#include "SupportSpotsGenerator.hpp" #include "ExPolygon.hpp" #include "ExtrusionEntity.hpp" #include "ExtrusionEntityCollection.hpp" #include "GCode/ExtrusionProcessor.hpp" #include "Line.hpp" #include "Point.hpp" #include "Polygon.hpp" #include "Print.hpp" #include "Tesselate.hpp" #include "libslic3r.h" #include "tbb/parallel_for.h" #include "tbb/blocked_range.h" #include "tbb/blocked_range2d.h" #include "tbb/parallel_reduce.h" #include <algorithm> #include <boost/log/trivial.hpp> #include <cmath> #include <cstddef> #include <cstdio> #include <functional> #include <unordered_map> #include <unordered_set> #include <stack> #include <utility> #include <vector> #include "AABBTreeLines.hpp" #include "KDTreeIndirect.hpp" #include "libslic3r/Layer.hpp" #include "libslic3r/ClipperUtils.hpp" #include "Geometry/ConvexHull.hpp" // #define DETAILED_DEBUG_LOGS // #define DEBUG_FILES #ifdef DEBUG_FILES #include <boost/nowide/cstdio.hpp> #include "libslic3r/Color.hpp" #endif namespace Slic3r { class ExtrusionLine { public: ExtrusionLine() : a(Vec2f::Zero()), b(Vec2f::Zero()), origin_entity(nullptr) {} ExtrusionLine(const Vec2f &a, const Vec2f &b, float len, const ExtrusionEntity *origin_entity) : a(a), b(b), len(len), origin_entity(origin_entity) {} ExtrusionLine(const Vec2f &a, const Vec2f &b) : a(a), b(b), len((a-b).norm()), origin_entity(nullptr) {} bool is_external_perimeter() const { assert(origin_entity != nullptr); return origin_entity->role() == erExternalPerimeter || origin_entity->role() == erOverhangPerimeter; } Vec2f a; Vec2f b; float len; const ExtrusionEntity *origin_entity; bool support_point_generated = false; float form_quality = 1.0f; float curled_up_height = 0.0f; static const constexpr int Dim = 2; using Scalar = Vec2f::Scalar; }; auto get_a(ExtrusionLine &&l) { return l.a; } auto get_b(ExtrusionLine &&l) { return l.b; } namespace SupportSpotsGenerator { SupportPoint::SupportPoint(const Vec3f &position, float force, float spot_radius, const Vec2f &direction) : position(position), force(force), spot_radius(spot_radius), direction(direction) {} using LD = AABBTreeLines::LinesDistancer<ExtrusionLine>; struct SupportGridFilter { private: Vec3f cell_size; Vec3f origin; Vec3f size; Vec3i cell_count; std::unordered_set<size_t> taken_cells{}; public: SupportGridFilter(const PrintObject *po, float voxel_size) { cell_size = Vec3f(voxel_size, voxel_size, voxel_size); Vec2crd size_half = po->size().head<2>().cwiseQuotient(Vec2crd(2, 2)) + Vec2crd::Ones(); Vec3f min = unscale(Vec3crd(-size_half.x(), -size_half.y(), 0)).cast<float>() - cell_size; Vec3f max = unscale(Vec3crd(size_half.x(), size_half.y(), po->height())).cast<float>() + cell_size; origin = min; size = max - min; cell_count = size.cwiseQuotient(cell_size).cast<int>() + Vec3i::Ones(); } Vec3i to_cell_coords(const Vec3f &position) const { Vec3i cell_coords = (position - this->origin).cwiseQuotient(this->cell_size).cast<int>(); return cell_coords; } size_t to_cell_index(const Vec3i &cell_coords) const { assert(cell_coords.x() >= 0); assert(cell_coords.x() < cell_count.x()); assert(cell_coords.y() >= 0); assert(cell_coords.y() < cell_count.y()); assert(cell_coords.z() >= 0); assert(cell_coords.z() < cell_count.z()); return cell_coords.z() * cell_count.x() * cell_count.y() + cell_coords.y() * cell_count.x() + cell_coords.x(); } Vec3f get_cell_center(const Vec3i &cell_coords) const { return origin + cell_coords.cast<float>().cwiseProduct(this->cell_size) + this->cell_size.cwiseQuotient(Vec3f(2.0f, 2.0f, 2.0f)); } void take_position(const Vec3f &position) { taken_cells.insert(to_cell_index(to_cell_coords(position))); } bool position_taken(const Vec3f &position) const { return taken_cells.find(to_cell_index(to_cell_coords(position))) != taken_cells.end(); } }; struct SliceConnection { float area{}; Vec3f centroid_accumulator = Vec3f::Zero(); Vec2f second_moment_of_area_accumulator = Vec2f::Zero(); float second_moment_of_area_covariance_accumulator{}; void add(const SliceConnection &other) { this->area += other.area; this->centroid_accumulator += other.centroid_accumulator; this->second_moment_of_area_accumulator += other.second_moment_of_area_accumulator; this->second_moment_of_area_covariance_accumulator += other.second_moment_of_area_covariance_accumulator; } void print_info(const std::string &tag) { Vec3f centroid = centroid_accumulator / area; Vec2f variance = (second_moment_of_area_accumulator / area - centroid.head<2>().cwiseProduct(centroid.head<2>())); float covariance = second_moment_of_area_covariance_accumulator / area - centroid.x() * centroid.y(); std::cout << tag << std::endl; std::cout << "area: " << area << std::endl; std::cout << "centroid: " << centroid.x() << " " << centroid.y() << " " << centroid.z() << std::endl; std::cout << "variance: " << variance.x() << " " << variance.y() << std::endl; std::cout << "covariance: " << covariance << std::endl; } }; float get_flow_width(const LayerRegion *region, ExtrusionRole role) { switch (role) { case ExtrusionRole::erBridgeInfill: return region->flow(FlowRole::frExternalPerimeter).width(); case ExtrusionRole::erExternalPerimeter: return region->flow(FlowRole::frExternalPerimeter).width(); case ExtrusionRole::erGapFill: return region->flow(FlowRole::frInfill).width(); case ExtrusionRole::erPerimeter: