#include "Model.hpp" #include "Print.hpp" namespace Slic3r { // Add or remove support modifier ModelVolumes from model_object_dst to match the ModelVolumes of model_object_new // in the exact order and with the same IDs. // It is expected, that the model_object_dst already contains the non-support volumes of model_object_new in the correct order. // Friend to ModelVolume to allow copying. // static is not accepted by gcc if declared as a friend of ModelObject. /* static */ void model_volume_list_update_supports(ModelObject &model_object_dst, const ModelObject &model_object_new) { typedef std::pair<const ModelVolume*, bool> ModelVolumeWithStatus; std::vector<ModelVolumeWithStatus> old_volumes; old_volumes.reserve(model_object_dst.volumes.size()); for (const ModelVolume *model_volume : model_object_dst.volumes) old_volumes.emplace_back(ModelVolumeWithStatus(model_volume, false)); auto model_volume_lower = [](const ModelVolumeWithStatus &mv1, const ModelVolumeWithStatus &mv2){ return mv1.first->id() < mv2.first->id(); }; auto model_volume_equal = [](const ModelVolumeWithStatus &mv1, const ModelVolumeWithStatus &mv2){ return mv1.first->id() == mv2.first->id(); }; std::sort(old_volumes.begin(), old_volumes.end(), model_volume_lower); model_object_dst.volumes.clear(); model_object_dst.volumes.reserve(model_object_new.volumes.size()); for (const ModelVolume *model_volume_src : model_object_new.volumes) { ModelVolumeWithStatus key(model_volume_src, false); auto it = std::lower_bound(old_volumes.begin(), old_volumes.end(), key, model_volume_lower); if (it != old_volumes.end() && model_volume_equal(*it, key)) { // The volume was found in the old list. Just copy it. assert(! it->second); // not consumed yet it->second = true; ModelVolume *model_volume_dst = const_cast<ModelVolume*>(it->first); // For support modifiers, the type may have been switched from blocker to enforcer and vice versa. assert((model_volume_dst->is_support_modifier() && model_volume_src->is_support_modifier()) || model_volume_dst->type() == model_volume_src->type()); model_object_dst.volumes.emplace_back(model_volume_dst); if (model_volume_dst->is_support_modifier()) { // For support modifiers, the type may have been switched from blocker to enforcer and vice versa. model_volume_dst->set_type(model_volume_src->type()); model_volume_dst->set_transformation(model_volume_src->get_transformation()); } assert(model_volume_dst->get_matrix().isApprox(model_volume_src->get_matrix())); } else { // The volume was not found in the old list. Create a new copy. assert(model_volume_src->is_support_modifier()); model_object_dst.volumes.emplace_back(new ModelVolume(*model_volume_src)); model_object_dst.volumes.back()->set_model_object(&model_object_dst); } } // Release the non-consumed old volumes (those were deleted from the new list). for (ModelVolumeWithStatus &mv_with_status : old_volumes) if (! mv_with_status.second) delete mv_with_status.first; } static inline void model_volume_list_copy_configs(ModelObject &model_object_dst, const ModelObject &model_object_src, const ModelVolumeType type) { size_t i_src, i_dst; for (i_src = 0, i_dst = 0; i_src < model_object_src.volumes.size() && i_dst < model_object_dst.volumes.size();) { const ModelVolume &mv_src = *model_object_src.volumes[i_src]; ModelVolume &mv_dst = *model_object_dst.volumes[i_dst]; if (mv_src.type() != type) { ++ i_src; continue; } if (mv_dst.type() != type) { ++ i_dst; continue; } assert(mv_src.id() == mv_dst.id()); // Copy the ModelVolume data. mv_dst.name = mv_src.name; mv_dst.config.assign_config(mv_src.config); assert(mv_dst.supported_facets.id() == mv_src.supported_facets.id()); mv_dst.supported_facets.assign(mv_src.supported_facets); assert(mv_dst.seam_facets.id() == mv_src.seam_facets.id()); mv_dst.seam_facets.assign(mv_src.seam_facets); //FIXME what to do with the materials? // mv_dst.m_material_id = mv_src.m_material_id; ++ i_src; ++ i_dst; } } static inline void layer_height_ranges_copy_configs(t_layer_config_ranges &lr_dst, const t_layer_config_ranges &lr_src) { assert(lr_dst.size() == lr_src.size()); auto it_src = lr_src.cbegin(); for (auto &kvp_dst : lr_dst) { const auto &kvp_src = *it_src ++; assert(std::abs(kvp_dst.first.first - kvp_src.first.first ) <= EPSILON); assert(std::abs(kvp_dst.first.second - kvp_src.first.second) <= EPSILON); // Layer heights are allowed do differ in case the layer height table is being overriden by the smooth