// Polygon offsetting using Voronoi diagram prodiced by boost::polygon.

#include "VoronoiOffset.hpp"

#include <cmath>

// #define VORONOI_DEBUG_OUT

#ifdef VORONOI_DEBUG_OUT
#include <libslic3r/VoronoiVisualUtils.hpp>
#endif

namespace Slic3r {

using VD = Geometry::VoronoiDiagram;

namespace detail {
    // Intersect a circle with a ray, return the two parameters.
    // Currently used for unbounded Voronoi edges only.
	double first_circle_segment_intersection_parameter(
		const Vec2d &center, const double r, const Vec2d &pt, const Vec2d &v)
	{
		const Vec2d 	d = pt - center;
#ifndef NDEBUG
        double          d0 = (pt - center).norm();
        double          d1 = (pt + v - center).norm();
        assert(r < std::max(d0, d1) + EPSILON);
#endif /* NDEBUG */
        const double	a = v.squaredNorm();
		const double 	b = 2. * d.dot(v);
		const double    c = d.squaredNorm() - r * r;
		std::pair<int, std::array<double, 2>> out;
        double          u = b * b - 4. * a * c;
		assert(u > - EPSILON);
		double          t;
		if (u <= 0) {
			// Degenerate to a single closest point.
			t = - b / (2. * a);
			assert(t >= - EPSILON && t <= 1. + EPSILON);
			return Slic3r::clamp(0., 1., t);
		} else {
			u = sqrt(u);
			out.first = 2;
			double t0 = (- b - u) / (2. * a);
			double t1 = (- b + u) / (2. * a);
			// One of the intersections shall be found inside the segment.
			assert((t0 >= - EPSILON && t0 <= 1. + EPSILON) || (t1 >= - EPSILON && t1 <= 1. + EPSILON));
			if (t1 < 0.)
				return 0.;
			if (t0 > 1.)
				return 1.;
			return (t0 > 0.) ? t0 : t1;
		}
	}

    struct Intersections
    {
        int     count;
        Vec2d   pts[2];
    };

    // Return maximum two points, that are at distance "d" from both points
    Intersections point_point_equal_distance_points(const Point &pt1, const Point &pt2, const double d)
    {
        // Calculate the two intersection points.
        // With the help of Python package sympy:
        //      res = solve([(x - cx)**2 + (y - cy)**2 - d**2, x**2 + y**2 - d**2], [x, y])
        //      ccode(cse((res[0][0], res[0][1], res[1][0], res[1][1])))
        // where cx, cy is the center of pt1 relative to pt2,
        // d is distance from the line and the point (0, 0).
        // The result is then shifted to pt2.
        auto   cx = double(pt1.x() - pt2.x());
        auto   cy = double(pt1.y() - pt2.y());
        double cl = cx * cx + cy * cy;
        double discr = 4. * d * d - cl;
        if (discr < 0.) {
            // No intersection point found, the two circles are too far away.
            return Intersections { 0, { Vec2d(), Vec2d() } };
        }
        // Avoid division by zero if a gets too small.
        bool   xy_swapped = std::abs(cx) < std::abs(cy);
        if (xy_swapped)
            std::swap(cx, cy);
        double u;
        int    cnt;
        if (discr == 0.) {
            cnt = 1;
            u   = 0;
        } else {
            cnt = 2;
            u = 0.5 * cx * sqrt(cl * discr) / cl;
        }
        double v = 0.5 * cy - u;
        double w = 2.  * cy;
        double e = 0.5 / cx;
        double f = 0.5 * cy + u;
        Intersections out { cnt, { Vec2d(-e * (v * w - cl), v),
                                   Vec2d(-e * (w * f - cl), f) } };
        if (xy_swapped) {
            std::swap(out.pts[0].x(), out.pts[0].y());
            std::swap(out.pts[1].x(), out.pts[1].y());
        }
        out.pts[0] += pt2.cast<double>();
        out.pts[1] += pt2.cast<double>();

        assert(std::abs((out.pts[0] - pt1.cast<double>()).norm() - d) < SCALED_EPSILON);
        assert(std::abs((out.pts[1] - pt1.cast<double>()).norm() - d) < SCALED_EPSILON);
        assert(std::abs((out.pts[0] - pt2.cast<double>()).norm() - d) < SCALED_EPSILON);
        assert(std::abs((out.pts[1] - pt2.cast<double>()).norm() - d) < SCALED_EPSILON);
        return out;
    }

    // Return maximum two points, that are at distance "d" from both the line and point.
    Intersections line_point_equal_distance_points(const Line &line, const Point &ipt, const double d)
    {   
        assert(line.a != ipt && line.b != ipt);
        // Calculating two points of distance "d" to a ray and a point.
        // Point.
        Vec2d  pt   = ipt.cast<double>();
        Vec2d  lv   = (line.b - line.a).cast<double>();
        double l2   = lv.squaredNorm();
        Vec2d  lpv  = (line.a - ipt).cast<double>();
        double c    = cross2(lpv, lv);
        if (c < 0) {
            lv = - lv;
            c  = - c;
        }