return region->flow(FlowRole::frPerimeter).width(); case ExtrusionRole::erSolidInfill: return region->flow(FlowRole::frSolidInfill).width(); case ExtrusionRole::erInternalInfill: return region->flow(FlowRole::frInfill).width(); case ExtrusionRole::erTopSolidInfill: return region->flow(FlowRole::frTopSolidInfill).width(); default: return region->flow(FlowRole::frPerimeter).width(); } } std::vector<ExtrusionLine> to_short_lines(const ExtrusionEntity *e, float length_limit) { assert(!e->is_collection()); Polyline pl = e->as_polyline(); std::vector<ExtrusionLine> lines; lines.reserve(pl.points.size() * 1.5f); for (int point_idx = 0; point_idx < int(pl.points.size()) - 1; ++point_idx) { Vec2f start = unscaled(pl.points[point_idx]).cast<float>(); Vec2f next = unscaled(pl.points[point_idx + 1]).cast<float>(); Vec2f v = next - start; // vector from next to current float dist_to_next = v.norm(); v.normalize(); int lines_count = int(std::ceil(dist_to_next / length_limit)); float step_size = dist_to_next / lines_count; for (int i = 0; i < lines_count; ++i) { Vec2f a(start + v * (i * step_size)); Vec2f b(start + v * ((i + 1) * step_size)); lines.emplace_back(a, b, (a-b).norm(), e); } } return lines; } float estimate_curled_up_height( const ExtendedPoint &point, float layer_height, float flow_width, float prev_line_curled_height, Params params) { float curled_up_height = 0.0f; if (fabs(point.distance) < 1.5 * flow_width) { curled_up_height = 0.85 * prev_line_curled_height; } if (point.distance > params.malformation_distance_factors.first * flow_width && point.distance < params.malformation_distance_factors.second * flow_width && point.curvature > -0.1f) { float dist_factor = (point.distance - params.malformation_distance_factors.first * flow_width) / ((params.malformation_distance_factors.second - params.malformation_distance_factors.first) * flow_width); curled_up_height = layer_height * 2.0f * sqrt(sqrt(dist_factor)) * std::clamp(6.0f * point.curvature, 1.0f, 6.0f); curled_up_height = std::min(curled_up_height, params.max_malformation_factor * layer_height); } return curled_up_height; } std::vector<ExtrusionLine> check_extrusion_entity_stability(const ExtrusionEntity *entity, const LayerRegion *layer_region, const LD &prev_layer_lines, const AABBTreeLines::LinesDistancer<Linef> &prev_layer_boundary, const Params ¶ms) { if (entity->is_collection()) { std::vector<ExtrusionLine> checked_lines_out; checked_lines_out.reserve(prev_layer_lines.get_lines().size() / 3); for (const auto *e : static_cast<const ExtrusionEntityCollection *>(entity)->entities) { auto tmp = check_extrusion_entity_stability(e, layer_region, prev_layer_lines, prev_layer_boundary, params); checked_lines_out.insert(checked_lines_out.end(), tmp.begin(), tmp.end()); } return checked_lines_out; } else { // single extrusion path, with possible varying parameters if (entity->length() < scale_(params.min_distance_to_allow_local_supports)) { return {}; } const float flow_width = get_flow_width(layer_region, entity->role()); std::vector<ExtendedPoint> annotated_points = estimate_points_properties<true, true, false, false>(entity->as_polyline().points, prev_layer_lines, flow_width, params.bridge_distance); std::vector<ExtrusionLine> lines_out; lines_out.reserve(annotated_points.size()); float bridged_distance = annotated_points.front().position != annotated_points.back().position ? (params.bridge_distance + 1.0f) : 0.0f; for (size_t i = 0; i < annotated_points.size(); ++i) { ExtendedPoint &curr_point = annotated_points[i]; float line_len = i > 0 ? ((annotated_points[i - 1].position - curr_point.position).norm()) : 0.0f; ExtrusionLine line_out{i > 0 ? annotated_points[i - 1].position.cast<float>() : curr_point.position.cast<float>(), curr_point.position.cast<float>(), line_len, entity}; const ExtrusionLine nearest_prev_layer_line = prev_layer_lines.get_lines().size() > 0 ? prev_layer_lines.get_line(curr_point.nearest_prev_layer_line) : ExtrusionLine{}; float sign = (prev_layer_boundary.distance_from_lines<true>(curr_point.position) + 0.5f * flow_width) < 0.0f ? -1.0f : 1.0f; curr_point.distance *= sign; if (curr_point.distance > 0.9f * flow_width) { line_out.form_quality = 0.7f; bridged_distance += line_len; // if unsupported distance is larger than bridge distance linearly decreased by curvature, enforce supports. bool in_layer_dist_condition = bridged_distance > params.bridge_distance / (1.0f + std::abs(curr_point.curvature) * params.bridge_distance_decrease_by_curvature_factor); if (in_layer_dist_condition) { line_out.support_point_generated = true; bridged_distance = 0.0f; } } else if (curr_point.distance > flow_width * (0.8 + std::clamp(curr_point.curvature, -0.2f, 0.2f))) { bridged_distance += line_len; line_out.form_quality = nearest_prev_layer_line.form_quality - std::abs(curr_point.curvature); if (line_out.form_quality < 0) { line_out.support_point_generated = true; line_out.form_quality = 0.7f; } } else { bridged_distance = 0.0f; } line_out.curled_up_height = estimate_curled_up_height(curr_point, layer_region->layer()->height, flow_width, nearest_prev_layer_line.curled_up_height, params); lines_out.push_back(line_out); } return lines_out; } } // returns triangle area, first_moment_of_area_xy, second_moment_of_area_xy, second_moment_of_area_covariance // none of the values is divided/normalized by area. // The function computes intgeral over the area of the triangle, with function f(x,y) = x for first moments of area (y is analogous) // f(x,y) = x^2 for second moment of area // and f(x,y) = x*y for second moment of area covariance std::tuple<float, Vec2f, Vec2f, float> compute_triangle_moments_of_area(const Vec2f &a, const Vec2f &b, const Vec2f &c) { // based on the following guide: // Denote the vertices of S by a, b, c. Then the map // g:(u,v)↦a+u(b−a)+v(c−a) , // which in coordinates appears as // g:(u,v)↦{x(u,v)y(u,v)=a1+u(b1−a1)+v(c1−a1)=a2+u(b2−a2)+v(c2−a2) ,(1) // obviously maps S′ bijectively onto S. Therefore the transformation formula for multiple integrals steps into action, and we obtain // ∫Sf(x,y)d(x,y)=∫S′f(x(u,v),y(u,v))∣∣Jg(u,v)∣∣ d(u,v) . // In the case at hand the Jacobian determinant is a constant: From (1) we obtain // Jg(u,v)=det[xuyuxvyv]=(b1−a1)(c2−a2)−(c1−a1)(b2−a2) . // Therefore we can write // ∫Sf(x,y)d(x,y)=∣∣Jg∣∣∫10∫1−u0f~(u,v) dv du , // where f~ denotes the pullback of f to S′: // f~(u,v):=f(x(u,v),y(u,v)) . // Don't forget taking the absolute value of Jg! float jacobian_determinant_abs = std::abs((b.x() - a.x()) * (c.y() - a.y()) - (c.x() - a.x()) * (b.y() - a.y())); // coordinate transform: gx(u,v) = a.x + u * (b.x - a.x) + v * (c.x - a.x) // coordinate transform: gy(u,v) = a.y + u * (b.y - a.y) + v * (c.y - a.y) // second moment of area for x: f(x, y) = x^2; // f(gx(u,v), gy(u,v)) = gx(u,v)^2 = ... (long expanded form) // result is Int_T func = jacobian_determinant_abs * Int_0^1 Int_0^1-u func(gx(u,v), gy(u,v)) dv du // integral_0^1 integral_0^(1 - u) (a + u (b - a) + v (c - a))^2 dv du = 1/12 (a^2 + a (b + c) + b^2 + b c + c^2) Vec2f second_moment_of_area_xy = jacobian_determinant_abs * (a.cwiseProduct(a) + b.cwiseProduct(b) + b.cwiseProduct(c) + c.cwiseProduct(c) + a.cwiseProduct(b + c)) / 12.0f; // second moment of area covariance : f(x, y) = x*y; // f(gx(u,v), gy(u,v)) = gx(u,v)*gy(u,v) = ... (long expanded form) //(a_1 + u * (b_1 - a_1) + v * (c_1 - a_1)) * (a_2 + u * (b_2 - a_2) + v * (c_2 - a_2)) // == (a_1 + u (b_1 - a_1) + v (c_1 - a_1)) (a_2 + u (b_2 - a_2) + v (c_2 - a_2)) // intermediate result: integral_0^(1 - u) (a_1 + u (b_1 - a_1) + v (c_1 - a_1)) (a_2 + u (b_2 - a_2) + v (c_2 - a_2)) dv = // 1/6 (u - 1) (-c_1 (u - 1) (a_2 (u - 1) - 3 b_2 u) - c_2 (u - 1) (a_1 (u - 1) - 3 b_1 u + 2 c_1 (u - 1)) + 3 b_1 u (a_2 (u - 1) - 2 // b_2 u) + a_1 (u - 1) (3 b_2 u - 2 a_2 (u - 1))) result = integral_0^1 1/6 (u - 1) (-c_1 (u - 1) (a_2 (u - 1) - 3 b_2 u) - c_2 (u - // 1) (a_1 (u - 1) - 3 b_1 u + 2 c_1 (u - 1)) + 3 b_1 u (a_2 (u - 1) - 2 b_2 u) + a_1 (u - 1) (3 b_2 u - 2 a_2 (u - 1))) du = // 1/24 (a_2 (b_1 + c_1) + a_1 (2 a_2 + b_2 + c_2) + b_2 c_1 + b_1 c_2 + 2 b_1 b_2 + 2 c_1 c_2) // result is Int_T func = jacobian_determinant_abs * Int_0^1 Int_0^1-u func(gx(u,v), gy(u,v)) dv du float second_moment_of_area_covariance = jacobian_determinant_abs * (1.0f / 24.0f) * (a.y() * (b.x() + c.x()) + a.x() * (2.0f * a.y() + b.y() + c.y()) + b.y() * c.x() + b.x() * c.y() + 2.0f * b.x() * b.y() + 2.0f * c.x() * c.y()); float area = jacobian_determinant_abs * 0.5f; Vec2f first_moment_of_area_xy = jacobian_determinant_abs * (a + b + c) / 6.0f; return {area, first_moment_of_area_xy, second_moment_of_area_xy, second_moment_of_area_covariance}; }; SliceConnection estimate_slice_connection(size_t slice_idx, const Layer *layer) { SliceConnection connection; const LayerSlice &slice = layer->lslices_ex[slice_idx]; ExPolygon slice_poly = layer->lslices[slice_idx]; const Layer *lower_layer = layer->lower_layer; ExPolygons below_polys{}; for (const auto &link : slice.overlaps_below) { below_polys.push_back(lower_layer->lslices[link.slice_idx]); } ExPolygons overlap = intersection_ex({slice_poly}, below_polys); std::vector<Vec2f> triangles = triangulate_expolygons_2f(overlap); for (size_t idx = 0; idx < triangles.size(); idx += 3) { auto [area, first_moment_of_area, second_moment_area, second_moment_of_area_covariance] = compute_triangle_moments_of_area(triangles[idx], triangles[idx + 1], triangles[idx + 2]); connection.area += area; connection.centroid_accumulator += Vec3f(first_moment_of_area.x(), first_moment_of_area.y(), layer->print_z * area); connection.second_moment_of_area_accumulator += second_moment_area; connection.second_moment_of_area_covariance_accumulator += second_moment_of_area_covariance; } return connection; }; class ObjectPart { public: float volume{}; Vec3f volume_centroid_accumulator = Vec3f::Zero(); float sticking_area{}; Vec3f sticking_centroid_accumulator = Vec3f::Zero(); Vec2f sticking_second_moment_of_area_accumulator = Vec2f::Zero(); float sticking_second_moment_of_area_covariance_accumulator{}; ObjectPart() = default; void add(const ObjectPart &other) { this->volume_centroid_accumulator += other.volume_centroid_accumulator; this->volume += other.volume; this->sticking_area += other.sticking_area; this->sticking_centroid_accumulator += other.sticking_centroid_accumulator; this->sticking_second_moment_of_area_accumulator += other.sticking_second_moment_of_area_accumulator; this->sticking_second_moment_of_area_covariance_accumulator += other.sticking_second_moment_of_area_covariance_accumulator; } void