#ifndef slic3r_3DScene_hpp_ #define slic3r_3DScene_hpp_ #include "libslic3r/libslic3r.h" #include "libslic3r/Point.hpp" #include "libslic3r/Line.hpp" #include "libslic3r/TriangleMesh.hpp" #include "libslic3r/Utils.hpp" #include "libslic3r/Model.hpp" #include "slic3r/GUI/GLCanvas3DManager.hpp" class wxBitmap; class wxWindow; namespace Slic3r { class Print; class PrintObject; class SLAPrint; class SLAPrintObject; enum SLAPrintObjectStep : unsigned int; class Model; class ModelObject; class GCodePreviewData; class DynamicPrintConfig; class ExtrusionPath; class ExtrusionMultiPath; class ExtrusionLoop; class ExtrusionEntity; class ExtrusionEntityCollection; // A container for interleaved arrays of 3D vertices and normals, // possibly indexed by triangles and / or quads. class GLIndexedVertexArray { public: GLIndexedVertexArray() : vertices_and_normals_interleaved_VBO_id(0), triangle_indices_VBO_id(0), quad_indices_VBO_id(0) { this->setup_sizes(); } GLIndexedVertexArray(const GLIndexedVertexArray &rhs) : vertices_and_normals_interleaved(rhs.vertices_and_normals_interleaved), triangle_indices(rhs.triangle_indices), quad_indices(rhs.quad_indices), vertices_and_normals_interleaved_VBO_id(0), triangle_indices_VBO_id(0), quad_indices_VBO_id(0) { this->setup_sizes(); } GLIndexedVertexArray(GLIndexedVertexArray &&rhs) : vertices_and_normals_interleaved(std::move(rhs.vertices_and_normals_interleaved)), triangle_indices(std::move(rhs.triangle_indices)), quad_indices(std::move(rhs.quad_indices)), vertices_and_normals_interleaved_VBO_id(0), triangle_indices_VBO_id(0), quad_indices_VBO_id(0) { this->setup_sizes(); } GLIndexedVertexArray& operator=(const GLIndexedVertexArray &rhs) { assert(vertices_and_normals_interleaved_VBO_id == 0); assert(triangle_indices_VBO_id == 0); assert(triangle_indices_VBO_id == 0); this->vertices_and_normals_interleaved = rhs.vertices_and_normals_interleaved; this->triangle_indices = rhs.triangle_indices; this->quad_indices = rhs.quad_indices; this->setup_sizes(); return *this; } GLIndexedVertexArray& operator=(GLIndexedVertexArray &&rhs) { assert(vertices_and_normals_interleaved_VBO_id == 0); assert(triangle_indices_VBO_id == 0); assert(triangle_indices_VBO_id == 0); this->vertices_and_normals_interleaved = std::move(rhs.vertices_and_normals_interleaved); this->triangle_indices = std::move(rhs.triangle_indices); this->quad_indices = std::move(rhs.quad_indices); this->setup_sizes(); return *this; } // Vertices and their normals, interleaved to be used by void glInterleavedArrays(GL_N3F_V3F, 0, x) std::vector vertices_and_normals_interleaved; std::vector triangle_indices; std::vector quad_indices; // When the geometry data is loaded into the graphics card as Vertex Buffer Objects, // the above mentioned std::vectors are cleared and the following variables keep their original length. size_t vertices_and_normals_interleaved_size; size_t triangle_indices_size; size_t quad_indices_size; // IDs of the Vertex Array Objects, into which the geometry has been loaded. // Zero if the VBOs are not used. unsigned int vertices_and_normals_interleaved_VBO_id; unsigned int triangle_indices_VBO_id; unsigned int quad_indices_VBO_id; void load_mesh_flat_shading(const TriangleMesh &mesh); void load_mesh_full_shading(const TriangleMesh &mesh); inline bool has_VBOs() const { return vertices_and_normals_interleaved_VBO_id != 0; } inline void reserve(size_t sz) { this->vertices_and_normals_interleaved.reserve(sz * 6); this->triangle_indices.reserve(sz * 3); this->quad_indices.reserve(sz * 4); } inline void push_geometry(float x, float y, float z, float nx, float ny, float nz) { if (this->vertices_and_normals_interleaved.size() + 6 > this->vertices_and_normals_interleaved.capacity()) this->vertices_and_normals_interleaved.reserve(next_highest_power_of_2(this->vertices_and_normals_interleaved.size() + 6)); this->vertices_and_normals_interleaved.push_back(nx); this->vertices_and_normals_interleaved.push_back(ny); this->vertices_and_normals_interleaved.push_back(nz); this->vertices_and_normals_interleaved.push_back(x); this->vertices_and_normals_interleaved.push_back(y); this->vertices_and_normals_interleaved.push_back(z); }; inline