        // Line equation (ax + by + c - d * sqrt(l2)).
        auto   a    = - lv.y();
        auto   b    = lv.x();
        // Line point shifted by -ipt is on the line.
        assert(std::abs(lpv.x() * a + lpv.y() * b + c) < SCALED_EPSILON);
        // Line vector (a, b) points towards ipt.
        assert(a * lpv.x() + b * lpv.y() < - SCALED_EPSILON);

#ifndef NDEBUG
        {
            // Foot point of ipt on line.
            Vec2d ft = Geometry::foot_pt(line, ipt);
            // Center point between ipt and line, its distance to both line and ipt is equal.
            Vec2d centerpt = 0.5 * (ft + pt) - pt;
            double dcenter = 0.5 * (ft - pt).norm();
            // Verify that the center point
            assert(std::abs(centerpt.x() * a + centerpt.y() * b + c - dcenter * sqrt(l2)) < SCALED_EPSILON * sqrt(l2));
        }
#endif // NDEBUG

        // Calculate the two intersection points.
        // With the help of Python package sympy:
        //      res = solve([a * x + b * y + c - d * sqrt(a**2 + b**2), x**2 + y**2 - d**2], [x, y])
        //      ccode(cse((res[0][0], res[0][1], res[1][0], res[1][1])))
        // where (a, b, c, d) is the line equation, not normalized (vector a,b is not normalized),
        // d is distance from the line and the point (0, 0).
        // The result is then shifted to ipt.

        double dscaled = d * sqrt(l2);
        double s       = c * (2. * dscaled - c);
        if (s < 0.)
            // Distance of pt from line is bigger than 2 * d.
            return Intersections { 0 };
        double u;
        int    cnt;
        // Avoid division by zero if a gets too small.
        bool   xy_swapped = std::abs(a) < std::abs(b);
        if (xy_swapped)
            std::swap(a, b);
        if (s == 0.) {
            // Distance of pt from line is 2 * d.
            cnt = 1;
            u   = 0.;
        } else {
            // Distance of pt from line is smaller than 2 * d.
            cnt = 2;
            u   = a * sqrt(s) / l2;
        }
        double e = dscaled - c;
        double f = b * e / l2;
        double g = f - u;
        double h = f + u;
        Intersections out { cnt, { Vec2d((- b * g + e) / a, g),
                                   Vec2d((- b * h + e) / a, h) } };
        if (xy_swapped) {
            std::swap(out.pts[0].x(), out.pts[0].y());
            std::swap(out.pts[1].x(), out.pts[1].y());
        }
        out.pts[0] += pt;
        out.pts[1] += pt;

        assert(std::abs(Geometry::ray_point_distance<Vec2d>(line.a.cast<double>(), (line.b - line.a).cast<double>(), out.pts[0]) - d) < SCALED_EPSILON);
        assert(std::abs(Geometry::ray_point_distance<Vec2d>(line.a.cast<double>(), (line.b - line.a).cast<double>(), out.pts[1]) - d) < SCALED_EPSILON);
        assert(std::abs((out.pts[0] - ipt.cast<double>()).norm() - d) < SCALED_EPSILON);
        assert(std::abs((out.pts[1] - ipt.cast<double>()).norm() - d) < SCALED_EPSILON);
        return out;
    }

} // namespace detail

Polygons voronoi_offset(
    const Geometry::VoronoiDiagram  &vd,
    const Lines                     &lines,
    double                           offset_distance,
    double                           discretization_error)
{
#ifndef NDEBUG
    // Verify that twin halfedges are stored next to the other in vd.
    for (size_t i = 0; i < vd.num_edges(); i += 2) {
        const VD::edge_type &e  = vd.edges()[i];
        const VD::edge_type &e2 = vd.edges()[i + 1];
        assert(e.twin() == &e2);
        assert(e2.twin() == &e);
        assert(e.is_secondary() == e2.is_secondary());
        if (e.is_secondary()) {
            assert(e.cell()->contains_point() != e2.cell()->contains_point());
            const VD::edge_type &ex = (e.cell()->contains_point() ? e : e2);
            // Verify that the Point defining the cell left of ex is an end point of a segment
            // defining the cell right of ex.
            const Line  &line0 = lines[ex.cell()->source_index()];
            const Line  &line1 = lines[ex.twin()->cell()->source_index()];
            const Point &pt    = (ex.cell()->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line0.a : line0.b;
            assert(pt == line1.a || pt == line1.b);
        }
    }
#endif // NDEBUG

    enum class EdgeState : unsigned char {
        // Initial state, don't know.
        Unknown,
        // This edge will certainly not be intersected by the offset curve.
        Inactive,
        // This edge will certainly be intersected by the offset curve.
        Active,
        // This edge will possibly be intersected by the offset curve.
        Possible
    };

    enum class CellState : unsigned char {
        // Initial state, don't know.
        Unknown,
        // Inactive cell is inside for outside curves and outside for inside curves.
        Inactive,
        // Active cell is outside for outside curves and inside for inside curves.
        Active,
        // Boundary cell is intersected by the input segment, part of it is active.
        Boundary
    };