add_support_point(const Vec3f &position, float sticking_area) { this->sticking_area += sticking_area; this->sticking_centroid_accumulator += sticking_area * position; this->sticking_second_moment_of_area_accumulator += sticking_area * position.head<2>().cwiseProduct(position.head<2>()); this->sticking_second_moment_of_area_covariance_accumulator += sticking_area * position.x() * position.y(); } float compute_directional_xy_variance(const Vec2f &line_dir, const Vec3f ¢roid_accumulator, const Vec2f &second_moment_of_area_accumulator, const float &second_moment_of_area_covariance_accumulator, const float &area) const { assert(area > 0); Vec3f centroid = centroid_accumulator / area; Vec2f variance = (second_moment_of_area_accumulator / area - centroid.head<2>().cwiseProduct(centroid.head<2>())); float covariance = second_moment_of_area_covariance_accumulator / area - centroid.x() * centroid.y(); // Var(aX+bY)=a^2*Var(X)+b^2*Var(Y)+2*a*b*Cov(X,Y) float directional_xy_variance = line_dir.x() * line_dir.x() * variance.x() + line_dir.y() * line_dir.y() * variance.y() + 2.0f * line_dir.x() * line_dir.y() * covariance; #ifdef DETAILED_DEBUG_LOGS BOOST_LOG_TRIVIAL(debug) << "centroid: " << centroid.x() << " " << centroid.y() << " " << centroid.z(); BOOST_LOG_TRIVIAL(debug) << "variance: " << variance.x() << " " << variance.y(); BOOST_LOG_TRIVIAL(debug) << "covariance: " << covariance; BOOST_LOG_TRIVIAL(debug) << "directional_xy_variance: " << directional_xy_variance; #endif return directional_xy_variance; } float compute_elastic_section_modulus(const Vec2f &line_dir, const Vec3f &extreme_point, const Vec3f ¢roid_accumulator, const Vec2f &second_moment_of_area_accumulator, const float &second_moment_of_area_covariance_accumulator, const float &area) const { float directional_xy_variance = compute_directional_xy_variance(line_dir, centroid_accumulator, second_moment_of_area_accumulator, second_moment_of_area_covariance_accumulator, area); if (directional_xy_variance < EPSILON) { return 0.0f; } Vec3f centroid = centroid_accumulator / area; float extreme_fiber_dist = line_alg::distance_to(Linef(centroid.head<2>().cast<double>(), (centroid.head<2>() + Vec2f(line_dir.y(), -line_dir.x())).cast<double>()), extreme_point.head<2>().cast<double>()); float elastic_section_modulus = area * directional_xy_variance / extreme_fiber_dist; #ifdef DETAILED_DEBUG_LOGS BOOST_LOG_TRIVIAL(debug) << "extreme_fiber_dist: " << extreme_fiber_dist; BOOST_LOG_TRIVIAL(debug) << "elastic_section_modulus: " << elastic_section_modulus; #endif return elastic_section_modulus; } float is_stable_while_extruding(const SliceConnection &connection, const ExtrusionLine &extruded_line, const Vec3f &extreme_point, float layer_z, const Params ¶ms) const { Vec2f line_dir = (extruded_line.b - extruded_line.a).normalized(); const Vec3f &mass_centroid = this->volume_centroid_accumulator / this->volume; float mass = this->volume * params.filament_density; float weight = mass * params.gravity_constant; float movement_force = params.max_acceleration * mass; float extruder_conflict_force = params.standard_extruder_conflict_force + std::min(extruded_line.curled_up_height, 1.0f) * params.malformations_additive_conflict_extruder_force; // section for bed calculations { if (this->sticking_area < EPSILON) return 1.0f; Vec3f bed_centroid = this->sticking_centroid_accumulator / this->sticking_area; float bed_yield_torque = -compute_elastic_section_modulus(line_dir, extreme_point, this->sticking_centroid_accumulator, this->sticking_second_moment_of_area_accumulator, this->sticking_second_moment_of_area_covariance_accumulator, this->sticking_area) * params.get_bed_adhesion_yield_strength(); Vec2f bed_weight_arm = (mass_centroid.head<2>() - bed_centroid.head<2>()); float bed_weight_arm_len = bed_weight_arm.norm(); float bed_weight_dir_xy_variance = compute_directional_xy_variance(bed_weight_arm, this->sticking_centroid_accumulator, this->sticking_second_moment_of_area_accumulator, this->sticking_second_moment_of_area_covariance_accumulator, this->sticking_area); float bed_weight_sign = bed_weight_arm_len < 2.0f * sqrt(bed_weight_dir_xy_variance) ? -1.0f : 1.0f; float bed_weight_torque = bed_weight_sign * bed_weight_arm_len * weight; float bed_movement_arm = std::max(0.0f, mass_centroid.z() - bed_centroid.z()); float bed_movement_torque = movement_force * bed_movement_arm; float bed_conflict_torque_arm = layer_z - bed_centroid.z(); float bed_extruder_conflict_torque = extruder_conflict_force * bed_conflict_torque_arm; float bed_total_torque = bed_movement_torque + bed_extruder_conflict_torque + bed_weight_torque + bed_yield_torque; #ifdef DETAILED_DEBUG_LOGS BOOST_LOG_TRIVIAL(debug) << "bed_centroid: " << bed_centroid.x() << " " << bed_centroid.y() << " " << bed_centroid.z(); BOOST_LOG_TRIVIAL(debug) << "SSG: bed_yield_torque: " << bed_yield_torque; BOOST_LOG_TRIVIAL(debug) << "SSG: bed_weight_arm: " << bed_weight_arm; BOOST_LOG_TRIVIAL(debug) << "SSG: bed_weight_torque: " << bed_weight_torque; BOOST_LOG_TRIVIAL(debug) << "SSG: bed_movement_arm: " << bed_movement_arm; BOOST_LOG_TRIVIAL(debug) << "SSG: bed_movement_torque: " << bed_movement_torque; BOOST_LOG_TRIVIAL(debug) << "SSG: bed_conflict_torque_arm: " << bed_conflict_torque_arm; BOOST_LOG_TRIVIAL(debug) << "SSG: extruded_line.malformation: " << extruded_line.malformation; BOOST_LOG_TRIVIAL(debug) << "SSG: extruder_conflict_force: " << extruder_conflict_force; BOOST_LOG_TRIVIAL(debug) << "SSG: bed_extruder_conflict_torque: " << bed_extruder_conflict_torque; BOOST_LOG_TRIVIAL(debug) << "SSG: total_torque: " << bed_total_torque << " layer_z: " << layer_z; #endif if (bed_total_torque > 0) return bed_total_torque / bed_conflict_torque_arm; } // section for weak connection calculations { if (connection.area < EPSILON) return 1.0f; Vec3f conn_centroid = connection.centroid_accumulator / connection.area; if (layer_z - conn_centroid.z() < 3.0f) { return -1.0f; } float conn_yield_torque = compute_elastic_section_modulus(line_dir, extreme_point, connection.centroid_accumulator, connection.second_moment_of_area_accumulator, connection.second_moment_of_area_covariance_accumulator, connection.area) * params.material_yield_strength; float conn_weight_arm = (conn_centroid.head<2>() - mass_centroid.head<2>()).norm(); float conn_weight_torque = conn_weight_arm * weight * (conn_centroid.z() / layer_z); float conn_movement_arm = std::max(0.0f, mass_centroid.z() - conn_centroid.z()); float conn_movement_torque = movement_force * conn_movement_arm; float conn_conflict_torque_arm = layer_z - conn_centroid.z(); float conn_extruder_conflict_torque = extruder_conflict_force * conn_conflict_torque_arm; float conn_total_torque = conn_movement_torque + conn_extruder_conflict_torque + conn_weight_torque - conn_yield_torque; #ifdef DETAILED_DEBUG_LOGS BOOST_LOG_TRIVIAL(debug) << "bed_centroid: " << conn_centroid.x() << " " << conn_centroid.y() << " " << conn_centroid.z(); BOOST_LOG_TRIVIAL(debug) << "SSG: conn_yield_torque: " << conn_yield_torque; BOOST_LOG_TRIVIAL(debug) << "SSG: conn_weight_arm: " << conn_weight_arm; BOOST_LOG_TRIVIAL(debug) << "SSG: conn_weight_torque: " << conn_weight_torque; BOOST_LOG_TRIVIAL(debug) << "SSG: conn_movement_arm: " << conn_movement_arm; BOOST_LOG_TRIVIAL(debug) << "SSG: conn_movement_torque: " << conn_movement_torque; BOOST_LOG_TRIVIAL(debug) << "SSG: conn_conflict_torque_arm: " << conn_conflict_torque_arm; BOOST_LOG_TRIVIAL(debug) << "SSG: conn_extruder_conflict_torque: " << conn_extruder_conflict_torque; BOOST_LOG_TRIVIAL(debug) << "SSG: total_torque: " << conn_total_torque << " layer_z: " << layer_z; #endif return conn_total_torque / conn_conflict_torque_arm; } } }; // return new object part and actual area covered by extrusions std::tuple<ObjectPart, float> build_object_part_from_slice(const LayerSlice &slice, const Layer *layer) { ObjectPart new_object_part; float area_covered_by_extrusions = 0; auto add_extrusions_to_object = [&new_object_part, &area_covered_by_extrusions](const ExtrusionEntity *e, const LayerRegion *region) { float flow_width = get_flow_width(region, e->role()); const Layer *l = region->layer(); float slice_z = l->slice_z; float height = l->height; std::vector<ExtrusionLine> lines = to_short_lines(e, 5.0); for (const ExtrusionLine &line : lines) { float volume = line.len * height * flow_width * PI / 4.0f; area_covered_by_extrusions += line.len * flow_width; new_object_part.volume += volume; new_object_part.volume_centroid_accumulator += to_3d(Vec2f((line.a + line.b) / 2.0f), slice_z) * volume; if (l->id() == 0) { // first layer float sticking_area = line.len * flow_width; new_object_part.sticking_area += sticking_area; Vec2f middle = Vec2f((line.a + line.b) / 2.0f); new_object_part.sticking_centroid_accumulator += sticking_area * to_3d(middle, slice_z); // Bottom infill lines can be quite long, and algined, so the middle approximaton used above does not work Vec2f dir = (line.b - line.a).normalized(); float segment_length = flow_width; // segments of size flow_width for (float segment_middle_dist = std::min(line.len, segment_length * 0.5f); segment_middle_dist < line.len; segment_middle_dist += segment_length) { Vec2f segment_middle = line.a + segment_middle_dist * dir; new_object_part.sticking_second_moment_of_area_accumulator += segment_length * flow_width * segment_middle.cwiseProduct(segment_middle); new_object_part.sticking_second_moment_of_area_covariance_accumulator += segment_length * flow_width * segment_middle.x() * segment_middle.y(); } } } }; for (const auto &island : slice.islands) { const LayerRegion *perimeter_region = layer->get_region(island.perimeters.region()); for (const auto &perimeter_idx : island.perimeters) { for (const ExtrusionEntity *perimeter : static_cast<const ExtrusionEntityCollection *>(perimeter_region->perimeters().entities[perimeter_idx])->entities) { add_extrusions_to_object(perimeter, perimeter_region); } } for (const LayerExtrusionRange &fill_range : island.fills) { const LayerRegion *fill_region = layer->get_region(fill_range.region()); for (const auto &fill_idx : fill_range) { for (const ExtrusionEntity *fill : static_cast<const ExtrusionEntityCollection *>(fill_region->fills().entities[fill_idx])->entities) { add_extrusions_to_object(fill, fill_region); } } } for (const auto &thin_fill_idx : island.thin_fills) { add_extrusions_to_object(perimeter_region->thin_fills().entities[thin_fill_idx], perimeter_region); } } return {new_object_part, area_covered_by_extrusions}; } class ActiveObjectParts { size_t