package Slic3r::Geometry; use strict; use warnings; require Exporter; our @ISA = qw(Exporter); our @EXPORT_OK = qw( PI X Y Z A B X1 Y1 X2 Y2 MIN MAX epsilon slope line_atan lines_parallel line_point_belongs_to_segment points_coincide distance_between_points comparable_distance_between_points chained_path_items chained_path_points line_length midpoint point_in_polygon point_in_segment segment_in_segment point_is_on_left_of_segment polyline_lines polygon_lines nearest_point point_along_segment polygon_segment_having_point polygon_has_subsegment polygon_has_vertex polyline_length can_connect_points deg2rad rad2deg rotate_points move_points remove_coinciding_points clip_segment_polygon sum_vectors multiply_vector subtract_vectors dot perp polygon_points_visibility line_intersection bounding_box bounding_box_intersect same_point same_line longest_segment angle3points three_points_aligned line_direction polyline_remove_parallel_continuous_edges polyline_remove_acute_vertices polygon_remove_acute_vertices polygon_remove_parallel_continuous_edges chained_path collinear scale unscale merge_collinear_lines rad2deg_dir bounding_box_center line_intersects_any douglas_peucker polyline_remove_short_segments normal triangle_normal polygon_is_convex scaled_epsilon bounding_box_3D size_3D size_2D ); use constant PI => 4 * atan2(1, 1); use constant A => 0; use constant B => 1; use constant X => 0; use constant Y => 1; use constant Z => 2; use constant X1 => 0; use constant Y1 => 1; use constant X2 => 2; use constant Y2 => 3; use constant MIN => 0; use constant MAX => 1; our $parallel_degrees_limit = abs(deg2rad(0.1)); sub epsilon () { 1E-4 } sub scaled_epsilon () { epsilon / &Slic3r::SCALING_FACTOR } sub scale ($) { $_[0] / &Slic3r::SCALING_FACTOR } sub unscale ($) { $_[0] * &Slic3r::SCALING_FACTOR } sub slope { my ($line) = @_; return undef if abs($line->[B][X] - $line->[A][X]) < epsilon; # line is vertical return ($line->[B][Y] - $line->[A][Y]) / ($line->[B][X] - $line->[A][X]); } sub line_atan { my ($line) = @_; return atan2($line->[B][Y] - $line->[A][Y], $line->[B][X] - $line->[A][X]); } sub line_direction { my ($line) = @_; my $atan2 = line_atan($line); return ($atan2 == PI) ? 0 : ($atan2 < 0) ? ($atan2 + PI) : $atan2; } sub lines_parallel { my ($line1, $line2) = @_; return abs(line_direction($line1) - line_direction($line2)) < $parallel_degrees_limit; } sub three_points_aligned { my ($p1, $p2, $p3) = @_; return lines_parallel([$p1, $p2], [$p2, $p3]); } # this subroutine checks whether a given point may belong to a given # segment given the hypothesis that it belongs to the line containing # the segment sub line_point_belongs_to_segment { my ($point, $segment) = @_; #printf " checking whether %f,%f may belong to segment %f,%f - %f,%f\n", # @$point, map @$_, @$segment; my @segment_extents = ( [ sort { $a <=> $b } map $_->[X], @$segment ], [ sort { $a <=> $b } map $_->[Y], @$segment ], ); return 0 if $point->[X] < ($segment_extents[X][0] - epsilon) || $point->[X] > ($segment_extents[X][1] + epsilon); return 0 if $point->[Y] < ($segment_extents[Y][0] - epsilon) || $point->[Y] > ($segment_extents[Y][1] + epsilon); return 1; } sub points_coincide { my ($p1, $p2) = @_; return 1 if abs($p2->[X] - $p1->[X]) < epsilon && abs($p2->[Y] - $p1->[Y]) < epsilon; return 0; } sub same_point { my ($p1, $p2) = @_; return $p1->[X] == $p2->[X] && $p1->[Y] == $p2->[Y]; } sub same_line { my ($line1, $line2) = @_; return