    // Mark edges with outward vertex pointing outside the polygons, thus there is a chance
    // that such an edge will have an intersection with our desired offset curve.
    bool                    outside = offset_distance > 0.;
    std::vector<EdgeState>  edge_state(vd.num_edges(), EdgeState::Unknown);
    std::vector<CellState>  cell_state(vd.num_cells(), CellState::Unknown);
    const VD::edge_type    *front_edge = &vd.edges().front();
    const VD::cell_type    *front_cell = &vd.cells().front();
    auto                    set_edge_state_initial = [&edge_state, front_edge](const VD::edge_type *edge, EdgeState new_edge_type) {
        EdgeState &edge_type = edge_state[edge - front_edge];
        assert(edge_type == EdgeState::Unknown || edge_type == new_edge_type);
        assert(new_edge_type == EdgeState::Possible || new_edge_type == EdgeState::Inactive);
        edge_type = new_edge_type;
    };
    auto                    set_edge_state_final = [&edge_state, front_edge](const size_t edge_id, EdgeState new_edge_type) {
        EdgeState &edge_type = edge_state[edge_id];
        assert(edge_type == EdgeState::Possible || edge_type == new_edge_type);
        assert(new_edge_type == EdgeState::Active || new_edge_type == EdgeState::Inactive);
        edge_type = new_edge_type;
    };
    auto                    set_cell_state = [&cell_state, front_cell](const VD::cell_type *cell, CellState new_cell_type) -> bool {
        CellState &cell_type = cell_state[cell - front_cell];
        assert(cell_type == CellState::Active || cell_type == CellState::Inactive || cell_type == CellState::Boundary || cell_type == CellState::Unknown);
        assert(new_cell_type == CellState::Active || new_cell_type == CellState::Inactive || new_cell_type == CellState::Boundary);
        switch (cell_type) {
        case CellState::Unknown:
            break;
        case CellState::Active:
            if (new_cell_type == CellState::Inactive)
                new_cell_type = CellState::Boundary;
            break;
        case CellState::Inactive:
            if (new_cell_type == CellState::Active)
                new_cell_type = CellState::Boundary;
            break;
        case CellState::Boundary:
            return false;
        }
        if (cell_type != new_cell_type) {
            cell_type = new_cell_type;
            return true;
        }
        return false;
    };