void push_geometry(double x, double y, double z, double nx, double ny, double nz) { push_geometry(float(x), float(y), float(z), float(nx), float(ny), float(nz)); } inline void push_geometry(const Vec3d& p, const Vec3d& n) { push_geometry(p(0), p(1), p(2), n(0), n(1), n(2)); } inline void push_triangle(int idx1, int idx2, int idx3) { if (this->triangle_indices.size() + 3 > this->vertices_and_normals_interleaved.capacity()) this->triangle_indices.reserve(next_highest_power_of_2(this->triangle_indices.size() + 3)); this->triangle_indices.push_back(idx1); this->triangle_indices.push_back(idx2); this->triangle_indices.push_back(idx3); }; inline void push_quad(int idx1, int idx2, int idx3, int idx4) { if (this->quad_indices.size() + 4 > this->vertices_and_normals_interleaved.capacity()) this->quad_indices.reserve(next_highest_power_of_2(this->quad_indices.size() + 4)); this->quad_indices.push_back(idx1); this->quad_indices.push_back(idx2); this->quad_indices.push_back(idx3); this->quad_indices.push_back(idx4); }; // Finalize the initialization of the geometry & indices, // upload the geometry and indices to OpenGL VBO objects // and shrink the allocated data, possibly relasing it if it has been loaded into the VBOs. void finalize_geometry(bool use_VBOs); // Release the geometry data, release OpenGL VBOs. void release_geometry(); // Render either using an immediate mode, or the VBOs. void render() const; void render(const std::pair &tverts_range, const std::pair &qverts_range) const; // Is there any geometry data stored? bool empty() const { return vertices_and_normals_interleaved_size == 0; } // Is this object indexed, or is it just a set of triangles? bool indexed() const { return ! this->empty() && this->triangle_indices_size + this->quad_indices_size > 0; } void clear() { this->vertices_and_normals_interleaved.clear(); this->triangle_indices.clear(); this->quad_indices.clear(); this->setup_sizes(); } // Shrink the internal storage to tighly fit the data stored. void shrink_to_fit() { if (! this->has_VBOs()) this->setup_sizes(); this->vertices_and_normals_interleaved.shrink_to_fit(); this->triangle_indices.shrink_to_fit(); this->quad_indices.shrink_to_fit(); } BoundingBoxf3 bounding_box() const { BoundingBoxf3 bbox; if (! this->vertices_and_normals_interleaved.empty()) { bbox.defined = true; bbox.min(0) = bbox.max(0) = this->vertices_and_normals_interleaved[3]; bbox.min(1) = bbox.max(1) = this->vertices_and_normals_interleaved[4]; bbox.min(2) = bbox.max(2) = this->vertices_and_normals_interleaved[5]; for (size_t i = 9; i < this->vertices_and_normals_interleaved.size(); i += 6) { const float *verts = this->vertices_and_normals_interleaved.data() + i; bbox.min(0) = std::min(bbox.min(0), verts[0]); bbox.min(1) = std::min(bbox.min(1), verts[1]); bbox.min(2) = std::min(bbox.min(2), verts[2]); bbox.max(0) = std::max(bbox.max(0), verts[0]); bbox.max(1) = std::max(bbox.max(1), verts[1]); bbox.max(2) = std::max(bbox.max(2), verts[2]); } } return bbox; } private: inline void setup_sizes() { vertices_and_normals_interleaved_size = this->vertices_and_normals_interleaved.size(); triangle_indices_size = this->triangle_indices.size(); quad_indices_size = this->quad_indices.size(); } }; class LayersTexture { public: LayersTexture() : width(0), height(0), levels(0), cells(0) {} // Texture data std::vector data; // Width of the texture, top level. size_t width; // Height of the texture, top level. size_t height; // For how many levels of detail is the data allocated? size_t levels; // Number of texture cells allocated for the height texture. size_t cells; }; class GLVolume { struct LayerHeightTextureData { // ID of the layer height texture unsigned int texture_id; // ID of the shader used to render with the layer height texture unsigned int shader_id; // The print object to update when generating the layer height texture const PrintObject* print_object; float