same_point($line1->[A], $line2->[A]) && same_point($line1->[B], $line2->[B]); } sub distance_between_points { my ($p1, $p2) = @_; return sqrt((($p1->[X] - $p2->[X])**2) + ($p1->[Y] - $p2->[Y])**2); } sub comparable_distance_between_points { my ($p1, $p2) = @_; return (($p1->[X] - $p2->[X])**2) + (($p1->[Y] - $p2->[Y])**2); } sub point_line_distance { my ($point, $line) = @_; return distance_between_points($point, $line->[A]) if same_point($line->[A], $line->[B]); my $n = ($line->[B][X] - $line->[A][X]) * ($line->[A][Y] - $point->[Y]) - ($line->[A][X] - $point->[X]) * ($line->[B][Y] - $line->[A][Y]); my $d = sqrt((($line->[B][X] - $line->[A][X]) ** 2) + (($line->[B][Y] - $line->[A][Y]) ** 2)); return abs($n) / $d; } sub line_length { my ($line) = @_; return distance_between_points(@$line[A, B]); } sub longest_segment { my (@lines) = @_; my ($longest, $maxlength); foreach my $line (@lines) { my $line_length = line_length($line); if (!defined $longest || $line_length > $maxlength) { $longest = $line; $maxlength = $line_length; } } return $longest; } sub midpoint { my ($line) = @_; return [ ($line->[B][X] + $line->[A][X]) / 2, ($line->[B][Y] + $line->[A][Y]) / 2 ]; } # this will check whether a point is in a polygon regardless of polygon orientation sub point_in_polygon { my ($point, $polygon) = @_; my ($x, $y) = @$point; my $n = @$polygon; my @x = map $_->[X], @$polygon; my @y = map $_->[Y], @$polygon; # Derived from the comp.graphics.algorithms FAQ, # courtesy of Wm. Randolph Franklin my ($i, $j); my $side = 0; # 0 = outside; 1 = inside for ($i = 0, $j = $n - 1; $i < $n; $j = $i++) { if ( # If the y is between the (y-) borders... ($y[$i] <= $y && $y < $y[$j]) || ($y[$j] <= $y && $y < $y[$i]) and # ...the (x,y) to infinity line crosses the edge # from the ith point to the jth point... ($x < ($x[$j] - $x[$i]) * ($y - $y[$i]) / ($y[$j] - $y[$i]) + $x[$i]) ) { $side = not $side; # Jump the fence } } # if point is not in polygon, let's check whether it belongs to the contour if (!$side && 0) { return 1 if polygon_segment_having_point($polygon, $point); } return $side; } sub point_in_segment { my ($point, $line) = @_; my ($x, $y) = @$point; my @line_x = sort { $a <=> $b } $line->[A][X], $line->[B][X]; my @line_y = sort { $a <=> $b } $line->[A][Y], $line->[B][Y]; # check whether the point is in the segment bounding box return 0 unless $x >= ($line_x[0] - epsilon) && $x <= ($line_x[1] + epsilon) && $y >= ($line_y[0] - epsilon) && $y <= ($line_y[1] + epsilon); # if line is vertical, check whether point's X is the same as the line if ($line->[A][X] == $line->[B][X]) { return abs($x - $line->[A][X]) < epsilon ? 1 : 0; } # calculate the Y in line at X of the point my $y3 = $line->[A][Y] + ($line->[B][Y] - $line->[A][Y]) * ($x - $line->[A][X]) / ($line->[B][X] - $line->[A][X]); return abs($y3 - $y) < epsilon ? 1 : 0; } sub segment_in_segment { my ($needle, $haystack) = @_; # a segment is contained in another segment if its endpoints are contained return point_in_segment($needle->[A], $haystack) && point_in_segment($needle->[B], $haystack); } sub point_is_on_left_of_segment { my ($point, $line) = @_; return (($line->[B][X] - $line->[A][X])*($point->[Y] - $line->[A][Y]) - ($line->[B][Y] - $line->[A][Y])*($point->[X] - $line->[A][X])) > 0; } sub polyline_lines { my ($polygon) = @_; return map Slic3r::Line->new($polygon->[$_], $polygon->[$_+1]), 0 .. $#$polygon-1; } sub polygon_lines { my ($polygon) = @_; return polyline_lines([ @$polygon, $polygon->[0] ]); } sub nearest_point { my ($point, $points) = @_; my $index = nearest_point_index(@_); return undef if !defined $index; return $points->[$index]; } sub nearest_point_index { my ($point, $points) = @_; my ($nearest_point_index, $distance) = (); for my $i (0..