    for (const VD::edge_type &edge : vd.edges())
        if (edge.vertex1() == nullptr) {
            // Infinite Voronoi edge separating two Point sites or a Point site and a Segment site.
            // Infinite edge is always outside and it has at least one valid vertex.
            assert(edge.vertex0() != nullptr);
            set_edge_state_initial(&edge, outside ? EdgeState::Possible : EdgeState::Inactive);
            // Opposite edge of an infinite edge is certainly not active.
            set_edge_state_initial(edge.twin(), EdgeState::Inactive);
            if (edge.is_secondary()) {
                // edge.vertex0() must lie on source contour.
                const VD::cell_type *cell  = edge.cell();
                const VD::cell_type *cell2 = edge.twin()->cell();
                if (cell->contains_segment())
                    std::swap(cell, cell2);
                // State of a cell containing a boundary point is known.
                assert(cell->contains_point());
                set_cell_state(cell, outside ? CellState::Active : CellState::Inactive);
                // State of a cell containing a boundary edge is Boundary.
                assert(cell2->contains_segment());
                set_cell_state(cell2, CellState::Boundary);
            }
        } else if (edge.vertex0() != nullptr) {
            // Finite edge.
            const VD::cell_type *cell = edge.cell();
            const Line          *line = cell->contains_segment() ? &lines[cell->source_index()] : nullptr;
            if (line == nullptr) {
                cell = edge.twin()->cell();
                line = cell->contains_segment() ? &lines[cell->source_index()] : nullptr;
            }
            if (line) {
                const VD::vertex_type *v1    = edge.vertex1();
                const VD::cell_type   *cell2 = (cell == edge.cell()) ? edge.twin()->cell() : edge.cell();
                assert(v1);
                const Point *pt_on_contour = nullptr;
                if (cell == edge.cell() && edge.twin()->cell()->contains_segment()) {
                    // Constrained bisector of two segments.
                    // If the two segments share a point, then one end of the current Voronoi edge shares this point as well.
                    // Find pt_on_contour if it exists.
                    const Line &line2 = lines[cell2->source_index()];
                    if (line->a == line2.b)
                        pt_on_contour = &line->a;
                    else if (line->b == line2.a)
                        pt_on_contour = &line->b;
                } else if (edge.is_secondary()) {
                    assert(edge.is_linear());
                    // One end of the current Voronoi edge shares a point of a contour.
                    assert(edge.cell()->contains_point() != edge.twin()->cell()->contains_point());
                    const Line &line2 = lines[cell2->source_index()];
                    pt_on_contour = &((cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line2.a : line2.b);
                }
                if (pt_on_contour) {
                    // One end of the current Voronoi edge shares a point of a contour.
                    // Find out which one it is.
                    const VD::vertex_type   *v0 = edge.vertex0();
                    Vec2d                    vec0(v0->x() - pt_on_contour->x(), v0->y() - pt_on_contour->y());
                    Vec2d                    vec1(v1->x() - pt_on_contour->x(), v1->y() - pt_on_contour->y());
                    double                   d0 = vec0.squaredNorm();
                    double                   d1 = vec1.squaredNorm();
                    assert(std::min(d0, d1) < SCALED_EPSILON * SCALED_EPSILON);
                    if (d0 < d1) {
                        // v0 is equal to pt.
                    } else {
                        // Skip secondary edge pointing to a contour point.
                        set_edge_state_initial(&edge, EdgeState::Inactive);
                        continue;
                    }
                }
                Vec2d l0(line->a.cast<double>());
                Vec2d lv((line->b - line->a).cast<double>());
                double side = cross2(lv, Vec2d(v1->x(), v1->y()) - l0);
                bool edge_active = outside ? (side < 0.) : (side > 0.);
                set_edge_state_initial(&edge, edge_active ? EdgeState::Possible : EdgeState::Inactive);
                assert(cell->contains_segment());
                set_cell_state(cell, 
                    pt_on_contour ? CellState::Boundary :
                                    edge_active ? CellState::Active : CellState::Inactive);
                set_cell_state(cell2,
                    (pt_on_contour && cell2->contains_segment()) ?
                        CellState::Boundary :
                        edge_active ? CellState::Active : CellState::Inactive);
            }
        }
    {
        // Perform one round of expansion marking Voronoi edges and cells next to boundary cells as active / inactive.
        std::vector<const VD::cell_type*> cell_queue;
        for (const VD::edge_type &edge : vd.edges())
            if (edge_state[&edge - front_edge] == EdgeState::Unknown) {
                assert(edge.cell()->contains_point() && edge.twin()->cell()->contains_point());
                // Edge separating two point sources, not yet classified as inside / outside.
                CellState cs  = cell_state[edge.cell() - front_cell];
                CellState cs2 = cell_state[edge.twin()->cell() - front_cell];
                if (cs != CellState::Unknown || cs2 != CellState::Unknown) {
                    if (cs == CellState::Unknown) {
                        cs = cs2;
                        if (set_cell_state(edge.cell(), cs))
                            cell_queue.emplace_back(edge.cell());
                    } else if (set_cell_state(edge.twin()->cell(), cs))
                        cell_queue.emplace_back(edge.twin()->cell());
                    EdgeState es = (cs == CellState::Active) ? EdgeState::Possible : EdgeState::Inactive;
                    set_edge_state_initial(&edge, es);
                    set_edge_state_initial(edge.twin(), es);
                } else {
                    const VD::edge_type *e = edge.twin()->rot_prev();
                    do {
                        EdgeState es = edge_state[e->twin() - front_edge];
                        if (es != EdgeState::Unknown) {
                            assert(es == EdgeState::Possible || es == EdgeState::Inactive);
                            set_edge_state_initial(&edge, es);
                            CellState cs = (es == EdgeState::Possible) ? CellState::Active : CellState::Inactive;
                            if (set_cell_state(edge.cell(), cs))
                                cell_queue.emplace_back(edge.cell());
                            if (set_cell_state(edge.twin()->cell(), cs))
                                cell_queue.emplace_back(edge.twin()->cell());
                            break;
                        }
                        e = e->rot_prev();
                    } while (e != edge.twin());
                }
            }
        // Do a final seed fill over Voronoi cells and unmarked Voronoi edges.
        while (! cell_queue.empty()) {
            const VD::cell_type *cell       = cell_queue.back();
            const CellState      cs         = cell_state[cell - front_cell];
            cell_queue.pop_back();
            const VD::edge_type *first_edge = cell->incident_edge();
            const VD::edge_type *edge       = cell->incident_edge();
            EdgeState            es         = (cs == CellState::Active) ? EdgeState::Possible : EdgeState::Inactive;
            do {
                if (set_cell_state(edge->twin()->cell(), cs)) {
                    set_edge_state_initial(edge, es);
                    set_edge_state_initial(edge->twin(), es);
                    cell_queue.emplace_back(edge->twin()->cell());
                }
                edge = edge->next();
            } while (edge != first_edge);
        }
    }

    if (! outside)
        offset_distance = - offset_distance;