z_cursor_relative; float edit_band_width; LayerHeightTextureData() { reset(); } void reset() { texture_id = 0; shader_id = 0; print_object = nullptr; z_cursor_relative = 0.0f; edit_band_width = 0.0f; } bool can_use() const { return (texture_id > 0) && (shader_id > 0) && (print_object != nullptr); } }; public: static const float SELECTED_COLOR[4]; static const float HOVER_COLOR[4]; static const float OUTSIDE_COLOR[4]; static const float SELECTED_OUTSIDE_COLOR[4]; static const float DISABLED_COLOR[4]; GLVolume(float r = 1.f, float g = 1.f, float b = 1.f, float a = 1.f); GLVolume(const float *rgba) : GLVolume(rgba[0], rgba[1], rgba[2], rgba[3]) {} private: #if ENABLE_MODELVOLUME_TRANSFORM Geometry::Transformation m_instance_transformation; Geometry::Transformation m_volume_transformation; #else // Offset of the volume to be rendered. Vec3d m_offset; // Rotation around three axes of the volume to be rendered. Vec3d m_rotation; // Scale factor along the three axes of the volume to be rendered. Vec3d m_scaling_factor; // Mirroring along the three axes of the volume to be rendered. Vec3d m_mirror; // World matrix of the volume to be rendered. mutable Transform3f m_world_matrix; // Whether or not is needed to recalculate the world matrix. mutable bool m_world_matrix_dirty; #endif // ENABLE_MODELVOLUME_TRANSFORM // Bounding box of this volume, in unscaled coordinates. mutable BoundingBoxf3 m_transformed_bounding_box; // Whether or not is needed to recalculate the transformed bounding box. mutable bool m_transformed_bounding_box_dirty; // Pointer to convex hull of the original mesh, if any. const TriangleMesh* m_convex_hull; // Bounding box of this volume, in unscaled coordinates. mutable BoundingBoxf3 m_transformed_convex_hull_bounding_box; // Whether or not is needed to recalculate the transformed convex hull bounding box. mutable bool m_transformed_convex_hull_bounding_box_dirty; public: // Bounding box of this volume, in unscaled coordinates. BoundingBoxf3 bounding_box; // Color of the triangles / quads held by this volume. float color[4]; // Color used to render this volume. float render_color[4]; struct CompositeID { CompositeID(int object_id, int volume_id, int instance_id) : object_id(object_id), volume_id(volume_id), instance_id(instance_id) {} CompositeID() : object_id(-1), volume_id(-1), instance_id(-1) {} // Object ID, which is equal to the index of the respective ModelObject in Model.objects array. int object_id; // Volume ID, which is equal to the index of the respective ModelVolume in ModelObject.volumes array. // If negative, it is an index of a geometry produced by the PrintObject for the respective ModelObject, // and which has no associated ModelVolume in ModelObject.volumes. For example, SLA supports. // Volume with a negative volume_id cannot be picked independently, it will pick the associated instance. int volume_id; // Instance ID, which is equal to the index of the respective ModelInstance in ModelObject.instances array. int instance_id; }; CompositeID composite_id; // Fingerprint of the source geometry. For ModelVolumes, it is the ModelVolume::ID and ModelInstanceID, // for generated volumes it is the timestamp generated by PrintState::invalidate() or PrintState::set_done(), // and the associated ModelInstanceID. // Valid geometry_id should always be positive. std::pair geometry_id; // An ID containing the extruder ID (used to select color). int extruder_id; // Is this object selected? bool selected; // Is this object disabled from selection? bool disabled; // Whether or not this volume is active for rendering bool is_active; // Whether or not to use this volume when applying zoom_to_volumes() bool zoom_to_volumes; // Wheter or not this volume is enabled for outside print volume detection in shader. bool shader_outside_printer_detection_enabled; // Wheter or not this volume is outside print volume. bool is_outside; // Boolean: Is mouse over this object? bool hover; // Wheter or not this volume has been generated from a modifier bool is_modifier; // Wheter or