$#$points) { my $d = comparable_distance_between_points($point, $points->[$i]); if (!defined $distance || $d < $distance) { $nearest_point_index = $i; $distance = $d; return $i if $distance < epsilon; } } return $nearest_point_index; } # given a segment $p1-$p2, get the point at $distance from $p1 along segment sub point_along_segment { my ($p1, $p2, $distance) = @_; my $point = [ @$p1 ]; my $line_length = sqrt( (($p2->[X] - $p1->[X])**2) + (($p2->[Y] - $p1->[Y])**2) ); for (X, Y) { if ($p1->[$_] != $p2->[$_]) { $point->[$_] = $p1->[$_] + ($p2->[$_] - $p1->[$_]) * $distance / $line_length; } } return $point; } # given a $polygon, return the (first) segment having $point sub polygon_segment_having_point { my ($polygon, $point) = @_; foreach my $line (polygon_lines($polygon)) { return $line if point_in_segment($point, $line); } return undef; } # return true if the given segment is contained in any edge of the polygon sub polygon_has_subsegment { my ($polygon, $segment) = @_; foreach my $line (polygon_lines($polygon)) { return 1 if segment_in_segment($segment, $line); } return 0; } sub polygon_has_vertex { my ($polygon, $point) = @_; foreach my $p (@$polygon) { return 1 if points_coincide($p, $point); } return 0; } # polygon must be simple (non complex) and ccw sub polygon_is_convex { my ($points) = @_; for (my $i = 0; $i <= $#$points; $i++) { my $angle = angle3points($points->[$i-1], $points->[$i-2], $points->[$i]); return 0 if $angle < PI; } return 1; } sub polyline_length { my ($polyline) = @_; my $length = 0; $length += line_length($_) for polygon_lines($polyline); return $length; } sub can_connect_points { my ($p1, $p2, $polygons) = @_; # check that the two points are visible from each other return 0 if grep !polygon_points_visibility($_, $p1, $p2), @$polygons; # get segment where $p1 lies my $p1_segment; for (@$polygons) { $p1_segment = polygon_segment_having_point($_, $p1); last if $p1_segment; } # defensive programming, this shouldn't happen if (!$p1_segment) { die sprintf "Point %f,%f wasn't found in polygon contour or holes!", @$p1; } # check whether $p2 is internal or external (internal = on the left) return point_is_on_left_of_segment($p2, $p1_segment) || point_in_segment($p2, $p1_segment); } sub deg2rad { my ($degrees) = @_; return PI() * $degrees / 180; } sub rad2deg { my ($rad) = @_; return $rad / PI() * 180; } sub rad2deg_dir { my ($rad) = @_; $rad = ($rad < PI) ? (-$rad + PI/2) : ($rad + PI/2); $rad += PI if $rad < 0; return rad2deg($rad); } sub rotate_points { my ($radians, $center, @points) = @_; $center ||= [0,0]; return map { [ $center->[X] + cos($radians) * ($_->[X] - $center->[X]) - sin($radians) * ($_->[Y] - $center->[Y]), $center->[Y] + cos($radians) * ($_->[Y] - $center->[Y]) + sin($radians) * ($_->[X] - $center->[X]), ] } @points; } sub move_points { my ($shift, @points) = @_; return map Slic3r::Point->new($shift->[X] + $_->[X], $shift->[Y] + $_->[Y]), @points; } # preserves order sub remove_coinciding_points { my ($points) = @_; my %p = map { sprintf('%f,%f', @$_) => "$_" } @$points; %p = reverse %p; @$points = grep $p{"$_"}, @$points; } # implementation of Liang-Barsky algorithm # polygon must be convex and ccw sub clip_segment_polygon { my ($line, $polygon) = @_; if (@$line == 1) { # the segment is a point, check for inclusion return point_in_polygon($line, $polygon); } my @V = (@$polygon, $polygon->[0]); my $tE = 0; # the maximum entering segment parameter my $tL = 1; # the minimum entering segment parameter my $dS = subtract_vectors($line->[B], $line->[A]); # the segment direction vector for (my $i = 0; $i < $#V; $i++) { # process polygon edge V[i]V[Vi+1] my $e = subtract_vectors($V[$i+1], $V[$i]); my $N = perp($e, subtract_vectors($line->[A], $V[$i])); my $D = -perp($e, $dS); if (abs($D) < epsilon) { # $line is nearly parallel to this edge ($N < 0) ? return : next; # P0 outside this edge ? $line is outside : $line cannot cross edge, thus ignoring } my $t = $N / $D; if ($D < 0) { # $line is entering across this edge if ($t > $tE) { # new max $tE $tE = $t; return if $tE > $tL; # $line enters after leaving polygon? } } else { # $line is leaving across this edge if ($t < $tL) { # new min $tL $tL = $t; return if $tL < $tE; # $line leaves before entering polygon? } } } # $tE <= $tL implies that there is a valid intersection subsegment return [ sum_vectors($line->[A], multiply_vector($dS, $tE)), # = P(tE) = point where S enters polygon sum_vectors($line->[A], multiply_vector($dS, $tL)), # = P(tE) = point where S enters polygon ]; } sub sum_vectors { my ($v1, $v2) = @_; return [ $v1->[X] + $v2->[X], $v1->[Y] + $v2->[Y] ]; } sub multiply_vector { my ($line, $scalar) = @_; return [ $line->[X] * $scalar, $line->[Y] * $scalar ]; } sub subtract_vectors { my ($line2, $line1) = @_; return [ $line2->[X] - $line1->[X], $line2->[Y] - $line1->[Y] ]; } sub normal { my ($line1, $line2) = @_; return [ ($line1->[Y] * $line2->[Z]) - ($line1->[Z] * $line2->[Y]), -($line2->[Z] * $line1->[X]) + ($line2->[X] * $line1->[Z]), ($line1->[X] * $line2->[Y]) - ($line1->[Y] * $line2->[X]), ]; } sub triangle_normal { my ($v1, $v2, $v3) = @_; my $u = [ map +($v2->[$_] - $v1->[$_]), (X,Y,Z) ]; my $v = [ map +($v3->[$_] - $v1->[$_]), (X,Y,Z) ]; return normal($u, $v); } # 2D dot product sub dot { my ($u, $v) = @_; return $u->[X] * $v->[X] + $u->[Y] * $v->[Y]; } # 2D perp product sub perp { my ($u, $v) = @_; return $u->[X] * $v->[Y] - $u->[Y] * $v->[X]; } sub polygon_points_visibility { my ($polygon, $p1, $p2) = @_; my $our_line = [ $p1, $p2 ]; foreach my $line (polygon_lines($polygon)) { my $intersection = line_intersection($our_line, $line, 1) or next; next if grep points_coincide($intersection, $_), $p1, $p2; return 0; } return 1; } sub line_intersects_any { my ($line, $lines) = @_; for (@$lines) { return 1 if line_intersection($line, $_, 1); } return 0; } sub line_intersection { my ($line1, $line2, $require_crossing) = @_; $require_crossing ||= 0; my $intersection = _line_intersection(map @$_, @$line1, @$line2); return (ref $intersection && $intersection->[1] == $require_crossing) ? $intersection->[0] : undef; } sub collinear { my ($line1, $line2, $require_overlapping) = @_; my $intersection = _line_intersection(map @$_, @$line1, @$line2); return 0 unless !ref($intersection) && ($intersection eq 'parallel collinear' || ($intersection eq 'parallel vertical' && abs($line1->[A][X] - $line2->[A][X]) < epsilon)); if ($require_overlapping) { my @box_a = bounding_box([ $line1->[0], $line1->[1] ]); my @box_b = bounding_box([ $line2->[0], $line2->[1] ]); return 0 unless bounding_box_intersect( 2, @box_a, @box_b ); } return 1; } sub merge_collinear_lines { my ($lines) = @_; my $line_count = @$lines; for (my $i = 0; $i <= $#$lines-1; $i++) { for (my $j = $i+1; $j <= $#$lines; $j++) { # lines are collinear and overlapping? next unless collinear($lines->[$i], $lines->[$j], 1); # lines have same orientation? next unless ($lines->[$i][A][X] <=> $lines->[$i][B][X]) == ($lines->[$j][A][X] <=> $lines->[$j][B][X]) && ($lines->[$i][A][Y] <=> $lines->[$i][B][Y]) == ($lines->[$j][A][Y] <=> $lines->[$j][B][Y]); # resulting line my @x = sort { $a <=> $b } ($lines->[$i][A][X], $lines->[$i][B][X], $lines->[$j][A][X], $lines->[$j][B][X]); my @y = sort { $a <=> $b } ($lines->[$i][A][Y], $lines->[$i][B][Y], $lines->[$j][A][Y], $lines->[$j][B][Y]); my $new_line = Slic3r::Line->new([$x[0], $y[0]], [$x[-1], $y[-1]]); for (X, Y) { ($new_line->[A][$_], $new_line->[B][$_]) = ($new_line->[B][$_], $new_line->[A][$_]) if $lines->[$i][A][$_] > $lines->[$i][B][$_]; } # save new line and remove found one $lines->[$i] = $new_line; splice @$lines, $j, 1; $j--; } } Slic3r::debugf " merging %d lines resulted in %d lines\n", $line_count, scalar(@$lines); return $lines; } sub _line_intersection { my ( $x0, $y0, $x1, $y1, $x2, $y2, $x3, $y3 ) = @_; my ($x, $y); # The as-yet-undetermined intersection point. my $dy10 = $y1 - $y0; # dyPQ, dxPQ are the coordinate differences my $dx10 = $x1 - $x0; # between the points P and Q. my $dy32 = $y3 - $y2; my $dx32 = $x3 - $x2; my $dy10z = abs( $dy10 ) < epsilon; # Is the difference $dy10 "zero"? my $dx10z = abs( $dx10 ) < epsilon; my $dy32z = abs( $dy32 ) < epsilon; my $dx32z = abs( $dx32 ) < epsilon; my $dyx10; # The slopes. my $dyx32; $dyx10 = $dy10 / $dx10 unless $dx10z; $dyx32 = $dy32 / $dx32 unless $dx32z; # Now we know all differences and the slopes; # we can detect horizontal/vertical special cases. # E.g., slope = 0 means a horizontal line. unless ( defined $dyx10 or defined $dyx32 ) { return "parallel vertical"; } elsif ( $dy10z and not $dy32z ) { # First line horizontal. $y = $y0; $x = $x2 + ( $y - $y2 ) * $dx32 / $dy32; } elsif ( not $dy10z and $dy32z ) { # Second line horizontal. $y = $y2; $x = $x0 + ( $y - $y0 ) * $dx10 / $dy10; } elsif ( $dx10z and not $dx32z ) { # First line vertical. $x = $x0; $y = $y2 + $dyx32 * ( $x - $x2 ); } elsif ( not $dx10z and $dx32z ) { # Second line vertical. $x = $x2; $y = $y0 + $dyx10 * ( $x - $x0 ); } elsif ( abs( $dyx10 - $dyx32 ) < epsilon ) { # The slopes are suspiciously close to each other. # Either we have parallel collinear or just parallel lines. # The bounding box checks have already weeded the cases # "parallel horizontal" and "parallel vertical" away. my $ya = $y0 - $dyx10 * $x0; my $yb = $y2 - $dyx32 * $x2; return "parallel collinear" if abs( $ya - $yb ) < epsilon; return "parallel"; } else { # None of the special cases matched. # We have a "honest" line intersection. $x = ($y2 - $y0 + $dyx10*$x0 - $dyx32*$x2)/($dyx10 - $dyx32); $y = $y0 + $dyx10 * ($x - $x0); } my $h10 = $dx10 ? ($x - $x0) / $dx10 : ($dy10 ? ($y - $y0) / $dy10 : 1); my $h32 = $dx32 ? ($x - $x2) / $dx32 : ($dy32 ? ($y - $y2) / $dy32 : 1); return [Slic3r::Point->new($x, $y), $h10 >= 0 && $h10 <= 1 && $h32 >= 0 && $h32 <= 1]; } # http://paulbourke.net/geometry/lineline2d/ sub _line_intersection2 { my ($line1, $line2) = @_; my $denom = ($line2->[B][Y] - $line2->[A][Y]) * ($line1->[B][X] - $line1->[A][X]) - ($line2->[B][X] - $line2->[A][X]) * ($line1->[B][Y] - $line1->[A][Y]); my $numerA = ($line2->[B][X] - $line2->[A][X]) * ($line1->[A][Y] - $line2->[A][Y]) - ($line2->[B][Y] - $line2->[A][Y]) * ($line1->[A][X] - $line2->[A][X]); my $numerB = ($line1->[B][X] - $line1->[A][X]) * ($line1->[A][Y] - $line2->[A][Y]) - ($line1->[B][Y] - $line1->[A][Y]) * ($line1->[A][X] - $line2->[A][X]); # are the lines coincident? if (abs($numerA) < epsilon && abs($numerB) < epsilon && abs($denom) < epsilon) { return Slic3r::Point->new( ($line1->[A][X] + $line1->[B][X]) / 2, ($line1->[A][Y] + $line1->[B][Y]) / 2, ); } # are the lines parallel? if (abs($denom) < epsilon) { return undef; } # is the intersection along the segments? my $muA = $numerA / $denom; my $muB = $numerB / $denom; if ($muA < 0 || $muA > 1 || $muB < 0 || $muB > 1) { return undef; } return Slic3r::Point->new( $line1->[A][X] + $muA * ($line1->[B][X] - $line1->[A][X]), $line1->[A][Y] + $muA * ($line1->[B][Y] - $line1->[A][Y]), ); } # 2D sub bounding_box { my ($points) = @_; my @x = (undef, undef); my @y = (undef, undef); for (@$points) { $x[MIN] = $_->[X] if !defined $x[MIN] || $_->[X] < $x[MIN]; $x[MAX] = $_->[X] if !defined $x[MAX] || $_->[X] > $x[MAX]; $y[MIN] = $_->[Y] if !defined $y[MIN] || $_->[Y] < $y[MIN]; $y[MAX] = $_->[Y] if !defined $y[MAX] || $_->[Y] > $y[MAX]; } return ($x[0], $y[0], $x[-1], $y[-1]); } sub bounding_box_center { my @bounding_box = bounding_box(@_); return Slic3r::Point->new( ($bounding_box[X2] + $bounding_box[X1]) / 2, ($bounding_box[Y2] + $bounding_box[Y1]) / 2, ); } sub size_2D { my @bounding_box = bounding_box(@_); return ( ($bounding_box[X2] - $bounding_box[X1]), ($bounding_box[Y2] - $bounding_box[Y1]), ); } # bounding_box_intersect($d, @a, @b) # Return true if the given bounding boxes @a and @b intersect # in $d dimensions. Used by line_intersection(). sub bounding_box_intersect { my ( $d, @bb ) = @_; # Number of dimensions and box coordinates. my @aa = splice( @bb, 0, 2 * $d ); # The first box. # (@bb is the second one.) # Must intersect in all dimensions. for ( my $i_min = 0; $i_min < $d; $i_min++ ) { my $i_max = $i_min + $d; # The index for the maximum. return 0 if ( $aa[ $i_max ] + epsilon ) < $bb[ $i_min ]; return 0 if ( $bb[ $i_max ] + epsilon ) < $aa[ $i_min ]; } return 1; } # 3D sub bounding_box_3D { my ($points) = @_; my @extents = (map [undef, undef], X,Y,Z); foreach my $point (@$points) { for (X,Y,Z) { $extents[$_][MIN] = $point->[$_] if !defined $extents[$_][MIN] || $point->[$_] < $extents[$_][MIN]; $extents[$_][MAX] = $point->[$_] if !defined $extents[$_][MAX] || $point->[$_] > $extents[$_][MAX]; } } return @extents; } sub size_3D { my ($points) = @_; my @extents = bounding_box_3D($points); return map $extents[$_][MAX] - $extents[$_][MIN], (X,Y,Z); } # this assumes a CCW rotation from $p2 to $p3 around $p1 sub angle3points { my ($p1, $p2, $p3) = @_; # p1 is the center my $angle = atan2($p2->[X] - $p1->[X], $p2->[Y] - $p1->[Y]) - atan2($p3->[X] - $p1->[X], $p3->[Y] - $p1->[Y]); # we only want to return only positive angles return $angle <= 0 ? $angle + 2*PI() : $angle; } sub polyline_remove_parallel_continuous_edges { my ($points, $isPolygon) = @_; for (my $i = $isPolygon ? 0 : 2; $i <= $#$points && @$points >= 3; $i++) { if (Slic3r::Geometry::lines_parallel([$points->[$i-2], $points->[$i-1]], [$points->[$i-1], $points->[$i]])) { # we can remove $points->[$i-1] splice @$points, $i-1, 1; $i--; } } } sub polygon_remove_parallel_continuous_edges { my ($points) = @_; return polyline_remove_parallel_continuous_edges($points, 1); } sub polyline_remove_acute_vertices { my ($points, $isPolygon) = @_; for (my $i = $isPolygon ? -1 : 1; $i < $#$points; $i++) { my $angle = angle3points($points->[$i], $points->[$i-1], $points->[$i+1]); if ($angle < 0.01 || $angle >= 2*PI - 0.01) { # we can remove $points->[$i] splice @$points, $i, 1; $i--; } } } sub polygon_remove_acute_vertices { my ($points) = @_; return polyline_remove_acute_vertices($points, 1); } sub polyline_remove_short_segments { my ($points, $min_length, $isPolygon) = @_; for (my $i = $isPolygon ? 