profile. // assert(std::abs(kvp_dst.second.option("layer_height")->getFloat() - kvp_src.second.option("layer_height")->getFloat()) <= EPSILON); kvp_dst.second = kvp_src.second; } } static inline bool transform3d_lower(const Transform3d &lhs, const Transform3d &rhs) { typedef Transform3d::Scalar T; const T *lv = lhs.data(); const T *rv = rhs.data(); for (size_t i = 0; i < 16; ++ i, ++ lv, ++ rv) { if (*lv < *rv) return true; else if (*lv > *rv) return false; } return false; } static inline bool transform3d_equal(const Transform3d &lhs, const Transform3d &rhs) { typedef Transform3d::Scalar T; const T *lv = lhs.data(); const T *rv = rhs.data(); for (size_t i = 0; i < 16; ++ i, ++ lv, ++ rv) if (*lv != *rv) return false; return true; } struct PrintObjectTrafoAndInstances { Transform3d trafo; PrintInstances instances; bool operator<(const PrintObjectTrafoAndInstances &rhs) const { return transform3d_lower(this->trafo, rhs.trafo); } }; // Generate a list of trafos and XY offsets for instances of a ModelObject static std::vector<PrintObjectTrafoAndInstances> print_objects_from_model_object(const ModelObject &model_object) { std::set<PrintObjectTrafoAndInstances> trafos; PrintObjectTrafoAndInstances trafo; for (ModelInstance *model_instance : model_object.instances) if (model_instance->is_printable()) { trafo.trafo = model_instance->get_matrix(); auto shift = Point::new_scale(trafo.trafo.data()[12], trafo.trafo.data()[13]); // Reset the XY axes of the transformation. trafo.trafo.data()[12] = 0; trafo.trafo.data()[13] = 0; // Search or insert a trafo. auto it = trafos.emplace(trafo).first; const_cast<PrintObjectTrafoAndInstances&>(*it).instances.emplace_back(PrintInstance{ nullptr, model_instance, shift }); } return std::vector<PrintObjectTrafoAndInstances>(trafos.begin(), trafos.end()); } // Compare just the layer ranges and their layer heights, not the associated configs. // Ignore the layer heights if check_layer_heights is false. static bool layer_height_ranges_equal(const t_layer_config_ranges &lr1, const t_layer_config_ranges &lr2, bool check_layer_height) { if (lr1.size() != lr2.size()) return false; auto it2 = lr2.begin(); for (const auto &kvp1 : lr1) { const auto &kvp2 = *it2 ++; if (std::abs(kvp1.first.first - kvp2.first.first ) > EPSILON || std::abs(kvp1.first.second - kvp2.first.second) > EPSILON || (check_layer_height && std::abs(kvp1.second.option("layer_height")->getFloat() - kvp2.second.option("layer_height")->getFloat()) > EPSILON)) return false; } return true; } // Returns true if va == vb when all CustomGCode items that are not ToolChangeCode are ignored. static bool custom_per_printz_gcodes_tool_changes_differ(const std::vector<CustomGCode::Item> &va, const std::vector<CustomGCode::Item> &vb) { auto it_a = va.begin(); auto it_b = vb.begin(); while (it_a != va.end() || it_b != vb.end()) { if (it_a != va.end() && it_a->type != CustomGCode::ToolChange) { // Skip any CustomGCode items, which are not tool changes. ++ it_a; continue; } if (it_b != vb.end() && it_b->type != CustomGCode::ToolChange) { // Skip any CustomGCode items, which are not tool changes. ++ it_b; continue; } if (it_a == va.end() || it_b == vb.end()) // va or vb contains more Tool Changes than the other. return true; assert(it_a->type == CustomGCode::ToolChange); assert(it_b->type == CustomGCode::ToolChange); if (*it_a != *it_b) // The two Tool Changes differ. return true; ++ it_a; ++ it_b; } // There is no change in custom Tool Changes. return false; } // Collect changes to print config, account for overrides of extruder retract values by filament presets. static t_config_option_keys print_config_diffs( const PrintConfig ¤t_config, const DynamicPrintConfig &new_full_config, DynamicPrintConfig &filament_overrides) { const std::vector<std::string> &extruder_retract_keys = print_config_def.extruder_retract_keys(); const std::string filament_prefix = "filament_"; t_config_option_keys print_diff; for (const t_config_option_key &opt_key : current_config.keys()) { const ConfigOption *opt_old = current_config.option(opt_key); assert(opt_old != nullptr); const ConfigOption *opt_new = new_full_config.option(opt_key); // assert(opt_new != nullptr); if (opt_new == nullptr) //FIXME This may happen when executing some test cases. continue; const ConfigOption *opt_new_filament = std::binary_search(extruder_retract_keys.begin(), extruder_retract_keys.end(), opt_key) ? new_full_config.option(filament_prefix + opt_key) : nullptr; if (opt_new_filament != nullptr && ! opt_new_filament->is_nil()) { // An extruder retract override is available at some of the filament presets. if (*opt_old != *opt_new || opt_new->overriden_by(opt_new_filament)) { auto opt_copy = opt_new->clone(); opt_copy->apply_override(opt_new_filament); if (*opt_old == *opt_copy) delete opt_copy; else { filament_overrides.set_key_value(opt_key, opt_copy); print_diff.emplace_back(opt_key); } } } else if (*opt_new != *opt_old) print_diff.emplace_back(opt_key); } return print_diff; } // Prepare for storing of the full print config into new_full_config to be exported into the G-code and to be used by the PlaceholderParser. static t_config_option_keys full_print_config_diffs(const DynamicPrintConfig ¤t_full_config, const DynamicPrintConfig &new_full_config) { t_config_option_keys full_config_diff; for (const t_config_option_key &opt_key : new_full_config.keys()) { const ConfigOption *opt_old = current_full_config.option(opt_key); const ConfigOption *opt_new = new_full_config.option(opt_key); if (opt_old == nullptr || *opt_new != *opt_old) full_config_diff.emplace_back(opt_key); } return full_config_diff; } Print::ApplyStatus Print::apply(const Model &model, DynamicPrintConfig new_full_config) { #ifdef _DEBUG check_model_ids_validity(model); #endif /* _DEBUG */ // Normalize the config. new_full_config.option("print_settings_id", true); new_full_config.option("filament_settings_id", true); new_full_config.option("printer_settings_id", true); new_full_config.option("physical_printer_settings_id", true); new_full_config.normalize_fdm(); // Find modified keys of the various configs. Resolve overrides extruder retract values by filament profiles. DynamicPrintConfig filament_overrides; t_config_option_keys print_diff = print_config_diffs(m_config, new_full_config, filament_overrides); t_config_option_keys full_config_diff = full_print_config_diffs(m_full_print_config, new_full_config); // Collect changes to object and region configs. t_config_option_keys object_diff = m_default_object_config.diff(new_full_config); t_config_option_keys region_diff = m_default_region_config.diff(new_full_config); // Do not use the ApplyStatus as we will use the max function when updating apply_status. unsigned int apply_status = APPLY_STATUS_UNCHANGED; auto update_apply_status = [&apply_status](bool invalidated) { apply_status = std::max<unsigned int>(apply_status, invalidated ? APPLY_STATUS_INVALIDATED : APPLY_STATUS_CHANGED); }; if (! (print_diff.empty() && object_diff.empty() && region_diff.empty())) update_apply_status(false); // Grab the lock for the Print / PrintObject milestones. tbb::mutex::scoped_lock lock(this->state_mutex()); // The following call may stop the background processing. if (! print_diff.empty()) update_apply_status(this->invalidate_state_by_config_options(new_full_config, print_diff)); // Apply variables to placeholder parser. The placeholder parser is used by G-code export, // which should be stopped if print_diff is not empty. size_t num_extruders = m_config.nozzle_diameter.size(); bool num_extruders_changed = false; if (! full_config_diff.empty()) { update_apply_status(this->invalidate_step(psGCodeExport)); // Set the profile aliases for the PrintBase::output_filename() m_placeholder_parser.set("print_preset", new_full_config.option("print_settings_id")->clone()); m_placeholder_parser.set("filament_preset", new_full_config.option("filament_settings_id")->clone()); m_placeholder_parser.set("printer_preset", new_full_config.option("printer_settings_id")->clone()); m_placeholder_parser.set("physical_printer_preset", new_full_config.option("physical_printer_settings_id")->clone()); // We want the filament overrides to be applied over their respective extruder parameters by the PlaceholderParser. // see "Placeholders do not respect filament overrides." GH issue #3649 m_placeholder_parser.apply_config(filament_overrides); // It is also safe to change m_config now after this->invalidate_state_by_config_options() call. m_config.apply_only(new_full_config, print_diff, true); //FIXME use move semantics once ConfigBase supports it. m_config.apply(filament_overrides); // Handle changes to object config defaults m_default_object_config.apply_only(new_full_config, object_diff, true); // Handle changes to regions config defaults m_default_region_config.apply_only(new_full_config, region_diff, true); m_full_print_config = std::move(new_full_config); if (num_extruders != m_config.nozzle_diameter.size()) { num_extruders = m_config.nozzle_diameter.size(); num_extruders_changed = true; } } class LayerRanges { public: LayerRanges() {} // Convert input config ranges into continuous non-overlapping sorted vector of intervals and their configs. void assign(const t_layer_config_ranges &in) { m_ranges.clear(); m_ranges.reserve(in.size()); // Input ranges are sorted lexicographically. First range trims the other ranges. coordf_t last_z = 0; for (const std::pair<const t_layer_height_range, ModelConfig> &range : in) if (range.first.second > last_z) { coordf_t min_z = std::max(range.first.first, 0.); if (min_z > last_z + EPSILON) { m_ranges.emplace_back(t_layer_height_range(last_z, min_z), nullptr); last_z = min_z; } if (range.first.second > last_z + EPSILON) { const DynamicPrintConfig *cfg = &range.second.get(); m_ranges.emplace_back(t_layer_height_range(last_z, range.first.second), cfg); last_z = range.first.second; } } if (m_ranges.empty()) m_ranges.emplace_back(t_layer_height_range(0, DBL_MAX), nullptr); else if (m_ranges.back().second == nullptr) m_ranges.back().first.second = DBL_MAX; else m_ranges.emplace_back(t_layer_height_range(m_ranges.back().first.second, DBL_MAX), nullptr); } const DynamicPrintConfig* config(const t_layer_height_range &range) const { auto it = std::lower_bound(m_ranges.begin(), m_ranges.end(), std::make_pair< t_layer_height_range, const DynamicPrintConfig*>(t_layer_height_range(range.first - EPSILON, range.second - EPSILON), nullptr)); // #ys_FIXME_COLOR // assert(it != m_ranges.end()); // assert(it == m_ranges.end() || std::abs(it->first.first - range.first ) < EPSILON); // assert(it == m_ranges.end() || std::abs(it->first.second - range.second) < EPSILON); if (it == m_ranges.end() || std::abs(it->first.first - range.first) > EPSILON || std::abs(it->first.second - range.second) > EPSILON ) return nullptr; // desired range doesn't found return (it == m_ranges.end()) ? nullptr : it->second; } std::vector<std::pair<t_layer_height_range, const DynamicPrintConfig*>>::const_iterator begin() const { return m_ranges.cbegin(); } std::vector<std::pair<t_layer_height_range, const DynamicPrintConfig*>>::const_iterator end() const { return m_ranges.cend(); } private: std::vector<std::pair<t_layer_height_range, const DynamicPrintConfig*>> m_ranges; }; struct ModelObjectStatus { enum Status { Unknown, Old, New, Moved, Deleted, }; ModelObjectStatus(ObjectID id, Status status = Unknown) : id(id), status(status) {} ObjectID id; Status status; LayerRanges layer_ranges; // Search by id. bool operator<(const ModelObjectStatus &rhs) const { return id < rhs.id; } }; std::set<ModelObjectStatus> model_object_status; // 1) Synchronize model objects. if (model.id() != m_model.id()) { // Kill everything, initialize from scratch. // Stop background processing. this->call_cancel_callback(); update_apply_status(this->invalidate_all_steps()); for (PrintObject *object : m_objects) { model_object_status.emplace(object->model_object()->id(), ModelObjectStatus::Deleted); update_apply_status(object->invalidate_all_steps()); delete object; } m_objects.clear(); m_model.assign_copy(model); for (const ModelObject *model_object : m_model.objects) model_object_status.emplace(model_object->id(), ModelObjectStatus::New); } else { if (m_model.custom_gcode_per_print_z != model.custom_gcode_per_print_z) { update_apply_status(num_extruders_changed || // Tool change G-codes are applied as color changes for a single extruder printer, no need to invalidate tool ordering. //FIXME The tool ordering may be invalidated unnecessarily if the custom_gcode_per_print_z.mode is not applicable // to the active print / model state, and then it is reset, so it is being applicable, but empty, thus the effect is the same. (num_extruders > 1 && custom_per_printz_gcodes_tool_changes_differ(m_model.custom_gcode_per_print_z.gcodes, model.custom_gcode_per_print_z.gcodes)) ? // The Tool Ordering and the Wipe Tower are no more valid. this->invalidate_steps({ psWipeTower, psGCodeExport }) : // There is no change in Tool Changes stored in custom_gcode_per_print_z, therefore there is no need to update Tool Ordering. this->invalidate_step(psGCodeExport)); m_model.custom_gcode_per_print_z = model.custom_gcode_per_print_z; } if (model_object_list_equal(m_model, model)) { // The object list did not change. for (const ModelObject *model_object : m_model.objects) model_object_status.emplace(model_object->id(), ModelObjectStatus::Old); } else if (model_object_list_extended(m_model, model)) { // Add new objects. Their volumes and configs will be synchronized later. update_apply_status(this->invalidate_step(psGCodeExport)); for (const ModelObject *model_object : m_model.objects) model_object_status.emplace(model_object->id(), ModelObjectStatus::Old); for (size_t i = m_model.objects.size(); i < model.objects.size(); ++ i) { model_object_status.emplace(model.objects[i]->id(), ModelObjectStatus::New); m_model.objects.emplace_back(ModelObject::new_copy(*model.objects[i])); m_model.objects.back()->set_model(&m_model); } } else { // Reorder the objects, add new objects. // First stop background processing before shuffling or deleting the PrintObjects in the object list. this->call_cancel_callback(); update_apply_status(this->invalidate_step(psGCodeExport)); // Second create a new list of objects. std::vector<ModelObject*> model_objects_old(std::move(m_model.objects)); m_model.objects.clear(); m_model.objects.reserve(model.objects.size()); auto by_id_lower = [](const ModelObject *lhs, const ModelObject *rhs){ return lhs->id() < rhs->id(); }; std::sort(model_objects_old.begin(), model_objects_old.end(), by_id_lower); for (const ModelObject *mobj : model.objects) { auto it = std::lower_bound(model_objects_old.begin(), model_objects_old.end(), mobj, by_id_lower); if (it == model_objects_old.end() || (*it)->id() != mobj->id()) { // New ModelObject added. m_model.objects.emplace_back(ModelObject::new_copy(*mobj)); m_model.objects.back()->set_model(&m_model); model_object_status.emplace(mobj->id(), ModelObjectStatus::New); } else { // Existing ModelObject re-added (possibly moved in the list). m_model.objects.emplace_back(*it); model_object_status.emplace(mobj->id(), ModelObjectStatus::Moved); } } bool deleted_any = false; for (ModelObject *&model_object : model_objects_old) { if (model_object_status.find(ModelObjectStatus(model_object->id())) == model_object_status.end()) { model_object_status.emplace(model_object->id(), ModelObjectStatus::Deleted); deleted_any = true; } else // Do not delete this ModelObject instance. model_object = nullptr; } if (deleted_any) { // Delete PrintObjects of the deleted ModelObjects. PrintObjectPtrs print_objects_old = std::move(m_objects); m_objects.clear(); m_objects.reserve(print_objects_old.size()); for (PrintObject *print_object : print_objects_old) { auto it_status = model_object_status.find(ModelObjectStatus(print_object->model_object()->id())); assert(it_status != model_object_status.end()); if (it_status->status == ModelObjectStatus::Deleted) { update_apply_status(print_object->invalidate_all_steps()); delete print_object; } else m_objects.emplace_back(print_object); } for (ModelObject *model_object : model_objects_old) delete model_object; } } } // 2) Map print objects including their transformation matrices. struct PrintObjectStatus { enum Status { Unknown, Deleted, Reused, New }; PrintObjectStatus(PrintObject *print_object, Status status = Unknown) : id(print_object->model_object()->id()), print_object(print_object), trafo(print_object->trafo()), status(status) {} PrintObjectStatus(ObjectID id) : id(id), print_object(nullptr), trafo(Transform3d::Identity()), status(Unknown) {} // ID of the ModelObject & PrintObject ObjectID id; // Pointer to the old PrintObject PrintObject *print_object; // Trafo generated with model_object->world_matrix(true) Transform3d trafo; Status status; // Search by id. bool operator<(const PrintObjectStatus &rhs) const { return id < rhs.id; } }; std::multiset<PrintObjectStatus> print_object_status; for (PrintObject *print_object : m_objects) print_object_status.emplace(PrintObjectStatus(print_object)); // 3) Synchronize ModelObjects & PrintObjects. for (size_t idx_model_object = 0; idx_model_object < model.objects.size(); ++ idx_model_object) { ModelObject &model_object = *m_model.objects[idx_model_object]; auto it_status = model_object_status.find(ModelObjectStatus(model_object.id())); assert(it_status != model_object_status.end()); assert(it_status->status != ModelObjectStatus::Deleted); const ModelObject& model_object_new = *model.objects[idx_model_object]; const_cast<ModelObjectStatus&>(*it_status).layer_ranges.assign(model_object_new.layer_config_ranges); if (it_status->status == ModelObjectStatus::New) // PrintObject instances will be added in the next