not this volume has been generated from the wipe tower bool is_wipe_tower; // Wheter or not this volume has been generated from an extrusion path bool is_extrusion_path; // Interleaved triangles & normals with indexed triangles & quads. GLIndexedVertexArray indexed_vertex_array; // Ranges of triangle and quad indices to be rendered. std::pair tverts_range; std::pair qverts_range; // If the qverts or tverts contain thick extrusions, then offsets keeps pointers of the starts // of the extrusions per layer. std::vector print_zs; // Offset into qverts & tverts, or offsets into indices stored into an OpenGL name_index_buffer. std::vector offsets; void set_render_color(float r, float g, float b, float a); void set_render_color(const float* rgba, unsigned int size); // Sets render color in dependence of current state void set_render_color(); #if ENABLE_MODELVOLUME_TRANSFORM const Geometry::Transformation& get_instance_transformation() const { return m_instance_transformation; } void set_instance_transformation(const Geometry::Transformation& transformation) { m_instance_transformation = transformation; set_bounding_boxes_as_dirty(); } const Vec3d& get_instance_offset() const { return m_instance_transformation.get_offset(); } double get_instance_offset(Axis axis) const { return m_instance_transformation.get_offset(axis); } void set_instance_offset(const Vec3d& offset) { m_instance_transformation.set_offset(offset); set_bounding_boxes_as_dirty(); } void set_instance_offset(Axis axis, double offset) { m_instance_transformation.set_offset(axis, offset); set_bounding_boxes_as_dirty(); } const Vec3d& get_instance_rotation() const { return m_instance_transformation.get_rotation(); } double get_instance_rotation(Axis axis) const { return m_instance_transformation.get_rotation(axis); } void set_instance_rotation(const Vec3d& rotation) { m_instance_transformation.set_rotation(rotation); set_bounding_boxes_as_dirty(); } void set_instance_rotation(Axis axis, double rotation) { m_instance_transformation.set_rotation(axis, rotation); set_bounding_boxes_as_dirty(); } Vec3d get_instance_scaling_factor() const { return m_instance_transformation.get_scaling_factor(); } double get_instance_scaling_factor(Axis axis) const { return m_instance_transformation.get_scaling_factor(axis); } void set_instance_scaling_factor(const Vec3d& scaling_factor) { m_instance_transformation.set_scaling_factor(scaling_factor); set_bounding_boxes_as_dirty(); } void set_instance_scaling_factor(Axis axis, double scaling_factor) { m_instance_transformation.set_scaling_factor(axis, scaling_factor); set_bounding_boxes_as_dirty(); } const Vec3d& get_instance_mirror() const { return m_instance_transformation.get_mirror(); } double get_instance_mirror(Axis axis) const { return m_instance_transformation.get_mirror(axis); } void set_instance_mirror(const Vec3d& mirror) { m_instance_transformation.set_mirror(mirror); set_bounding_boxes_as_dirty(); } void set_instance_mirror(Axis axis, double mirror) { m_instance_transformation.set_mirror(axis, mirror); set_bounding_boxes_as_dirty(); } const Geometry::Transformation& get_volume_transformation() const { return m_volume_transformation; } void set_volume_transformation(const Geometry::Transformation& transformation) { m_volume_transformation = transformation; set_bounding_boxes_as_dirty(); } const Vec3d& get_volume_offset() const { return m_volume_transformation.get_offset(); } double get_volume_offset(Axis axis) const { return m_volume_transformation.get_offset(axis); } void set_volume_offset(const Vec3d& offset) { m_volume_transformation.set_offset(offset); set_bounding_boxes_as_dirty(); } void set_volume_offset(Axis axis, double offset) { m_volume_transformation.set_offset(axis, offset); set_bounding_boxes_as_dirty(); } const Vec3d& get_volume_rotation() const { return m_volume_transformation.get_rotation(); } double get_volume_rotation(Axis axis) const { return m_volume_transformation.get_rotation(axis); } void set_volume_rotation(const