model geometry, it will be marked as non-ground facing and // further steps will process it. Also, the pillars will be grouped // into clusters that can be interconnected with bridges. Elements of // these groups may or may not be interconnected. Here we only run the // clustering algorithm. void classify(); // Step: Routing the ground connected pinheads, and interconnecting // them with additional (angled) bridges. Not all of these pinheads // will be a full pillar (ground connected). Some will connect to a // nearby pillar using a bridge. The max number of such side-heads for // a central pillar is limited to avoid bad weight distribution. void routing_to_ground(); // Step: routing the pinheads that would connect to the model surface // along the Z axis downwards. For now these will actually be connected with // the model surface with a flipped pinhead. In the future here we could use // some smart algorithms to search for a safe path to the ground or to a // nearby pillar that can hold the supported weight. void routing_to_model(); void interconnect_pillars(); inline void merge_result() { m_builder.merged_mesh(); } static bool execute(SupportTreeBuilder & builder, const SupportableMesh &sm); }; } } #endif // SLASUPPORTTREEALGORITHM_H