next_part_idx = 0; std::unordered_map<size_t, ObjectPart> active_object_parts; std::unordered_map<size_t, size_t> active_object_parts_id_mapping; public: size_t get_flat_id(size_t id) { size_t index = active_object_parts_id_mapping.at(id); while (index != active_object_parts_id_mapping.at(index)) { index = active_object_parts_id_mapping.at(index); } size_t i = id; while (index != active_object_parts_id_mapping.at(i)) { size_t next = active_object_parts_id_mapping[i]; active_object_parts_id_mapping[i] = index; i = next; } return index; } ObjectPart &access(size_t id) { return this->active_object_parts.at(this->get_flat_id(id)); } size_t insert(const ObjectPart &new_part) { this->active_object_parts.emplace(next_part_idx, new_part); this->active_object_parts_id_mapping.emplace(next_part_idx, next_part_idx); return next_part_idx++; } void merge(size_t from, size_t to) { size_t to_flat = this->get_flat_id(to); size_t from_flat = this->get_flat_id(from); active_object_parts.at(to_flat).add(active_object_parts.at(from_flat)); active_object_parts.erase(from_flat); active_object_parts_id_mapping[from] = to_flat; } }; SupportPoints check_stability(const PrintObject *po, const Params ¶ms) { SupportPoints supp_points{}; SupportGridFilter supports_presence_grid(po, params.min_distance_between_support_points); ActiveObjectParts active_object_parts{}; LD prev_layer_ext_perim_lines; std::unordered_map<size_t, size_t> prev_slice_idx_to_object_part_mapping; std::unordered_map<size_t, size_t> next_slice_idx_to_object_part_mapping; std::unordered_map<size_t, SliceConnection> prev_slice_idx_to_weakest_connection; std::unordered_map<size_t, SliceConnection> next_slice_idx_to_weakest_connection; for (size_t layer_idx = 0; layer_idx < po->layer_count(); ++layer_idx) { const Layer *layer = po->get_layer(layer_idx); float bottom_z = layer->bottom_z(); auto create_support_point_position = [bottom_z](const Vec2f &layer_pos) { return Vec3f{layer_pos.x(), layer_pos.y(), bottom_z}; }; for (size_t slice_idx = 0; slice_idx < layer->lslices_ex.size(); ++slice_idx) { const LayerSlice &slice = layer->lslices_ex.at(slice_idx); auto [new_part, covered_area] = build_object_part_from_slice(slice, layer); SliceConnection connection_to_below = estimate_slice_connection(slice_idx, layer); #ifdef DETAILED_DEBUG_LOGS std::cout << "SLICE IDX: " << slice_idx << std::endl; for (const auto &link : slice.overlaps_below) { std::cout << "connected to slice below: " << link.slice_idx << " by area : " << link.area << std::endl; } connection_to_below.print_info("CONNECTION TO BELOW"); #endif if (connection_to_below.area < EPSILON) { // new object part emerging size_t part_id = active_object_parts.insert(new_part); next_slice_idx_to_object_part_mapping.emplace(slice_idx, part_id); next_slice_idx_to_weakest_connection.emplace(slice_idx, connection_to_below); } else { size_t final_part_id{}; SliceConnection transfered_weakest_connection{}; // MERGE parts { std::unordered_set<size_t> parts_ids; for (const auto &link : slice.overlaps_below) { size_t part_id = active_object_parts.get_flat_id(prev_slice_idx_to_object_part_mapping.at(link.slice_idx)); parts_ids.insert(part_id); transfered_weakest_connection.add(prev_slice_idx_to_weakest_connection.at(link.slice_idx)); } final_part_id = *parts_ids.begin(); for (size_t part_id : parts_ids) { if (final_part_id != part_id) { active_object_parts.merge(part_id, final_part_id); } } } auto estimate_conn_strength = [bottom_z](const SliceConnection &conn) { if (conn.area < EPSILON) { // connection is empty, does not exists. Return max strength so that it is not picked as the // weakest connection. return INFINITY; } Vec3f centroid = conn.centroid_accumulator / conn.area; Vec2f variance = (conn.second_moment_of_area_accumulator / conn.area - centroid.head<2>().cwiseProduct(centroid.head<2>())); float xy_variance = variance.x() + variance.y(); float arm_len_estimate = std::max(1.0f, bottom_z - (conn.centroid_accumulator.z() / conn.area)); return conn.area * sqrt(xy_variance) / arm_len_estimate; }; #ifdef DETAILED_DEBUG_LOGS connection_to_below.print_info("new_weakest_connection"); transfered_weakest_connection.print_info("transfered_weakest_connection"); #endif if (estimate_conn_strength(transfered_weakest_connection) > estimate_conn_strength(connection_to_below)) { transfered_weakest_connection = connection_to_below; } next_slice_idx_to_weakest_connection.emplace(slice_idx, transfered_weakest_connection); next_slice_idx_to_object_part_mapping.emplace(slice_idx, final_part_id); ObjectPart &part = active_object_parts.access(final_part_id); part.add(new_part); } } prev_slice_idx_to_object_part_mapping = next_slice_idx_to_object_part_mapping; next_slice_idx_to_object_part_mapping.clear(); prev_slice_idx_to_weakest_connection = next_slice_idx_to_weakest_connection; next_slice_idx_to_weakest_connection.clear(); std::vector<ExtrusionLine> current_layer_ext_perims_lines{}; current_layer_ext_perims_lines.reserve(prev_layer_ext_perim_lines.get_lines().size()); // All object parts updated, and for each slice we have coresponding weakest connection. // We can now check each slice and its corresponding weakest connection and object part for stability. for (size_t slice_idx = 0; slice_idx < layer->lslices_ex.size(); ++slice_idx) { const