Vec3d& rotation) { m_volume_transformation.set_rotation(rotation); set_bounding_boxes_as_dirty(); } void set_volume_rotation(Axis axis, double rotation) { m_volume_transformation.set_rotation(axis, rotation); set_bounding_boxes_as_dirty(); } Vec3d get_volume_scaling_factor() const { return m_volume_transformation.get_scaling_factor(); } double get_volume_scaling_factor(Axis axis) const { return m_volume_transformation.get_scaling_factor(axis); } void set_volume_scaling_factor(const Vec3d& scaling_factor) { m_volume_transformation.set_scaling_factor(scaling_factor); set_bounding_boxes_as_dirty(); } void set_volume_scaling_factor(Axis axis, double scaling_factor) { m_volume_transformation.set_scaling_factor(axis, scaling_factor); set_bounding_boxes_as_dirty(); } const Vec3d& get_volume_mirror() const { return m_volume_transformation.get_mirror(); } double get_volume_mirror(Axis axis) const { return m_volume_transformation.get_mirror(axis); } void set_volume_mirror(const Vec3d& mirror) { m_volume_transformation.set_mirror(mirror); set_bounding_boxes_as_dirty(); } void set_volume_mirror(Axis axis, double mirror) { m_volume_transformation.set_mirror(axis, mirror); set_bounding_boxes_as_dirty(); } #else const Vec3d& get_rotation() const; void set_rotation(const Vec3d& rotation); const Vec3d& get_scaling_factor() const; void set_scaling_factor(const Vec3d& scaling_factor); const Vec3d& get_mirror() const; double get_mirror(Axis axis) const; void set_mirror(const Vec3d& mirror); void set_mirror(Axis axis, double mirror); const Vec3d& get_offset() const; void set_offset(const Vec3d& offset); #endif // ENABLE_MODELVOLUME_TRANSFORM void set_convex_hull(const TriangleMesh& convex_hull); int object_idx() const { return this->composite_id.object_id; } int volume_idx() const { return this->composite_id.volume_id; } int instance_idx() const { return this->composite_id.instance_id; } #if ENABLE_MODELVOLUME_TRANSFORM Transform3d world_matrix() const { return m_instance_transformation.get_matrix() * m_volume_transformation.get_matrix(); } #else const Transform3f& world_matrix() const; #endif // ENABLE_MODELVOLUME_TRANSFORM const BoundingBoxf3& transformed_bounding_box() const; const BoundingBoxf3& transformed_convex_hull_bounding_box() const; bool empty() const { return this->indexed_vertex_array.empty(); } bool indexed() const { return this->indexed_vertex_array.indexed(); } void set_range(coordf_t low, coordf_t high); void render() const; void render_using_layer_height() const; void render_VBOs(int color_id, int detection_id, int worldmatrix_id) const; void render_legacy() const; void finalize_geometry(bool use_VBOs) { this->indexed_vertex_array.finalize_geometry(use_VBOs); } void release_geometry() { this->indexed_vertex_array.release_geometry(); } /************************************************ Layer height texture ****************************************************/ std::shared_ptr layer_height_texture; // Data to render this volume using the layer height texture LayerHeightTextureData layer_height_texture_data; bool has_layer_height_texture() const { return this->layer_height_texture.get() != nullptr; } size_t layer_height_texture_width() const { return (this->layer_height_texture.get() == nullptr) ? 0 : this->layer_height_texture->width; } size_t layer_height_texture_height() const { return (this->layer_height_texture.get() == nullptr) ? 0 : this->layer_height_texture->height; } size_t layer_height_texture_cells() const { return (this->layer_height_texture.get() == nullptr) ? 0 : this->layer_height_texture->cells; } void* layer_height_texture_data_ptr_level0() const { return (layer_height_texture.get() == nullptr) ? 0 : (void*)layer_height_texture->data.data(); } void* layer_height_texture_data_ptr_level1() const { return (layer_height_texture.get() == nullptr) ? 