#ifdef VORONOI_DEBUG_OUT
    BoundingBox bbox;
    {
        bbox.merge(get_extents(lines));
        bbox.min -= (0.01 * bbox.size().cast<double>()).cast<coord_t>();
        bbox.max += (0.01 * bbox.size().cast<double>()).cast<coord_t>();
    }
    static int irun = 0;
    ++ irun;
    {
        Lines helper_lines;
        for (const VD::edge_type &edge : vd.edges())
            if (edge_state[&edge - front_edge] == EdgeState::Possible) {
                const VD::vertex_type *v0 = edge.vertex0();
                const VD::vertex_type *v1 = edge.vertex1();
                assert(v0 != nullptr);
                Vec2d pt1(v0->x(), v0->y());
                Vec2d pt2;
                if (v1 == nullptr) {
                    // Unconstrained edge. Calculate a trimmed position.
                    assert(edge.is_linear());
                    const VD::cell_type *cell  = edge.cell();
                    const VD::cell_type *cell2 = edge.twin()->cell();
                    const Line          &line0 = lines[cell->source_index()];
                    const Line          &line1 = lines[cell2->source_index()];
                    if (cell->contains_point() && cell2->contains_point()) {
                        const Point &pt0 = (cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line0.a : line0.b;
                        const Point &pt1 = (cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line1.a : line1.b;
                        // Direction vector of this unconstrained Voronoi edge.
                        Vec2d dir(double(pt0.y() - pt1.y()), double(pt1.x() - pt0.x()));
                        pt2 = Vec2d(v0->x(), v0->y()) + dir.normalized() * scale_(10.);
                    } else {
                        // Infinite edges could not be created by two segment sites.
                        assert(cell->contains_point() != cell2->contains_point());
                        // Linear edge goes through the endpoint of a segment.
                        assert(edge.is_secondary());
                        const Point &ipt = cell->contains_segment() ?
                            ((cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line1.a : line1.b) :
                            ((cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line0.a : line0.b);
                        // Infinite edge starts at an input contour, therefore there is always an intersection with an offset curve.
                        const Line  &line = cell->contains_segment() ? line0 : line1;
                        assert(line.a == ipt || line.b == ipt);
                        // dir is perpendicular to line.
                        Vec2d dir(line.a.y() - line.b.y(), line.b.x() - line.a.x());
                        assert(dir.norm() > 0.);
                        if (((line.a == ipt) == cell->contains_point()) == (v0 == nullptr))
                            dir = - dir;
                        pt2 = ipt.cast<double>() + dir.normalized() * scale_(10.);
                    }
                } else {
                    pt2 = Vec2d(v1->x(), v1->y());
                    // Clip the line by the bounding box, so that the coloring of the line will be visible.
                    Geometry::liang_barsky_line_clipping(pt1, pt2, BoundingBoxf(bbox.min.cast<double>(), bbox.max.cast<double>()));
                }
                helper_lines.emplace_back(Line(Point(pt1.cast<coord_t>()), Point(((pt1 + pt2) * 0.5).cast<coord_t>())));
            }
        dump_voronoi_to_svg(debug_out_path("voronoi-offset-candidates1-%d.svg", irun).c_str(), vd, Points(), lines, Polygons(), helper_lines);
    }
#endif // VORONOI_DEBUG_OUT