LayerSlice &slice = layer->lslices_ex.at(slice_idx); ObjectPart &part = active_object_parts.access(prev_slice_idx_to_object_part_mapping[slice_idx]); SliceConnection &weakest_conn = prev_slice_idx_to_weakest_connection[slice_idx]; std::vector<Linef> boundary_lines; for (const auto &link : slice.overlaps_below) { auto ls = to_unscaled_linesf({layer->lower_layer->lslices[link.slice_idx]}); boundary_lines.insert(boundary_lines.end(), ls.begin(), ls.end()); } AABBTreeLines::LinesDistancer<Linef> prev_layer_boundary{std::move(boundary_lines)}; std::vector<ExtrusionLine> current_slice_ext_perims_lines{}; current_slice_ext_perims_lines.reserve(prev_layer_ext_perim_lines.get_lines().size() / layer->lslices_ex.size()); #ifdef DETAILED_DEBUG_LOGS weakest_conn.print_info("weakest connection info: "); #endif // Function that is used when new support point is generated. It will update the ObjectPart stability, weakest conneciton info, // and the support presence grid and add the point to the issues. auto reckon_new_support_point = [&part, &weakest_conn, &supp_points, &supports_presence_grid, ¶ms, &layer_idx](const Vec3f &support_point, float force, const Vec2f &dir) { if (supports_presence_grid.position_taken(support_point) || layer_idx <= 1) { return; } float area = params.support_points_interface_radius * params.support_points_interface_radius * float(PI); part.add_support_point(support_point, area); float radius = params.support_points_interface_radius; supp_points.emplace_back(support_point, force, radius, dir); supports_presence_grid.take_position(support_point); if (weakest_conn.area > EPSILON) { // Do not add it to the weakest connection if it is not valid - does not exist weakest_conn.area += area; weakest_conn.centroid_accumulator += support_point * area; weakest_conn.second_moment_of_area_accumulator += area * support_point.head<2>().cwiseProduct(support_point.head<2>()); weakest_conn.second_moment_of_area_covariance_accumulator += area * support_point.x() * support_point.y(); } }; // first we will check local extrusion stability of bridges, then of perimeters. Perimeters are more important, they // account for most of the curling and possible crashes, so on them we will run also global stability check for (const auto &island : slice.islands) { // Support bridges where needed. for (const LayerExtrusionRange &fill_range : island.fills) { const LayerRegion *fill_region = layer->get_region(fill_range.region()); for (const auto &fill_idx : fill_range) { const ExtrusionEntity *entity = fill_region->fills().entities[fill_idx]; if (entity->role() == erBridgeInfill) { for (const ExtrusionLine &bridge : check_extrusion_entity_stability(entity, fill_region, prev_layer_ext_perim_lines,prev_layer_boundary, params)) { if (bridge.support_point_generated) { reckon_new_support_point(create_support_point_position(bridge.b), -EPSILON, Vec2f::Zero()); } } } } } const LayerRegion *perimeter_region = layer->get_region(island.perimeters.region()); for (const auto &perimeter_idx : island.perimeters) { const ExtrusionEntity *entity = perimeter_region->perimeters().entities[perimeter_idx]; std::vector<ExtrusionLine> perims = check_extrusion_entity_stability(entity, perimeter_region, prev_layer_ext_perim_lines,prev_layer_boundary, params); for (const ExtrusionLine &perim : perims) { if (perim.support_point_generated) { reckon_new_support_point(create_support_point_position(perim.b), -EPSILON, Vec2f::Zero()); } if (perim.is_external_perimeter()) { current_slice_ext_perims_lines.push_back(perim); } } } } LD current_slice_lines_distancer(current_slice_ext_perims_lines); float unchecked_dist = params.min_distance_between_support_points + 1.0f; for (const ExtrusionLine &line : current_slice_ext_perims_lines) { if ((unchecked_dist + line.len < params.min_distance_between_support_points && line.curled_up_height < 0.3f) || line.len == 0) { unchecked_dist += line.len; } else { unchecked_dist = line.len; Vec2f pivot_site_search_point = Vec2f(line.b + (line.b - line.a).normalized() * 300.0f); auto [dist, nidx, nearest_point] = current_slice_lines_distancer.distance_from_lines_extra<false>(pivot_site_search_point); Vec3f support_point = create_support_point_position(nearest_point); auto force = part.is_stable_while_extruding(weakest_conn, line, support_point, bottom_z, params); if (force > 0) { reckon_new_support_point(support_point, force, (line.b - line.a).normalized()); } } } current_layer_ext_perims_lines.insert(current_layer_ext_perims_lines.end(), current_slice_ext_perims_lines.begin(), current_slice_ext_perims_lines.end()); } // slice iterations prev_layer_ext_perim_lines = LD(current_layer_ext_perims_lines); } // layer iterations return supp_points; } #ifdef DEBUG_FILES void debug_export(SupportPoints support_points, std::string file_name) { Slic3r::CNumericLocalesSetter locales_setter; { FILE *fp = boost::nowide::fopen(debug_out_path((file_name + "_supports.obj").c_str()).c_str(), "w"); if (fp == nullptr) { BOOST_LOG_TRIVIAL(error) << "Debug files: Couldn't open " << file_name << " for writing"; return; } for (size_t i = 0; i < support_points.size(); ++i) { if (support_points[i].force <= 0) { fprintf(fp, "v %f %f %f %f %f %f\n", support_points[i].position(0), support_points[i].position(1), support_points[i].position(2), 0.0, 