loop. continue; // Update the ModelObject instance, possibly invalidate the linked PrintObjects. assert(it_status->status == ModelObjectStatus::Old || it_status->status == ModelObjectStatus::Moved); // Check whether a model part volume was added or removed, their transformations or order changed. // Only volume IDs, volume types, transformation matrices and their order are checked, configuration and other parameters are NOT checked. bool model_parts_differ = model_volume_list_changed(model_object, model_object_new, ModelVolumeType::MODEL_PART); bool modifiers_differ = model_volume_list_changed(model_object, model_object_new, ModelVolumeType::PARAMETER_MODIFIER); bool supports_differ = model_volume_list_changed(model_object, model_object_new, ModelVolumeType::SUPPORT_BLOCKER) || model_volume_list_changed(model_object, model_object_new, ModelVolumeType::SUPPORT_ENFORCER); if (model_parts_differ || modifiers_differ || model_object.origin_translation != model_object_new.origin_translation || ! model_object.layer_height_profile.timestamp_matches(model_object_new.layer_height_profile) || ! layer_height_ranges_equal(model_object.layer_config_ranges, model_object_new.layer_config_ranges, model_object_new.layer_height_profile.empty())) { // The very first step (the slicing step) is invalidated. One may freely remove all associated PrintObjects. auto range = print_object_status.equal_range(PrintObjectStatus(model_object.id())); for (auto it = range.first; it != range.second; ++ it) { update_apply_status(it->print_object->invalidate_all_steps()); const_cast<PrintObjectStatus&>(*it).status = PrintObjectStatus::Deleted; } // Copy content of the ModelObject including its ID, do not change the parent. model_object.assign_copy(model_object_new); } else if (supports_differ || model_custom_supports_data_changed(model_object, model_object_new)) { // First stop background processing before shuffling or deleting the ModelVolumes in the ModelObject's list. if (supports_differ) { this->call_cancel_callback(); update_apply_status(false); } // Invalidate just the supports step. auto range = print_object_status.equal_range(PrintObjectStatus(model_object.id())); for (auto it = range.first; it != range.second; ++ it) update_apply_status(it->print_object->invalidate_step(posSupportMaterial)); if (supports_differ) { // Copy just the support volumes. model_volume_list_update_supports(model_object, model_object_new); } } else if (model_custom_seam_data_changed(model_object, model_object_new)) { update_apply_status(this->invalidate_step(psGCodeExport)); } if (! model_parts_differ && ! modifiers_differ) { // Synchronize Object's config. bool object_config_changed = ! model_object.config.timestamp_matches(model_object_new.config); if (object_config_changed) model_object.config.assign_config(model_object_new.config); if (! object_diff.empty() || object_config_changed || num_extruders_changed) { PrintObjectConfig new_config = PrintObject::object_config_from_model_object(m_default_object_config, model_object, num_extruders); auto range = print_object_status.equal_range(PrintObjectStatus(model_object.id())); for (auto it = range.first; it != range.second; ++ it) { t_config_option_keys diff = it->print_object->config().diff(new_config); if (! diff.empty()) { update_apply_status(it->print_object->invalidate_state_by_config_options(it->print_object->config(), new_config, diff)); it->print_object->config_apply_only(new_config, diff, true); } } } // Synchronize (just copy) the remaining data of ModelVolumes (name, config, custom supports data). //FIXME What to do with m_material_id? model_volume_list_copy_configs(model_object /* dst */, model_object_new /* src */, ModelVolumeType::MODEL_PART); model_volume_list_copy_configs(model_object /* dst */, model_object_new /* src */, ModelVolumeType::PARAMETER_MODIFIER); layer_height_ranges_copy_configs(model_object.layer_config_ranges /* dst */, model_object_new.layer_config_ranges /* src */); // Copy the ModelObject name, input_file and instances. The instances will be compared against PrintObject instances in the next step. model_object.name = model_object_new.name; model_object.input_file = model_object_new.input_file; // Only refresh ModelInstances if there is any change. if (model_object.instances.size() != model_object_new.instances.size() || ! std::equal(model_object.instances.begin(), model_object.instances.end(), model_object_new.instances.begin(), [](auto