    std::vector<Vec2d> edge_offset_point(vd.num_edges(), Vec2d());
    const double offset_distance2 = offset_distance * offset_distance;
    for (const VD::edge_type &edge : vd.edges()) {
        assert(edge_state[&edge - front_edge] != EdgeState::Unknown);
        size_t edge_idx = &edge - front_edge;
        if (edge_state[edge_idx] == EdgeState::Possible) {
            // Edge candidate, intersection points were not calculated yet.
            const VD::vertex_type *v0    = edge.vertex0();
            const VD::vertex_type *v1    = edge.vertex1();
            assert(v0 != nullptr);
            const VD::cell_type   *cell  = edge.cell();
            const VD::cell_type   *cell2 = edge.twin()->cell();
            const Line            &line0 = lines[cell->source_index()];
            const Line            &line1 = lines[cell2->source_index()];
            size_t                 edge_idx2 = edge.twin() - front_edge;
            if (v1 == nullptr) {
                assert(edge.is_infinite());
                assert(edge.is_linear());
                assert(edge_state[edge_idx2] == EdgeState::Inactive);
                if (cell->contains_point() && cell2->contains_point()) {
                    assert(! edge.is_secondary());
                    const Point &pt0 = (cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line0.a : line0.b;
                    const Point &pt1 = (cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line1.a : line1.b;
                    double dmin2 = (Vec2d(v0->x(), v0->y()) - pt0.cast<double>()).squaredNorm();
                    assert(dmin2 >= SCALED_EPSILON * SCALED_EPSILON);
                    if (dmin2 <= offset_distance2) {
                        // There shall be an intersection of this unconstrained edge with the offset curve.
                        // Direction vector of this unconstrained Voronoi edge.
                        Vec2d dir(double(pt0.y() - pt1.y()), double(pt1.x() - pt0.x()));
                        Vec2d pt(v0->x(), v0->y());
                        double t = detail::first_circle_segment_intersection_parameter(Vec2d(pt0.x(), pt0.y()), offset_distance, pt, dir);
                        edge_offset_point[edge_idx] = pt + t * dir;
                        set_edge_state_final(edge_idx, EdgeState::Active);
                    } else
                        set_edge_state_final(edge_idx, EdgeState::Inactive);
                } else {
                    // Infinite edges could not be created by two segment sites.
                    assert(cell->contains_point() != cell2->contains_point());
                    // Linear edge goes through the endpoint of a segment.
                    assert(edge.is_secondary());
                    const Point &ipt = cell->contains_segment() ?
                        ((cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line1.a : line1.b) :
                        ((cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line0.a : line0.b);
    #ifndef NDEBUG
                    if (cell->contains_segment()) {
                        const Point &pt1 = (cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line1.a : line1.b;
                        assert((pt1.x() == line0.a.x() && pt1.y() == line0.a.y()) ||
                               (pt1.x() == line0.b.x() && pt1.y() == line0.b.y()));
                    } else {
                        const Point &pt0 = (cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line0.a : line0.b;
                        assert((pt0.x() == line1.a.x() && pt0.y() == line1.a.y()) ||
                               (pt0.x() == line1.b.x() && pt0.y() == line1.b.y()));
                    }
                    assert((Vec2d(v0->x(), v0->y()) - ipt.cast<double>()).norm() < SCALED_EPSILON);
    #endif /* NDEBUG */
                    // Infinite edge starts at an input contour, therefore there is always an intersection with an offset curve.
                    const Line &line = cell->contains_segment() ? line0 : line1;
                    assert(line.a == ipt || line.b == ipt);
                    edge_offset_point[edge_idx] = ipt.cast<double>() + offset_distance * Vec2d(line.b.y() - line.a.y(), line.a.x() - line.b.x()).normalized();
                    set_edge_state_final(edge_idx, EdgeState::Active);
                }
                // The other edge of an unconstrained edge starting with null vertex shall never be intersected.
                set_edge_state_final(edge_idx2, EdgeState::Inactive);
            } else if (edge.is_secondary()) {
                assert(edge.is_linear());
                assert(cell->contains_point() != cell2->contains_point());
                const Line  &line0 = lines[edge.cell()->source_index()];
                const Line  &line1 = lines[edge.twin()->cell()->source_index()];
                const Point &pt    = cell->contains_point() ?
                    ((cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line0.a : line0.b) :
                    ((cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line1.a : line1.b);
            #ifndef NDEBUG
                const Line  &line  = cell->contains_segment() ? line0 : line1;
                assert(pt == line.a || pt == line.b);
                assert((pt.cast<double>() - Vec2d(v0->x(), v0->y())).norm() < SCALED_EPSILON);
            #endif // NDEBUG
                Vec2d dir(v1->x() - v0->x(), v1->y() - v0->y());
                double l2 = dir.squaredNorm();
                if (offset_distance2 <= l2) {
                    edge_offset_point[edge_idx] = pt.cast<double>() + (offset_distance / sqrt(l2)) * dir;
                    set_edge_state_final(edge_idx, EdgeState::Active);
                } else {
                    set_edge_state_final(edge_idx, EdgeState::Inactive);
                }
                set_edge_state_final(edge_idx2, EdgeState::Inactive);
            } else {
                // Finite edge has valid points at both sides.
                bool done = false;
                if (cell->contains_segment() && cell2->contains_segment()) {
                    // This edge is a bisector of two line segments. Project v0, v1 onto one of the line segments.
                    Vec2d  pt(line0.a.cast<double>());
                    Vec2d  dir(line0.b.cast<double>() - pt);
                    Vec2d  vec0 = Vec2d(v0->x(), v0->y()) - pt;
                    Vec2d  vec1 = Vec2d(v1->x(), v1->y()) - pt;
                    double l2   = dir.squaredNorm();
                    assert(l2 > 0.);
                    double dmin = (dir * (vec0.dot(dir) / l2) - vec0).squaredNorm();
                    double dmax = (dir * (vec1.dot(dir) / l2) - vec1).squaredNorm();
                    bool   flip = dmin > dmax;
                    if (flip)
                        std::swap(dmin, dmax);
                    if (offset_distance2 >= dmin && offset_distance2 <= dmax) {
                        // Intersect. Maximum one intersection will be found.
                        // This edge is a bisector of two line segments. Distance to the input polygon increases/decreases monotonically.
                        dmin = sqrt(dmin);
                        dmax = sqrt(dmax);
                        assert(offset_distance > dmin - EPSILON && offset_distance < dmax + EPSILON);
                        double ddif = dmax - dmin;
                        if (ddif == 0.) {
                            // line, line2 are exactly parallel. This is a singular case, the offset curve should miss it.
                        } else {
                            if (flip) {
                                std::swap(edge_idx, edge_idx2);
                                std::swap(v0, v1);
                            }
                            double t = clamp(0., 1., (offset_distance - dmin) / ddif);
                            edge_offset_point[edge_idx] = Vec2d(lerp(v0->x(), v1->x(), t), lerp(v0->y(), v1->y(), t));
                            set_edge_state_final(edge_idx, EdgeState::Active);