1.0, 0.0); } else { fprintf(fp, "v %f %f %f %f %f %f\n", support_points[i].position(0), support_points[i].position(1), support_points[i].position(2), 1.0, 0.0, 0.0); } } fclose(fp); } } #endif // std::vector<size_t> quick_search(const PrintObject *po, const Params ¶ms) { // return {}; // } SupportPoints full_search(const PrintObject *po, const Params ¶ms) { SupportPoints supp_points = check_stability(po, params); #ifdef DEBUG_FILES debug_export(supp_points, "issues"); #endif return supp_points; } void estimate_supports_malformations(SupportLayerPtrs &layers, float flow_width, const Params ¶ms) { #ifdef DEBUG_FILES FILE *debug_file = boost::nowide::fopen(debug_out_path("supports_malformations.obj").c_str(), "w"); #endif AABBTreeLines::LinesDistancer<ExtrusionLine> prev_layer_lines{}; for (SupportLayer *l : layers) { std::vector<ExtrusionLine> current_layer_lines; for (const ExtrusionEntity *extrusion : l->support_fills.flatten().entities) { Polyline pl = extrusion->as_polyline(); Polygon pol(pl.points); pol.make_counter_clockwise(); auto annotated_points = estimate_points_properties<true, true, false, false>(pol.points, prev_layer_lines, flow_width); for (size_t i = 0; i < annotated_points.size(); ++i) { ExtendedPoint &curr_point = annotated_points[i]; float line_len = i > 0 ? ((annotated_points[i - 1].position - curr_point.position).norm()) : 0.0f; ExtrusionLine line_out{i > 0 ? annotated_points[i - 1].position.cast<float>() : curr_point.position.cast<float>(), curr_point.position.cast<float>(), line_len, extrusion}; const ExtrusionLine nearest_prev_layer_line = prev_layer_lines.get_lines().size() > curr_point.nearest_prev_layer_line ? prev_layer_lines.get_line(curr_point.nearest_prev_layer_line) : ExtrusionLine{}; Vec2f v1 = (nearest_prev_layer_line.b - nearest_prev_layer_line.a); Vec2f v2 = (curr_point.position.cast<float>() - nearest_prev_layer_line.a); auto d = (v1.x() * v2.y()) - (v1.y() * v2.x()); if (d > 0) { curr_point.distance *= -1.0f; } line_out.curled_up_height = estimate_curled_up_height(curr_point, l->height, flow_width, nearest_prev_layer_line.curled_up_height, params); current_layer_lines.push_back(line_out); } } for (const ExtrusionLine &line : current_layer_lines) { if (line.curled_up_height > 0.3f) { l->malformed_lines.push_back(Line{Point::new_scale(line.a), Point::new_scale(line.b)}); } } #ifdef DEBUG_FILES for (const ExtrusionLine &line : current_layer_lines) { if (line.curled_up_height > 0.3f) { Vec3f color = value_to_rgbf(-EPSILON, l->height * params.max_malformation_factor, line.curled_up_height); fprintf(debug_file, "v %f %f %f %f %f %f\n", line.b[0], line.b[1], l->print_z, color[0], color[1], color[2]); } } #endif prev_layer_lines = LD{current_layer_lines}; } #ifdef DEBUG_FILES fclose(debug_file); #endif } void estimate_malformations(LayerPtrs &layers, const Params ¶ms) { #ifdef DEBUG_FILES FILE *debug_file = boost::nowide::fopen(debug_out_path("object_malformations.obj").c_str(), "w"); #endif LD prev_layer_lines{}; for (Layer *l : layers) { std::vector<Linef> boundary_lines = l->lower_layer != nullptr ? to_unscaled_linesf(l->lower_layer->lslices) : std::vector<Linef>(); AABBTreeLines::LinesDistancer<Linef> prev_layer_boundary{std::move(boundary_lines)}; std::vector<ExtrusionLine> current_layer_lines; for (const LayerRegion *layer_region : l->regions()) { for (const ExtrusionEntity *extrusion : layer_region->perimeters().flatten().entities) { Points extrusion_pts; extrusion->collect_points(extrusion_pts); float flow_width = get_flow_width(layer_region, extrusion->role()); auto annotated_points = estimate_points_properties<true, false, false, false>(extrusion_pts, prev_layer_lines, flow_width, params.bridge_distance); for (size_t i = 0; i < annotated_points.size(); ++i) { ExtendedPoint &curr_point = annotated_points[i]; float line_len = i > 0 ? ((annotated_points[i - 1].position - curr_point.position).norm()) : 0.0f; ExtrusionLine line_out{i > 0 ? annotated_points[i - 1].position.cast<float>() : curr_point.position.cast<float>(), curr_point.position.cast<float>(), line_len, extrusion}; const ExtrusionLine nearest_prev_layer_line = prev_layer_lines.get_lines().size() > 0 ? prev_layer_lines.get_line(curr_point.nearest_prev_layer_line) : ExtrusionLine{}; float sign = (prev_layer_boundary.distance_from_lines<true>(curr_point.position) + 0.5f * flow_width) < 0.0f ? -1.0f : 1.0f; curr_point.distance *= sign; line_out.curled_up_height = estimate_curled_up_height(curr_point, layer_region->layer()->height, flow_width, nearest_prev_layer_line.curled_up_height, params); current_layer_lines.push_back(line_out); } } } for (const ExtrusionLine &line : current_layer_lines) { if (line.curled_up_height > 0.3f) { l->malformed_lines.push_back(Line{Point::new_scale(line.a), Point::new_scale(line.b)}); } } #ifdef DEBUG_FILES for (const ExtrusionLine &line : current_layer_lines) { if (line.curled_up_height > 0.3f) { Vec3f color = value_to_rgbf(-EPSILON, l->height * params.max_malformation_factor, line.curled_up_height); fprintf(debug_file, "v %f %f %f %f %f %f\n", line.b[0], line.b[1], l->print_z, color[0], color[1], color[2]); } } #endif prev_layer_lines = LD{current_layer_lines}; } #ifdef DEBUG_FILES fclose(debug_file); #endif } } // namespace SupportSpotsGenerator } // namespace Slic3r