0 : (void*)(layer_height_texture->data.data() + layer_height_texture->width * layer_height_texture->height * 4); } double layer_height_texture_z_to_row_id() const; void generate_layer_height_texture(const PrintObject *print_object, bool force); void set_layer_height_texture_data(unsigned int texture_id, unsigned int shader_id, const PrintObject* print_object, float z_cursor_relative, float edit_band_width) { layer_height_texture_data.texture_id = texture_id; layer_height_texture_data.shader_id = shader_id; layer_height_texture_data.print_object = print_object; layer_height_texture_data.z_cursor_relative = z_cursor_relative; layer_height_texture_data.edit_band_width = edit_band_width; } void reset_layer_height_texture_data() { layer_height_texture_data.reset(); } #if ENABLE_MODELVOLUME_TRANSFORM void set_bounding_boxes_as_dirty() { m_transformed_bounding_box_dirty = true; m_transformed_convex_hull_bounding_box_dirty = true; } #endif // ENABLE_MODELVOLUME_TRANSFORM }; typedef std::vector GLVolumePtrs; class GLVolumeCollection { // min and max vertex of the print box volume float print_box_min[3]; float print_box_max[3]; public: GLVolumePtrs volumes; GLVolumeCollection() {}; ~GLVolumeCollection() { clear(); }; std::vector load_object( const ModelObject *model_object, int obj_idx, const std::vector &instance_idxs, const std::string &color_by, bool use_VBOs); int load_object_volume( const ModelObject *model_object, std::shared_ptr &layer_height_texture, int obj_idx, int volume_idx, int instance_idx, const std::string &color_by, bool use_VBOs); // Load SLA auxiliary GLVolumes (for support trees or pad). void GLVolumeCollection::load_object_auxiliary( const SLAPrintObject *print_object, int obj_idx, // pairs of const std::vector> &instances, SLAPrintObjectStep milestone, bool use_VBOs); int load_wipe_tower_preview( int obj_idx, float pos_x, float pos_y, float width, float depth, float height, float rotation_angle, bool use_VBOs, bool size_unknown, float brim_width); // Render the volumes by OpenGL. void render_VBOs() const; void render_legacy() const; // Finalize the initialization of the geometry & indices, // upload the geometry and indices to OpenGL VBO objects // and shrink the allocated data, possibly relasing it if it has been loaded into the VBOs. void finalize_geometry(bool use_VBOs) { for (auto *v : volumes) v->finalize_geometry(use_VBOs); } // Release the geometry data assigned to the volumes. // If OpenGL VBOs were allocated, an OpenGL context has to be active to release them. void release_geometry() { for (auto *v : volumes) v->release_geometry(); } // Clear the geometry void clear() { for (auto *v : volumes) delete v; volumes.clear(); } bool empty() const { return volumes.empty(); } void set_range(double low, double high) { for (GLVolume *vol : this->volumes) vol->set_range(low, high); } void set_print_box(float min_x, float min_y, float min_z, float max_x, float max_y, float max_z) { print_box_min[0] = min_x; print_box_min[1] = min_y; print_box_min[2] = min_z; print_box_max[0] = max_x; print_box_max[1] = max_y; print_box_max[2] = max_z; } // returns true if all the volumes are completely contained in the print volume // returns the containment state in the given out_state, if non-null bool check_outside_state(const DynamicPrintConfig* config, ModelInstance::EPrintVolumeState* out_state); void reset_outside_state(); void update_colors_by_extruder(const DynamicPrintConfig* config); // Returns a vector containing the sorted list of all the print_zs of the volumes contained in this collection std::vector get_current_print_zs(bool active_only) const; private: GLVolumeCollection(const GLVolumeCollection &other); GLVolumeCollection& operator=(const GLVolumeCollection &); }; class _3DScene { static GUI::GLCanvas3DManager s_canvas_mgr; public: static void init_gl(); static std::string get_gl_info(bool format_as_html, bool extensions); static bool use_VBOs(); static bool add_canvas(wxGLCanvas* canvas); static bool remove_canvas(wxGLCanvas* canvas); static void remove_all_canvases(); static bool init(wxGLCanvas* canvas); static void set_as_dirty(wxGLCanvas* canvas); static unsigned int get_volumes_count(wxGLCanvas* canvas); static void reset_volumes(wxGLCanvas* canvas); static int check_volumes_outside_state(wxGLCanvas* canvas, const