                            set_edge_state_final(edge_idx2, EdgeState::Inactive);
                            done = true;
                        }
                    }
                } else {
                    assert(cell->contains_point() || cell2->contains_point());
                    bool point_vs_segment = cell->contains_point() != cell2->contains_point();
                    const Point &pt0 = cell->contains_point() ?
                        ((cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line0.a : line0.b) :
                        ((cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line1.a : line1.b);
                    // Project p0 to line segment <v0, v1>.
                    Vec2d p0(v0->x(), v0->y());
                    Vec2d p1(v1->x(), v1->y());
                    Vec2d px(pt0.x(), pt0.y());
                    double d0 = (p0 - px).squaredNorm();
                    double d1 = (p1 - px).squaredNorm();
                    double dmin = std::min(d0, d1);
                    double dmax = std::max(d0, d1);
                    bool has_intersection = false;
                    bool possibly_two_points = false;
                    if (offset_distance2 <= dmax) {
                        if (offset_distance2 >= dmin) {
                            has_intersection = true;
                        } else {
                            double dmin_new = dmin;
                            if (point_vs_segment) {
                                // Project on the source segment.
                                const Line &line    = cell->contains_segment() ? line0 : line1;
                                const Vec2d pt_line = line.a.cast<double>();
                                const Vec2d v_line  = (line.b - line.a).cast<double>();
                                double      t0      = (p0 - pt_line).dot(v_line);
                                double      t1      = (p1 - pt_line).dot(v_line);
                                double      tx      = (px - pt_line).dot(v_line);
                                if ((tx >= t0 && tx <= t1) || (tx >= t1 && tx <= t0)) {
                                    // Projection of the Point site falls between the projections of the Voronoi edge end points
                                    // onto the Line site.
                                    Vec2d ft = pt_line + (tx / v_line.squaredNorm()) * v_line;
                                    dmin_new = (ft - px).squaredNorm() * 0.25;
                                }
                            } else {
                                // Point-Point Voronoi sites. Project point site onto the current Voronoi edge.
                                Vec2d  v   = p1 - p0;
                                auto   l2  = v.squaredNorm();
                                assert(l2 > 0);
                                auto   t   = v.dot(px - p0);
                                if (t >= 0. && t <= l2) {
                                    // Projection falls onto the Voronoi edge. Calculate foot point and distance.
                                    Vec2d  ft = p0 + (t / l2) * v;
                                    dmin_new = (ft - px).squaredNorm();
                                }
                            }
                            assert(dmin_new < dmax + SCALED_EPSILON);
                            assert(dmin_new < dmin + SCALED_EPSILON);
                            if (dmin_new < dmin) {
                                dmin = dmin_new;
                                has_intersection = possibly_two_points = offset_distance2 >= dmin;
                            }
                        }
                    }
                    if (has_intersection) {
                        detail::Intersections intersections;
                        if (point_vs_segment) {
                            assert(cell->contains_point() || cell2->contains_point());
                            intersections = detail::line_point_equal_distance_points(cell->contains_segment() ? line0 : line1, pt0, offset_distance);
                        } else {
                            const Point &pt1 = (cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line1.a : line1.b;
                            intersections = detail::point_point_equal_distance_points(pt0, pt1, offset_distance);
                        }
                        // If the span of distances of start / end point / foot point to the point site indicate an intersection,
                        // we should find one.
                        assert(intersections.count > 0);
                        if (intersections.count == 2) {
                            // Now decide which points fall on this Voronoi edge.
                            // Tangential points (single intersection) are ignored.
                            if (possibly_two_points) {
                                Vec2d  v  = p1 - p0;
                                double l2 = v.squaredNorm();
                                double t0 = v.dot(intersections.pts[0] - p0);
                                double t1 = v.dot(intersections.pts[1] - p0);
                                if (t0 > t1) {
                                    std::swap(t0, t1);
                                    std::swap(intersections.pts[0], intersections.pts[1]);
                                }
                                // Remove points outside of the line range.
                                if (t0 < 0. || t0 > l2) {
                                    if (t1 < 0. || t1 > l2)
                                        intersections.count = 0;
                                    else {
                                        -- intersections.count;
                                        t0 = t1;
                                        intersections.pts[0] = intersections.pts[1];
                                    }
                                } else if (t1 < 0. || t1 > l2)
                                    -- intersections.count;
                            } else {
                                // Take the point furthest from the end points of the Voronoi edge or a Voronoi parabolic arc.
                                double d0 = std::max((intersections.pts[0] - p0).squaredNorm(), (intersections.pts[0] - p1).squaredNorm());
                                double d1 = std::max((intersections.pts[1] - p0).squaredNorm(), (intersections.pts[1] - p1).squaredNorm());
                                if (d0 > d1)
                                    intersections.pts[0] = intersections.pts[1];
                                -- intersections.count;
                            }
                            assert(intersections.count > 0);
                            if (intersections.count == 2) {
                                set_edge_state_final(edge_idx, EdgeState::Active);
                                set_edge_state_final(edge_idx2, EdgeState::Active);
                                edge_offset_point[edge_idx]  = intersections.pts[1];
                                edge_offset_point[edge_idx2] = intersections.pts[0];
                                done = true;
                            } else if (intersections.count == 1) {
                                if (d1 < d0)
                                    std::swap(edge_idx, edge_idx2);
                                set_edge_state_final(edge_idx, EdgeState::Active);
                                set_edge_state_final(edge_idx2, EdgeState::Inactive);
                                edge_offset_point[edge_idx] = intersections.pts[0];
                                done = true;
                            }
                        }
                    }
                }
                if (! done) {
                    set_edge_state_final(edge_idx, EdgeState::Inactive);
                    set_edge_state_final(edge_idx2, EdgeState::Inactive);
                }
            }
        }
    }

