#include #include #include #include "libslic3r/libslic3r.h" #include "libslic3r/ClipperUtils.hpp" #include "libslic3r/Fill/Fill.hpp" #include "libslic3r/Flow.hpp" #include "libslic3r/Layer.hpp" #include "libslic3r/Geometry.hpp" #include "libslic3r/Geometry/ConvexHull.hpp" #include "libslic3r/Point.hpp" #include "libslic3r/Print.hpp" #include "libslic3r/SVG.hpp" #include "test_data.hpp" using namespace Slic3r; using namespace std::literals; bool test_if_solid_surface_filled(const ExPolygon& expolygon, double flow_spacing, double angle = 0, double density = 1.0); #if 0 TEST_CASE("Fill: adjusted solid distance") { int surface_width = 250; int distance = Slic3r::Flow::solid_spacing(surface_width, 47); REQUIRE(distance == Approx(50)); REQUIRE(surface_width % distance == 0); } #endif TEST_CASE("Fill: Pattern Path Length", "[Fill]") { std::unique_ptr filler(Slic3r::Fill::new_from_type("rectilinear")); filler->angle = float(-(PI)/2.0); FillParams fill_params; filler->spacing = 5; fill_params.dont_adjust = true; //fill_params.endpoints_overlap = false; fill_params.density = float(filler->spacing / 50.0); auto test = [&filler, &fill_params] (const ExPolygon& poly) -> Slic3r::Polylines { Slic3r::Surface surface(stTop, poly); return filler->fill_surface(&surface, fill_params); }; SECTION("Square") { Slic3r::Points test_set; test_set.reserve(4); std::vector points { {0,0}, {100,0}, {100,100}, {0,100} }; for (size_t i = 0; i < 4; ++i) { std::transform(points.cbegin()+i, points.cend(), std::back_inserter(test_set), [] (const Vec2d& a) -> Point { return Point::new_scale(a.x(), a.y()); } ); std::transform(points.cbegin(), points.cbegin()+i, std::back_inserter(test_set), [] (const Vec2d& a) -> Point { return Point::new_scale(a.x(), a.y()); } ); Slic3r::Polylines paths = test(Slic3r::ExPolygon(test_set)); REQUIRE(paths.size() == 1); // one continuous path // TODO: determine what the "Expected length" should be for rectilinear fill of a 100x100 polygon. // This check only checks that it's above scale(3*100 + 2*50) + scaled_epsilon. // ok abs($paths->[0]->length - scale(3*100 + 2*50)) - scaled_epsilon, 'path has expected length'; REQUIRE(std::abs(paths[0].length() - static_cast(scale_(3*100 + 2*50))) - SCALED_EPSILON > 0); // path has expected length test_set.clear(); } } SECTION("Diamond with endpoints on grid") { std::vector points {Vec2d(0,0), Vec2d(100,0), Vec2d(150,50), Vec2d(100,100), Vec2d(0,100), Vec2d(-50,50)}; Slic3r::Points test_set; test_set.reserve(6); std::transform(points.cbegin(), points.cend(), std::back_inserter(test_set), [] (const Vec2d& a) -> Point { return Point::new_scale(a.x(), a.y()); } ); Slic3r::Polylines paths = test(Slic3r::ExPolygon(test_set)); REQUIRE(paths.size() == 1); // one continuous path } SECTION("Square with hole") { std::vector square {Vec2d(0,0), Vec2d(100,0), Vec2d(100,100), Vec2d(0,100)}; std::vector hole {Vec2d(25,25), Vec2d(75,25), Vec2d(75,75), Vec2d(25,75) }; std::reverse(hole.begin(), hole.end()); Slic3r::Points test_hole; Slic3r::Points test_square; std::transform(square.cbegin(), square.cend(), std::back_inserter(test_square), [] (const Vec2d& a) -> Point { return Point::new_scale(a.x(), a.y()); } ); std::transform(hole.cbegin(), hole.cend(), std::back_inserter(test_hole), [] (const Vec2d& a) -> Point { return Point::new_scale(a.x(), a.y()); } ); for (double angle : {-(PI/2.0), -(PI/4.0), -(PI), PI/2.0, PI}) { for (double spacing : {25.0, 5.0, 7.5, 8.5}) { fill_params.density = float(filler->spacing / spacing); filler->angle = float(angle); ExPolygon e(test_square, test_hole); Slic3r::Polylines paths = test(e); #if 0 { BoundingBox bbox = get_extents(e); SVG svg("c:\\data\\temp\\square_with_holes.svg", bbox); svg.draw(e); svg.draw(paths); svg.Close(); } #endif REQUIRE((paths.size() >= 1 && paths.size() <= 3)); // paths don't cross hole REQUIRE(diff_pl(paths, offset(e, float(SCALED_EPSILON*10))).size() == 0); } } } SECTION("Regression: Missing infill segments in some rare circumstances") { filler->angle = float(PI/4.0); fill_params.dont_adjust = false; filler->spacing = 0.654498; //filler->endpoints_overlap = unscale(359974); fill_params.density = 1; filler->layer_id = 66; filler->z = 20.15; Slic3r::Points points {Point(25771516,14142125),Point(14142138,25771515),Point(2512749,14142131),Point(14142125,2512749)}; Slic3r::Polylines paths = test(Slic3r::ExPolygon(points)); REQUIRE(paths.size() == 1); // one continuous path // TODO: determine what the "Expected length" should be for rectilinear fill of a 100x100 polygon. // This check only checks that it's above scale(3*100 + 2*50) + scaled_epsilon. // ok abs($paths->[0]->length - scale(3*100 + 2*50)) - scaled_epsilon, 'path has expected length'; REQUIRE(std::abs(paths[0].length() - static_cast(scale_(3*100 + 2*50))) - SCALED_EPSILON > 0); // path has expected length } SECTION("Rotated Square produces one continuous path") { Slic3r::ExPolygon expolygon(Polygon::new_scale({ {0, 0}, {50, 0}, {50, 50}, {0, 50} })); std::unique_ptr filler(Slic3r::Fill::new_from_type("rectilinear")); filler->bounding_box = get_extents(expolygon); filler->angle = 0; Surface surface(stTop, expolygon); // width, height, nozzle_dmr auto flow = Slic3r::Flow(0.69f, 0.4f, 0.5f); FillParams fill_params; for (auto density : { 0.4, 1.0 }) { fill_params.density = density; filler->spacing = flow.spacing(); REQUIRE(!fill_params.use_arachne); // Make this test fail when Arachne is used because this test is not ready for it. for (auto angle : { 0.0, 45.0}) { surface.expolygon.rotate(angle, Point(0,0)); Polylines paths = filler->fill_surface(&surface, fill_params); // one continuous path REQUIRE(paths.size() == 1); } } } #if 0 // Disabled temporarily due to precission issues on the Mac VM SECTION("Solid surface fill") { Slic3r::Points points { Point::new_scale(6883102, 9598327.01296997), Point::new_scale(6883102, 20327272.01297), Point::new_scale(3116896, 20327272.01297), Point::new_scale(3116896, 9598327.01296997) }; Slic3r::ExPolygon expolygon(points); REQUIRE(test_if_solid_surface_filled(expolygon, 0.55) == true); for (size_t i = 0; i <= 20; ++i) { expolygon.scale(1.05); REQUIRE(test_if_solid_surface_filled(expolygon, 0.55) == true); } } #endif SECTION("Solid surface fill") { Slic3r::Points points { Slic3r::Point(59515297,5422499),Slic3r::Point(59531249,5578697),Slic3r::Point(59695801,6123186), Slic3r::Point(59965713,6630228),Slic3r::Point(60328214,7070685),Slic3r::Point(60773285,7434379), Slic3r::Point(61274561,7702115),Slic3r::Point(61819378,7866770),Slic3r::Point(62390306,7924789), Slic3r::Point(62958700,7866744),Slic3r::Point(63503012,7702244),Slic3r::Point(64007365,7434357), Slic3r::Point(64449960,7070398),Slic3r::Point(64809327,6634999),Slic3r::Point(65082143,6123325), Slic3r::Point(65245005,5584454),Slic3r::Point(65266967,5422499),Slic3r::Point(66267307,5422499), Slic3r::Point(66269190,8310081),Slic3r::Point(66275379,17810072),Slic3r::Point(66277259,20697500), Slic3r::Point(65267237,20697500),Slic3r::Point(65245004,20533538),Slic3r::Point(65082082,19994444), Slic3r::Point(64811462,19488579),Slic3r::Point(64450624,19048208),Slic3r::Point(64012101,18686514), Slic3r::Point(63503122,18415781),Slic3r::Point(62959151,18251378),Slic3r::Point(62453416,18198442), Slic3r::Point(62390147,18197355),Slic3r::Point(62200087,18200576),Slic3r::Point(61813519,18252990), Slic3r::Point(61274433,18415918),Slic3r::Point(60768598,18686517),Slic3r::Point(60327567,19047892), Slic3r::Point(59963609,19493297),Slic3r::Point(59695865,19994587),Slic3r::Point(59531222,20539379), Slic3r::Point(59515153,20697500),Slic3r::Point(58502480,20697500),Slic3r::Point(58502480,5422499) }; Slic3r::ExPolygon expolygon(points); REQUIRE(test_if_solid_surface_filled(expolygon, 0.55) == true); REQUIRE(test_if_solid_surface_filled(expolygon, 0.55, PI/2.0) == true); } SECTION("Solid surface fill") { Slic3r::Points points { Point::new_scale(0,0),Point::new_scale(98,0),Point::new_scale(98,10), Point::new_scale(0,10) }; Slic3r::ExPolygon expolygon(points); REQUIRE(test_if_solid_surface_filled(expolygon, 0.5, 45.0, 0.99) == true); } } SCENARIO("Infill does not exceed perimeters", "[Fill]") { auto test = [](const std::string_view pattern) { auto config = Slic3r::DynamicPrintConfig::full_print_config_with({ { "nozzle_diameter", "0.4, 0.4, 0.4, 0.4" }, { "fill_pattern", pattern }, { "top_fill_pattern", pattern }, { "bottom_fill_pattern", pattern }, { "perimeters", 1 }, { "skirts", 0 }, { "fill_density", 0.2 }, { "layer_height", 0.05 }, { "perimeter_extruder", 1 }, { "infill_extruder", 2 } }); WHEN("40mm cube sliced") { std::string gcode = Slic3r::Test::slice({ mesh(Slic3r::Test::TestMesh::cube_20x20x20, Vec3d::Zero(), 2.0) }, config); THEN("gcode not empty") { REQUIRE(! gcode.empty()); } THEN("infill does not exceed perimeters") { GCodeReader parser; const int perimeter_extruder = config.opt_int("perimeter_extruder"); const int infill_extruder = config.opt_int("infill_extruder"); int tool = -1; Points perimeter_points; Points infill_points; parser.parse_buffer(gcode, [&tool, &perimeter_points, &infill_points, perimeter_extruder, infill_extruder] (Slic3r::GCodeReader &self, const Slic3r::GCodeReader::GCodeLine &line) { // if the command is a T command, set the the current tool if (boost::starts_with(line.cmd(), "T")) { tool = atoi(line.cmd().data() + 1) + 1; } else if (line.cmd() == "G1" && line.extruding(self) && line.dist_XY(self) > 0) { if (tool == perimeter_extruder) perimeter_points.emplace_back(line.new_XY_scaled(self)); else if (tool == infill_extruder) infill_points.emplace_back(line.new_XY_scaled(self)); } }); auto convex_hull = Geometry::convex_hull(perimeter_points); int num_inside = std::count_if(infill_points.begin(), infill_points.end(), [&convex_hull](const Point &pt){ return convex_hull.contains(pt); }); REQUIRE(num_inside == infill_points.size()); } } }; GIVEN("Rectilinear") { test("rectilinear"sv); } GIVEN("Honeycomb") { test("honeycomb"sv); } GIVEN("HilbertCurve") { test("hilbertcurve"sv); } GIVEN("Concentric") { test("concentric"sv); } } // SCENARIO("Infill only where needed", "[Fill]") // { // DynamicPrintConfig config = Slic3r::DynamicPrintConfig::full_print_config(); // config.set_deserialize_strict({ // { "nozzle_diameter", "0.4, 0.4, 0.4, 0.4" }, // { "infill_only_where_needed", true }, // { "bottom_solid_layers", 0 }, // { "infill_extruder", 2 }, // { "infill_extrusion_width", 0.5 }, // { "wipe_into_infill", false }, // { "fill_density", 0.4 }, // // for preventing speeds from being altered // { "cooling", "0, 0, 0, 0" }, // // for preventing speeds from being altered // { "first_layer_speed", "100%" } // }); // auto test = [&config]() -> double { // TriangleMesh pyramid = Test::mesh(Slic3r::Test::TestMesh::pyramid); // // Arachne doesn't use "Detect thin walls," and because of this, it filters out tiny infill areas differently. // // So, for Arachne, we cut the pyramid model to achieve similar results. // if (config.opt_enum("perimeter_generator") == Slic3r::PerimeterGeneratorType::Arachne) { // indexed_triangle_set lower{}; // cut_mesh(pyramid.its, 35, nullptr, &lower); // pyramid = TriangleMesh(lower); // } // std::string gcode = Slic3r::Test::slice({ pyramid }, config); // THEN("gcode not empty") { // REQUIRE(! gcode.empty()); // } // GCodeReader parser; // int tool = -1; // const int infill_extruder = config.opt_int("infill_extruder"); // Points infill_points; // parser.parse_buffer(gcode, [&tool, &infill_points, infill_extruder](Slic3r::GCodeReader &self, const Slic3r::GCodeReader::GCodeLine &line) // { // // if the command is a T command, set the the current tool // if (boost::starts_with(line.cmd(), "T")) { // tool = atoi(line.cmd().data() + 1) + 1; // } else if (line.cmd() == "G1" && line.extruding(self) && line.dist_XY(self) > 0) { // if (tool == infill_extruder) { // infill_points.emplace_back(self.xy_scaled()); // infill_points.emplace_back(line.new_XY_scaled(self)); // } // } // }); // // prevent calling convex_hull() with no points // THEN("infill not empty") { // REQUIRE(! infill_points.empty()); // } // auto opt_width = config.opt("infill_extrusion_width"); // REQUIRE(! opt_width->percent); // Polygons convex_hull = expand(Geometry::convex_hull(infill_points), scaled(opt_width->value / 2)); // return SCALING_FACTOR * SCALING_FACTOR * std::accumulate(convex_hull.begin(), convex_hull.end(), 0., [](double acc, const Polygon &poly){ return acc + poly.area(); }); // }; // double tolerance = 5; // mm^2 // // GIVEN("solid_infill_below_area == 0") { // // config.opt_float("solid_infill_below_area") = 0; // // WHEN("pyramid is sliced ") { // // auto area = test(); // // THEN("no infill is generated when using infill_only_where_needed on a pyramid") { // // REQUIRE(area < tolerance); // // } // // } // // } // // GIVEN("solid_infill_below_area == 70") { // // config.opt_float("solid_infill_below_area") = 70; // // WHEN("pyramid is sliced ") { // // auto area = test(); // // THEN("infill is only generated under the forced solid shells") { // // REQUIRE(std::abs(area - 70) < tolerance); // // } // // } // // } // } SCENARIO("Combine infill", "[Fill]") { { auto test = [](const DynamicPrintConfig &config) { std::string gcode = Test::slice({ Test::TestMesh::cube_20x20x20 }, config); THEN("infill_every_layers does not crash") { REQUIRE(! gcode.empty()); } Slic3r::GCodeReader parser; int tool = -1; std::set layers; // layer_z => 1 std::map layer_infill; // layer_z => has_infill const int infill_extruder = config.opt_int("infill_extruder"); const