0 : 1; $i < $#$points; $i++) { if (distance_between_points($points->[$i-1], $points->[$i]) < $min_length) { # we can remove $points->[$i] splice @$points, $i, 1; $i--; } } } # accepts an arrayref of points; it returns a list of indices # according to a nearest-neighbor walk sub chained_path { my ($items, $start_near) = @_; my @points = @$items; my %indices = map { $points[$_] => $_ } 0 .. $#points; my @result = (); my $last_point; if (!$start_near) { $start_near = shift @points; push @result, $indices{$start_near} if $start_near; } while (@points) { $start_near = nearest_point($start_near, [@points]); @points = grep $_ ne $start_near, @points; push @result, $indices{$start_near}; } return @result; } # accepts an arrayref; each item should be an arrayref whose first # item is the point to be used for the shortest path, and the second # one is the value to be returned in output (if the second item # is not provided, the point will be returned) sub chained_path_items { my ($items, $start_near) = @_; my @indices = chained_path([ map $_->[0], @$items ], $start_near); return [ map $_->[1], @$items[@indices] ]; } sub chained_path_points { my ($points, $start_near) = @_; return [ @$points[ chained_path($points, $start_near) ] ]; } sub douglas_peucker { my ($points, $tolerance) = @_; no warnings "recursion"; my $results = []; my $dmax = 0; my $index = 0; for my $i (1..$#$points) { my $d = point_line_distance($points->[$i], [ $points->[0], $points->[-1] ]); if ($d > $dmax) { $index = $i; $dmax = $d; } } if ($dmax >= $tolerance) { my $dp1 = douglas_peucker([ @$points[0..$index] ], $tolerance); $results = [ @$dp1[0..($#$dp1-1)], @{douglas_peucker([ @$points[$index..$#$points] ], $tolerance)}, ]; } else { $results = [ $points->[0], $points->[-1] ]; } return $results; } sub douglas_peucker2 { my ($points, $tolerance) = @_; my $anchor = 0; my $floater = $#$points; my @stack = (); my %keep = (); push @stack, [$anchor, $floater]; while (@stack) { ($anchor, $floater) = @{pop @stack}; # initialize line segment my ($anchor_x, $anchor_y, $seg_len); if (grep $points->[$floater][$_] != $points->[$anchor][$_], X, Y) { $anchor_x = $points->[$floater][X] - $points->[$anchor][X]; $anchor_y = $points->[$floater][Y] - $points->[$anchor][Y]; $seg_len = sqrt(($anchor_x ** 2) + ($anchor_y ** 2)); # get the unit vector $anchor_x /= $seg_len; $anchor_y /= $seg_len; } else { $anchor_x = $anchor_y = $seg_len = 0; } # inner loop: my $max_dist = 0; my $farthest = $anchor + 1; for my $i (($anchor + 1) .. $floater) { my $dist_to_seg = 0; # compare to anchor my $vecX = $points->[$i][X] - $points->[$anchor][X]; my $vecY = $points->[$i][Y] - $points->[$anchor][Y]; $seg_len = sqrt(($vecX ** 2) + ($vecY ** 2)); # dot product: my $proj = $vecX * $anchor_x + $vecY * $anchor_y; if ($proj < 0) { $dist_to_seg = $seg_len; } else { # compare to floater $vecX = $points->[$i][X] - $points->[$floater][X]; $vecY = $points->[$i][Y] - $points->[$floater][Y]; $seg_len = sqrt(($vecX ** 2) + ($vecY ** 2)); # dot product: $proj = $vecX * (-$anchor_x) + $vecY * (-$anchor_y); if ($proj < 0) { $dist_to_seg = $seg_len } else { # calculate perpendicular distance to line (pythagorean theorem): $dist_to_seg = sqrt(abs(($seg_len ** 2) - ($proj ** 2))); } if ($max_dist < $dist_to_seg) { $max_dist = $dist_to_seg; $farthest = $i; } } } if ($max_dist <= $tolerance) { # use line segment $keep{$_} = 1 for $anchor, $floater; } else { push @stack, [$anchor, $farthest]; push @stack, [$farthest, $floater]; } } return [ map $points->[$_], sort keys %keep ]; } sub arrange { my ($total_parts, $partx, $party, $areax, $areay, $dist, $Config) = @_; my $linint = sub { my ($value, $oldmin, $oldmax, $newmin, $newmax) = @_; return ($value - $oldmin) * ($newmax - $newmin) / ($oldmax - $oldmin) + $newmin; }; # use actual part size (the largest) plus separation distance (half on each side) in spacing algorithm $partx += $dist; $party += $dist; # margin needed for the skirt my $skirt_margin; if ($Config->skirts > 0) { my $flow = Slic3r::Flow->new( layer_height => $Config->get_value('first_layer_height'), nozzle_diameter => $Config->nozzle_diameter->[0], # TODO: actually look for the extruder used for skirt width => $Config->get_value('first_layer_extrusion_width'), ); $skirt_margin = ($flow->spacing * $Config->skirts + $Config->skirt_distance) * 2; } else { $skirt_margin = 0; } # this is how many cells we have available into which to put parts my $cellw = int(($areax - $skirt_margin + $dist) / $partx); my $cellh = int(($areay - $skirt_margin + $dist) / $party); die "$total_parts parts won't fit in your print area!\n" if $total_parts > ($cellw * $cellh); # width and height of space used by cells my $w = $cellw * $partx; my $h = $cellh * $party; # left and right border positions of space used by cells my $l = ($areax - $w) / 2; my $r = $l + $w; # top and bottom border positions my $t = ($areay - $h) / 2; my $b = $t + $h; # list of cells, sorted by distance from center my @cellsorder; # work out distance for all cells, sort into list for my $i (0..$cellw-1) { for my $j (0..$cellh-1) { my $cx = $linint->($i + 0.5, 0, $cellw, $l, $r); my $cy = $linint->($j + 0.5, 0, $cellh, $t, $b); my $xd = abs(($areax / 2) - $cx); my $yd = abs(($areay / 2) - $cy); my $c = { location => [$cx, $cy], index => [$i, $j], distance => $xd * $xd + $yd * $yd - abs(($cellw / 2) - ($i + 0.5)), }; BINARYINSERTIONSORT: { my $index = $c->{distance}; my $low = 0; my $high = @cellsorder; while ($low < $high) { my $mid = ($low + (($high - $low) / 2)) | 0; my $midval = $cellsorder[$mid]->[0]; if ($midval < $index) { $low = $mid + 1; } elsif ($midval > $index) { $high = $mid; } else { splice @cellsorder, $mid, 0, [$index, $c]; last BINARYINSERTIONSORT; } } splice @cellsorder, $low, 0, [$index, $c]; } } } # the extents of cells actually used by objects my ($lx, $ty, $rx, $by) = (0, 0, 0, 0); # now find cells actually used by objects, map out the extents so we can position correctly for my $i (1..$total_parts) { my $c = $cellsorder[$i - 1]; my $cx = $c->[1]->{index}->[0]; my $cy = $c->[1]->{index}->[1]; if ($i == 1) { $lx = $rx = $cx; $ty = $by = $cy; } else { $rx = $cx if $cx > $rx; $lx = $cx if $cx < $lx; $by = $cy if $cy > $by; $ty = $cy if $cy < $ty; } } # now we actually place objects into cells, positioned such that the left and bottom borders are at 0 my @positions = (); for (1..$total_parts) { my $c = shift @cellsorder; my $cx = $c->[1]->{index}->[0] - $lx; my $cy = $c->[1]->{index}->[1] - $ty; push @positions, [$cx * $partx, $cy * $party]; } return @positions; } 1;