#ifndef NDEBUG
    for (const VD::edge_type &edge : vd.edges()) {
        assert(edge_state[&edge - front_edge] == EdgeState::Inactive || edge_state[&edge - front_edge] == EdgeState::Active);
        // None of a new edge candidate may start with null vertex.
        assert(edge_state[&edge - front_edge] == EdgeState::Inactive || edge.vertex0() != nullptr);
        assert(edge_state[edge.twin() - front_edge] == EdgeState::Inactive || edge.twin()->vertex0() != nullptr);
    }
#endif // NDEBUG

#ifdef VORONOI_DEBUG_OUT
    {
        Lines helper_lines;
        for (const VD::edge_type &edge : vd.edges())
            if (edge_state[&edge - front_edge] == EdgeState::Active)
                helper_lines.emplace_back(Line(Point(edge.vertex0()->x(), edge.vertex0()->y()), Point(edge_offset_point[&edge - front_edge].cast<coord_t>())));
        dump_voronoi_to_svg(debug_out_path("voronoi-offset-candidates2-%d.svg", irun).c_str(), vd, Points(), lines, Polygons(), helper_lines);
    }
#endif // VORONOI_DEBUG_OUT

    auto next_offset_edge = [&edge_state, front_edge](const VD::edge_type *start_edge) -> const VD::edge_type* {
	    for (const VD::edge_type *edge = start_edge->next(); edge != start_edge; edge = edge->next())
            if (edge_state[edge->twin() - front_edge] == EdgeState::Active)
                return edge->twin();
        // assert(false);
        return nullptr;
	};

#ifndef NDEBUG
	auto dist_to_site = [&lines](const VD::cell_type &cell, const Vec2d &point) {
        const Line &line = lines[cell.source_index()];
        return cell.contains_point() ?
            (((cell.source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line.a : line.b).cast<double>() - point).norm() :
            (Geometry::foot_pt<Vec2d>(line.a.cast<double>(), (line.b - line.a).cast<double>(), point) - point).norm();
	};
#endif /* NDEBUG */

	// Track the offset curves.
	Polygons out;
	double angle_step    = 2. * acos((offset_distance - discretization_error) / offset_distance);
    double cos_threshold = cos(angle_step);
	for (size_t seed_edge_idx = 0; seed_edge_idx < vd.num_edges(); ++ seed_edge_idx)
		if (edge_state[seed_edge_idx] == EdgeState::Active) {
            const VD::edge_type *start_edge = &vd.edges()[seed_edge_idx];
            const VD::edge_type *edge       = start_edge;
            Polygon  			 poly;
		    do {
		        // find the next edge
                const VD::edge_type *next_edge = next_offset_edge(edge);
#ifdef VORONOI_DEBUG_OUT
                if (next_edge == nullptr) {
                    Lines helper_lines;
                    dump_voronoi_to_svg(debug_out_path("voronoi-offset-open-loop-%d.svg", irun).c_str(), vd, Points(), lines, Polygons(), to_lines(poly));
                }
#endif // VORONOI_DEBUG_OUT
                assert(next_edge);
		        //std::cout << "offset-output: "; print_edge(edge); std::cout << " to "; print_edge(next_edge); std::cout << "\n";
		        // Interpolate a circular segment or insert a linear segment between edge and next_edge.
                const VD::cell_type  *cell      = edge->cell();
                edge_state[next_edge - front_edge] = EdgeState::Inactive;
                Vec2d p1 = edge_offset_point[edge - front_edge];
                Vec2d p2 = edge_offset_point[next_edge - front_edge];
#ifndef NDEBUG
                {
                    double err  = dist_to_site(*cell, p1) - offset_distance;
                    double err2 = dist_to_site(*cell, p2) - offset_distance;
#ifdef VORONOI_DEBUG_OUT
                    if (std::max(err, err2) >= SCALED_EPSILON) {
                        Lines helper_lines;
                        dump_voronoi_to_svg(debug_out_path("voronoi-offset-incorrect_pt-%d.svg", irun).c_str(), vd, Points(), lines, Polygons(), to_lines(poly));
                    }
#endif // VORONOI_DEBUG_OUT
                    assert(std::abs(err) < SCALED_EPSILON);
                    assert(std::abs(err2) < SCALED_EPSILON);
                }
#endif /* NDEBUG */
				if (cell->contains_point()) {
					// Discretize an arc from p1 to p2 with radius = offset_distance and discretization_error.
                    // The extracted contour is CCW oriented, extracted holes are CW oriented.
                    // The extracted arc will have the same orientation. As the Voronoi regions are convex, the angle covered by the arc will be convex as well.
                    const Line  &line0  = lines[cell->source_index()];
					const Vec2d &center = ((cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line0.a : line0.b).cast<double>();
					const Vec2d  v1 	= p1 - center;
					const Vec2d  v2 	= p2 - center;
                    bool 		 ccw    = cross2(v1, v2) > 0;
                    double       cos_a  = v1.dot(v2);
                    double       norm   = v1.norm() * v2.norm();
                    assert(norm > 0.);
                    if (cos_a < cos_threshold * norm) {
						// Angle is bigger than the threshold, therefore the arc will be discretized.
                        cos_a /= norm;
                        assert(cos_a > -1. - EPSILON && cos_a < 1. + EPSILON);
                        double angle = acos(std::max(-1., std::min(1., cos_a)));
						size_t n_steps = size_t(ceil(angle / angle_step));
						double astep = angle / n_steps;
						if (! ccw)
							astep *= -1.;
						double a = astep;
						for (size_t i = 1; i < n_steps; ++ i, a += astep) {
							double c = cos(a);
							double s = sin(a);
							Vec2d  p = center + Vec2d(c * v1.x() - s * v1.y(), s * v1.x() + c * v1.y());
                            poly.points.emplace_back(Point(coord_t(p.x()), coord_t(p.y())));
						}
                    }
				}
                {
                    Point pt_last(coord_t(p2.x()), coord_t(p2.y()));
                    if (poly.empty() || poly.points.back() != pt_last)
                        poly.points.emplace_back(pt_last);
                }
                edge = next_edge;
		    } while (edge != start_edge);
		    out.emplace_back(std::move(poly));
		}

	return out;
}

} // namespace Slic3r