int support_material_extruder = config.opt_int("support_material_extruder"); parser.parse_buffer(gcode, [&tool, &layers, &layer_infill, infill_extruder, support_material_extruder](Slic3r::GCodeReader &self, const Slic3r::GCodeReader::GCodeLine &line) { coord_t z = line.new_Z(self) / SCALING_FACTOR; if (boost::starts_with(line.cmd(), "T")) { tool = atoi(line.cmd().data() + 1); } else if (line.cmd_is("G1") && line.extruding(self) && line.dist_XY(self) > 0 && tool + 1 != support_material_extruder) { if (tool + 1 == infill_extruder) layer_infill[z] = true; else if (auto it = layer_infill.find(z); it == layer_infill.end()) layer_infill.insert(it, std::make_pair(z, false)); } // Previously, all G-code commands had a fixed number of decimal points with means with redundant zeros after decimal points. // We changed this behavior and got rid of these redundant padding zeros, which caused this test to fail // because the position in Z-axis is compared as a string, and previously, G-code contained the following two commands: // "G1 Z5 F5000 ; lift nozzle" // "G1 Z5.000 F7800.000" // That has a different Z-axis position from the view of string comparisons of floating-point numbers. // To correct the computation of the number of printed layers, even in the case of string comparisons of floating-point numbers, // we filtered out the G-code command with the commend 'lift nozzle'. if (line.cmd_is("G1") && line.dist_Z(self) != 0 && line.comment().find("lift nozzle") == std::string::npos) layers.insert(z); }); auto layers_with_perimeters = int(layer_infill.size()); auto layers_with_infill = int(std::count_if(layer_infill.begin(), layer_infill.end(), [](auto &v){ return v.second; })); THEN("expected number of layers") { REQUIRE(layers.size() == layers_with_perimeters + config.opt_int("raft_layers")); } if (config.opt_int("raft_layers") == 0) { // first infill layer printed directly on print bed is not combined, so we don't consider it. -- layers_with_infill; -- layers_with_perimeters; } // we expect that infill is generated for half the number of combined layers // plus for each single layer that was not combined (remainder) THEN("infill is only present in correct number of layers") { int infill_every = config.opt_int("infill_every_layers"); REQUIRE(layers_with_infill == int(layers_with_perimeters / infill_every) + (layers_with_perimeters % infill_every)); } }; auto config = Slic3r::DynamicPrintConfig::full_print_config_with({ { "nozzle_diameter", "0.5, 0.5, 0.5, 0.5" }, { "layer_height", 0.2 }, { "first_layer_height", 0.2 }, { "infill_every_layers", 2 }, { "perimeter_extruder", 1 }, { "infill_extruder", 2 }, { "wipe_into_infill", false }, { "support_material_extruder", 3 }, { "support_material_interface_extruder", 3 }, { "top_solid_layers", 0 }, { "bottom_solid_layers", 0 } }); test(config); // Reuse the config above config.set_deserialize_strict({ { "skirts", 0 }, // prevent usage of perimeter_extruder in raft layers { "raft_layers", 5 } }); test(config); } WHEN("infill_every_layers == 2") { Slic3r::Print print; Slic3r::Test::init_and_process_print({ Test::TestMesh::cube_20x20x20 }, print, { { "nozzle_diameter", "0.5" }, { "layer_height", 0.2 }, { "first_layer_height", 0.2 }, { "infill_every_layers", 2 } }); THEN("infill combination produces internal void surfaces") { bool has_void = false; for (const Layer *layer : print.get_object(0)->layers()) if (layer->get_region(0)->fill_surfaces().filter_by_type(stInternalVoid).size() > 0) { has_void = true; break; } REQUIRE(has_void); } } WHEN("infill_every_layers disabled") { // we disable combination after infill has been generated Slic3r::Print print; Slic3r::Test::init_and_process_print({ Test::TestMesh::cube_20x20x20 }, print, { { "nozzle_diameter", "0.5" }, { "layer_height", 0.2 }, { "first_layer_height", 0.2 }, { "infill_every_layers", 1 } }); THEN("infill combination is idempotent") { bool has_infill_on_each_layer = true; for (const Layer *layer : print.get_object(0)->layers()) if (layer->get_region(0)->fill_surfaces().empty()) { has_infill_on_each_layer = false; break; } REQUIRE(has_infill_on_each_layer); } } } SCENARIO("Infill density zero", "[Fill]") { WHEN("20mm cube is sliced") { DynamicPrintConfig config = Slic3r::DynamicPrintConfig::full_print_config(); config.set_deserialize_strict({ { "skirts", 0 }, { "perimeters", 1 }, { "fill_density", 0 }, { "top_solid_layers", 0 }, { "bottom_solid_layers", 0 }, { "solid_infill_below_area", 20000000 }, { "solid_infill_every_layers", 2 }, { "perimeter_speed", 99 }, { "external_perimeter_speed", 99 }, { "cooling", "0" }, { "first_layer_speed", "100%" } }); std::string gcode = Slic3r::Test::slice({ Slic3r::Test::TestMesh::cube_20x20x20 }, config); THEN("gcode not empty") { REQUIRE(! gcode.empty()); } THEN("solid_infill_below_area and solid_infill_every_layers are ignored when fill_density is 0") { GCodeReader parser; const double perimeter_speed = config.opt_float("perimeter_speed"); std::map layers_with_extrusion; parser.parse_buffer(gcode, [&layers_with_extrusion, perimeter_speed](Slic3r::GCodeReader &self, const Slic3r::GCodeReader::GCodeLine &line) { if (line.cmd() == "G1" && line.extruding(self) && line.dist_XY(self) > 0) { double f = line.new_F(self); if (std::abs(f - perimeter_speed * 60.) > 0.01) // It is a perimeter. layers_with_extrusion[self.z()] = f; } }); REQUIRE(layers_with_extrusion.empty()); } } WHEN("A is sliced") { DynamicPrintConfig config = Slic3r::DynamicPrintConfig::full_print_config(); config.set_deserialize_strict({ { "skirts", 0 }, { "perimeters", 3 }, { "fill_density", 0 }, { "layer_height", 0.2 }, { "first_layer_height", 0.2 }, { "nozzle_diameter", "0.35,0.35,0.35,0.35" }, { "infill_extruder", 2 }, { "solid_infill_extruder", 2 }, { "infill_extrusion_width", 0.52 }, { "solid_infill_extrusion_width", 0.52 }, { "first_layer_extrusion_width", 0 } }); std::string gcode = Slic3r::Test::slice({ Slic3r::Test::TestMesh::A }, config); THEN("gcode not empty") { REQUIRE(! gcode.empty()); } THEN("no missing parts in solid shell when fill_density is 0") { GCodeReader parser; int tool = -1; const int infill_extruder = config.opt_int("infill_extruder"); std::map infill; parser.parse_buffer(gcode, [&tool, &infill, infill_extruder](Slic3r::GCodeReader &self, const Slic3r::GCodeReader::GCodeLine &line) { if (boost::starts_with(line.cmd(), "T")) { tool = atoi(line.cmd().data() + 1) + 1; } else if (line.cmd() == "G1" && line.extruding(self) && line.dist_XY(self) > 0) { if (tool == infill_extruder) infill[scaled(self.z())].emplace_back(self.xy_scaled(), line.new_XY_scaled(self)); } }); auto opt_width = config.opt("infill_extrusion_width"); REQUIRE(! opt_width->percent); auto grow_d = scaled(opt_width->value / 2); auto inflate_lines = [grow_d](const Lines &lines) { Polygons out; for (const Line &line : lines) append(out, offset(Polyline{ line.a, line.b }, grow_d, Slic3r::ClipperLib::jtSquare, 3.)); return union_(out); }; Polygons layer0_infill = inflate_lines(infill[scaled(0.2)]); Polygons layer1_infill = inflate_lines(infill[scaled(0.4)]); ExPolygons poly = opening_ex(diff_ex(layer0_infill, layer1_infill), grow_d); const double threshold = 2. * sqr(grow_d * 2.); int missing_parts = std::count_if(poly.begin(), poly.end(), [threshold](const ExPolygon &poly){ return poly.area() > threshold; }); REQUIRE(missing_parts == 0); } } } /* { # GH: #2697 my $config = Slic3r::Config->new_from_defaults; $config->set('perimeter_extrusion_width', 0.72); $config->set('top_infill_extrusion_width', 0.1); $config->set('infill_extruder', 2); # in order to distinguish infill $config->set('solid_infill_extruder', 2); # in order to distinguish infill my $print = Slic3r::Test::init_print('20mm_cube', config => $config); my %infill = (); # Z => [ Line, Line ... ] my %other = (); # Z => [ Line, Line ... ] my $tool = undef; Slic3r::GCode::Reader->new->parse(Slic3r::Test::gcode($print), sub { my ($self, $cmd, $args, $info) = @_; if ($cmd =~ /^T(\d+)/) { $tool = $1; } elsif ($cmd eq 'G1' && $info->{extruding} && $info->{dist_XY} > 0) { my $z = 1 * $self->Z; my $line = Slic3r::Line->new_scale( [ $self->X, $self->Y ], [ $info->{new_X}, $info->{new_Y} ], ); if ($tool == $config->infill_extruder-1) { $infill{$z} //= []; push @{$infill{$z}}, $line; } else { $other{$z} //= []; push @{$other{$z}}, $line; } } }); my $top_z = max(keys %infill); my $top_infill_grow_d = scale($config->top_infill_extrusion_width)/2; my $top_infill = union([ map @{$_->grow($top_infill_grow_d)}, @{ $infill{$top_z} } ]); my $perimeters_grow_d = scale($config->perimeter_extrusion_width)/2; my $perimeters = union([ map @{$_->grow($perimeters_grow_d)}, @{ $other{$top_z} } ]); my $covered = union_ex([ @$top_infill, @$perimeters ]); my @holes = map @{$_->holes}, @$covered; ok sum(map unscale unscale $_->area*-1, @holes) < 1, 'no gaps between top solid infill and perimeters'; } { skip "The FillRectilinear2 does not fill the surface completely", 1; my $test = sub { my ($expolygon, $flow_spacing, $angle, $density) = @_; my $filler = Slic3r::Filler->new_from_type('rectilinear'); $filler->set_bounding_box($expolygon->bounding_box); $filler->set_angle($angle // 0); # Adjust line spacing to fill the region. $filler->set_dont_adjust(0); $filler->set_link_max_length(scale(1.2*$flow_spacing)); my $surface = Slic3r::Surface->new( surface_type => S_TYPE_BOTTOM, expolygon => $expolygon, ); my $flow = Slic3r::Flow->new( width => $flow_spacing, height => 0.4, nozzle_diameter => $flow_spacing, ); $filler->set_spacing($flow->spacing); my $paths = $filler->fill_surface( $surface, layer_height => $flow->height, density => $density // 1, ); # check whether any part was left uncovered my @grown_paths = map @{Slic3r::Polyline->new(@$_)->grow(scale $filler->spacing/2)}, @$paths; my $uncovered = diff_ex([ @$expolygon ], [ @grown_paths ], 1); # ignore very small dots my $uncovered_filtered = [ grep $_->area > (scale $flow_spacing)**2, @$uncovered ]; is scalar(@$uncovered_filtered), 0, 'solid surface is fully filled'; if (0 && @$uncovered_filtered) { require "Slic3r/SVG.pm"; Slic3r::SVG::output("uncovered.svg", no_arrows => 1, expolygons => [ $expolygon ], blue_expolygons => [ @$uncovered ], red_expolygons => [ @$uncovered_filtered ], polylines => [ @$paths ], ); exit; } }; my $expolygon = Slic3r::ExPolygon->new([ [6883102, 9598327.01296997], [6883102, 20327272.01297], [3116896, 20327272.01297], [3116896, 9598327.01296997], ]); $test->($expolygon, 0.55); for (1..20) { $expolygon->scale(1.05); $test->($expolygon, 0.55); } $expolygon = Slic3r::ExPolygon->new( [[59515297,5422499],[59531249,5578697],[59695801,6123186],[59965713,6630228],[60328214,7070685],[60773285,7434379],[61274561,7702115],[61819378,7866770],[62390306,7924789],[62958700,7866744],[63503012,7702244],[64007365,7434357],[64449960,7070398],[64809327,6634999],[65082143,6123325],[65245005,5584454],[65266967,5422499],[66267307,5422499],[66269190,8310081],[66275379,17810072],[66277259,20697500],[65267237,20697500],[65245004,20533538],[65082082,19994444],[64811462,19488579],[64450624,19048208],[64012101,18686514],[63503122,18415781],[62959151,18251378],[62453416,18198442],[62390147,18197355],[62200087,18200576],[61813519,18252990],[61274433,18415918],[60768598,18686517],[60327567,19047892],[59963609,19493297],[59695865,19994587],[59531222,20539379],[59515153,20697500],[58502480,20697500],[58502480,5422499]] ); $test->($expolygon, 0.524341649025257); $expolygon = Slic3r::ExPolygon->new([ scale_points [0,0], [98,0], [98,10], [0,10] ]); $test->($expolygon, 0.5, 45, 0.99); # non-solid infill } */ bool test_if_solid_surface_filled(const ExPolygon& expolygon, double flow_spacing, double angle, double density) { std::unique_ptr filler(Slic3r::Fill::new_from_type("rectilinear")); filler->bounding_box = get_extents(expolygon.contour); filler->angle = float(angle); Flow flow(float(flow_spacing), 0.4f, float(flow_spacing)); filler->spacing = flow.spacing(); FillParams fill_params; fill_params.density = float(density); fill_params.dont_adjust = false; Surface surface(stBottom, expolygon); if (fill_params.use_arachne) // Make this test fail when Arachne is used because this test is not ready for it. return false; Slic3r::Polylines paths = filler->fill_surface(&surface, fill_params); // check whether any part was left uncovered Polygons grown_paths; grown_paths.reserve(paths.size()); // figure out what is actually going on here re: data types float line_offset = float(scale_(filler->spacing / 2.0 + EPSILON)); std::for_each(paths.begin(), paths.end(), [line_offset, &grown_paths] (const Slic3r::Polyline& p) { polygons_append(grown_paths, offset(p, line_offset)); }); // Shrink the initial expolygon a bit, this simulates the infill / perimeter overlap that we usually apply. ExPolygons uncovered = diff_ex(offset(expolygon, - float(0.2 * scale_(flow_spacing))), grown_paths, ApplySafetyOffset::Yes); // ignore very small dots const double scaled_flow_spacing = std::pow(scale_(flow_spacing), 2); uncovered.erase(std::remove_if(uncovered.begin(), uncovered.end(), [scaled_flow_spacing](const ExPolygon& poly) { return poly.area() < scaled_flow_spacing; }), uncovered.end()); #if 0 if (! uncovered.empty()) { BoundingBox bbox = get_extents(expolygon.contour); bbox.merge(get_extents(uncovered)); bbox.merge(get_extents(grown_paths)); SVG svg("c:\\data\\temp\\test_if_solid_surface_filled.svg", bbox); svg.draw(expolygon); svg.draw(uncovered, "red"); svg.Close(); } #endif return uncovered.empty(); // solid surface is fully filled }