DynamicPrintConfig* config); static GUI::GLCanvas3D* get_canvas(wxGLCanvas* canvas); static void set_config(wxGLCanvas* canvas, DynamicPrintConfig* config); static void set_print(wxGLCanvas* canvas, Print* print); static void set_SLA_print(wxGLCanvas* canvas, SLAPrint* print); static void set_model(wxGLCanvas* canvas, Model* model); static void set_bed_shape(wxGLCanvas* canvas, const Pointfs& shape); static void set_cutting_plane(wxGLCanvas* canvas, float z, const ExPolygons& polygons); static void set_color_by(wxGLCanvas* canvas, const std::string& value); static bool is_layers_editing_enabled(wxGLCanvas* canvas); static bool is_layers_editing_allowed(wxGLCanvas* canvas); static bool is_reload_delayed(wxGLCanvas* canvas); static void enable_layers_editing(wxGLCanvas* canvas, bool enable); static void enable_warning_texture(wxGLCanvas* canvas, bool enable); static void enable_legend_texture(wxGLCanvas* canvas, bool enable); static void enable_picking(wxGLCanvas* canvas, bool enable); static void enable_moving(wxGLCanvas* canvas, bool enable); static void enable_gizmos(wxGLCanvas* canvas, bool enable); static void enable_toolbar(wxGLCanvas* canvas, bool enable); static void enable_shader(wxGLCanvas* canvas, bool enable); static void enable_force_zoom_to_bed(wxGLCanvas* canvas, bool enable); static void enable_dynamic_background(wxGLCanvas* canvas, bool enable); static void allow_multisample(wxGLCanvas* canvas, bool allow); static void enable_toolbar_item(wxGLCanvas* canvas, const std::string& name, bool enable); static bool is_toolbar_item_pressed(wxGLCanvas* canvas, const std::string& name); static void zoom_to_bed(wxGLCanvas* canvas); static void zoom_to_volumes(wxGLCanvas* canvas); static void select_view(wxGLCanvas* canvas, const std::string& direction); static void set_viewport_from_scene(wxGLCanvas* canvas, wxGLCanvas* other); static void update_volumes_colors_by_extruder(wxGLCanvas* canvas); static void render(wxGLCanvas* canvas); static void delete_selected(wxGLCanvas* canvas); static std::vector get_current_print_zs(wxGLCanvas* canvas, bool active_only); static void set_toolpaths_range(wxGLCanvas* canvas, double low, double high); static std::vector load_object(wxGLCanvas* canvas, const ModelObject* model_object, int obj_idx, std::vector instance_idxs); static std::vector load_object(wxGLCanvas* canvas, const Model* model, int obj_idx); static void mirror_selection(wxGLCanvas* canvas, Axis axis); static void reload_scene(wxGLCanvas* canvas, bool force); static void load_gcode_preview(wxGLCanvas* canvas, const GCodePreviewData* preview_data, const std::vector& str_tool_colors); static void load_preview(wxGLCanvas* canvas, const std::vector& str_tool_colors); static void reset_legend_texture(wxGLCanvas* canvas); static void thick_lines_to_verts(const Lines& lines, const std::vector& widths, const std::vector& heights, bool closed, double top_z, GLVolume& volume); static void thick_lines_to_verts(const Lines3& lines, const std::vector& widths, const std::vector& heights, bool closed, GLVolume& volume); static void extrusionentity_to_verts(const ExtrusionPath& extrusion_path, float print_z, GLVolume& volume); static void extrusionentity_to_verts(const ExtrusionPath& extrusion_path, float print_z, const Point& copy, GLVolume& volume); static void extrusionentity_to_verts(const ExtrusionLoop& extrusion_loop, float print_z, const Point& copy, GLVolume& volume); static void extrusionentity_to_verts(const ExtrusionMultiPath& extrusion_multi_path, float print_z, const Point& copy, GLVolume& volume); static void extrusionentity_to_verts(const ExtrusionEntityCollection& extrusion_entity_collection, float print_z, const Point& copy, GLVolume& volume); static void extrusionentity_to_verts(const ExtrusionEntity* extrusion_entity, float print_z, const Point& copy, GLVolume& volume); static void polyline3_to_verts(const Polyline3& polyline, double width, double height, GLVolume& volume); static void point3_to_verts(const Vec3crd& point, double width, double height, GLVolume& volume); }; } #endif