l, auto r){ return l->id() == r->id(); })) { // G-code generator accesses model_object.instances to generate sequential print ordering matching the Plater object list. update_apply_status(this->invalidate_step(psGCodeExport)); model_object.clear_instances(); model_object.instances.reserve(model_object_new.instances.size()); for (const ModelInstance *model_instance : model_object_new.instances) { model_object.instances.emplace_back(new ModelInstance(*model_instance)); model_object.instances.back()->set_model_object(&model_object); } } else if (! std::equal(model_object.instances.begin(), model_object.instances.end(), model_object_new.instances.begin(), [](auto l, auto r){ return l->print_volume_state == r->print_volume_state && l->printable == r->printable && l->get_transformation().get_matrix().isApprox(r->get_transformation().get_matrix()); })) { // If some of the instances changed, the bounding box of the updated ModelObject is likely no more valid. // This is safe as the ModelObject's bounding box is only accessed from this function, which is called from the main thread only. model_object.invalidate_bounding_box(); // Synchronize the content of instances. auto new_instance = model_object_new.instances.begin(); for (auto old_instance = model_object.instances.begin(); old_instance != model_object.instances.end(); ++ old_instance, ++ new_instance) { (*old_instance)->set_transformation((*new_instance)->get_transformation()); (*old_instance)->print_volume_state = (*new_instance)->print_volume_state; (*old_instance)->printable = (*new_instance)->printable; } } } } // 4) Generate PrintObjects from ModelObjects and their instances. bool print_regions_reshuffled = false; { PrintObjectPtrs print_objects_new; print_objects_new.reserve(std::max(m_objects.size(), m_model.objects.size())); bool new_objects = false; // Walk over all new model objects and check, whether there are matching PrintObjects. for (ModelObject *model_object : m_model.objects) { auto range = print_object_status.equal_range(PrintObjectStatus(model_object->id())); std::vector<const PrintObjectStatus*> old; if (range.first != range.second) { old.reserve(print_object_status.count(PrintObjectStatus(model_object->id()))); for (auto it = range.first; it != range.second; ++ it) if (it->status != PrintObjectStatus::Deleted) old.emplace_back(&(*it)); } // Generate a list of trafos and XY offsets for instances of a ModelObject // Producing the config for PrintObject on demand, caching it at print_object_last. const PrintObject *print_object_last = nullptr; auto print_object_apply_config = [this, &print_object_last, model_object, num_extruders](PrintObject* print_object) { print_object->config_apply(print_object_last ? print_object_last->config() : PrintObject::object_config_from_model_object(m_default_object_config, *model_object, num_extruders)); print_object_last = print_object; }; std::vector<PrintObjectTrafoAndInstances> new_print_instances = print_objects_from_model_object(*model_object); if (old.empty()) { // Simple case, just generate new instances. for (PrintObjectTrafoAndInstances &print_instances : new_print_instances) { PrintObject *print_object = new PrintObject(this, model_object, print_instances.trafo, std::move(print_instances.instances)); print_object_apply_config(print_object); print_objects_new.emplace_back(print_object); // print_object_status.emplace(PrintObjectStatus(print_object, PrintObjectStatus::New)); new_objects = true; } continue; } // Complex case, try to merge the two lists. // Sort the old lexicographically by their trafos. std::sort(old.begin(), old.end(), [](const PrintObjectStatus *lhs, const PrintObjectStatus *rhs){ return transform3d_lower(lhs->trafo, rhs->trafo); }); // Merge the old / new lists. auto it_old = old.begin(); for (PrintObjectTrafoAndInstances &new_instances : new_print_instances) { for (; it_old != old.end() && transform3d_lower((*it_old)->trafo, new_instances.trafo); ++ it_old); if (it_old == old.end() || ! transform3d_equal((*it_old)->trafo, new_instances.trafo)) { // This is a new instance (or a set of instances with the same trafo). Just add it. PrintObject *print_object = new PrintObject(this, model_object, new_instances.trafo, std::move(new_instances.instances)); print_object_apply_config(print_object); print_objects_new.emplace_back(print_object); // print_object_status.emplace(PrintObjectStatus(print_object, PrintObjectStatus::New)); new_objects = true; if (it_old != old.end()) const_cast<PrintObjectStatus*>(*it_old)->status = PrintObjectStatus::Deleted; } else { // The PrintObject already exists and the copies differ. PrintBase::ApplyStatus status = (*it_old)->print_object->set_instances(std::move(new_instances.instances)); if (status != PrintBase::APPLY_STATUS_UNCHANGED) update_apply_status(status == PrintBase::APPLY_STATUS_INVALIDATED); print_objects_new.emplace_back((*it_old)->print_object); const_cast<PrintObjectStatus*>(*it_old)->status = PrintObjectStatus::Reused; } } } if (m_objects != print_objects_new) { this->call_cancel_callback(); update_apply_status(this->invalidate_all_steps()); m_objects = print_objects_new; // Delete the PrintObjects marked as Unknown or Deleted. bool deleted_objects = false; for (auto &pos : print_object_status) if (pos.status == PrintObjectStatus::Unknown || pos.status == PrintObjectStatus::Deleted) { update_apply_status(pos.print_object->invalidate_all_steps()); delete pos.print_object; deleted_objects = true; } if (new_objects || deleted_objects) update_apply_status(this->invalidate_steps({ psSkirt, psBrim, psWipeTower, psGCodeExport })); if (new_objects) update_apply_status(false); print_regions_reshuffled = true; } print_object_status.clear(); } // All regions now have distinct settings. // Check whether applying the new region config defaults we'd get different regions. for (PrintObject *print_object : m_objects) { const LayerRanges *layer_ranges; { auto it_status = model_object_status.find(ModelObjectStatus(print_object->model_object()->id())); assert(it_status != model_object_status.end()); assert(it_status->status != ModelObjectStatus::Deleted); layer_ranges = &it_status->layer_ranges; } bool some_object_region_modified = false; bool regions_merged = false; for (size_t region_id = 0; region_id < print_object->m_region_volumes.size(); ++ region_id) { PrintRegion ®ion = *print_object->m_all_regions[region_id]; PrintRegionConfig region_config; bool region_config_set = false; for (const std::pair<t_layer_height_range, int> &volume_and_range : print_object->m_region_volumes[region_id]) { const ModelVolume &volume = *print_object->model_object()->volumes[volume_and_range.second]; const DynamicPrintConfig *layer_range_config = layer_ranges->config(volume_and_range.first); PrintRegionConfig this_region_config = PrintObject::region_config_from_model_volume(m_default_region_config, layer_range_config, volume, num_extruders); if (region_config_set) { if (this_region_config != region_config) { regions_merged = true; break; } } else { region_config = std::move(this_region_config); region_config_set = true; } } if (regions_merged) break; size_t region_config_hash = region_config.hash(); bool modified = region.config_hash() != region_config_hash || region.config() != region_config; some_object_region_modified |= modified; if (some_object_region_modified) // Verify whether this region was not merged with some other region. for (size_t i = 0; i < region_id; ++ i) { const PrintRegion ®ion_other = *print_object->m_all_regions[i]; if (region_other.config_hash() == region_config_hash && region_other.config() == region_config) { // Regions were merged. Reset this print_object. regions_merged = true; break; } } if (modified) { // Stop the background process before assigning new configuration to the regions. t_config_option_keys diff = region.config().diff(region_config); update_apply_status(print_object->invalidate_state_by_config_options(region.config(), region_config, diff)); region.config_apply_only(region_config, diff, false); } } if (regions_merged) { // Two regions of a single object were either split or merged. This invalidates the whole slicing. update_apply_status(print_object->invalidate_all_steps()); print_object->m_region_volumes.clear(); } } // Possibly add new regions for the newly added or resetted PrintObjects. for (size_t idx_print_object = 0; idx_print_object < m_objects.size();) { PrintObject &print_object0 = *m_objects[idx_print_object]; const ModelObject &model_object = *print_object0.model_object(); const LayerRanges *layer_ranges; { auto it_status = model_object_status.find(ModelObjectStatus(model_object.id())); assert(it_status != model_object_status.end()); assert(it_status->status != ModelObjectStatus::Deleted); layer_ranges = &it_status->layer_ranges; } if (print_object0.m_region_volumes.empty()) { // Fresh or completely invalidated print_object. Assign regions. unsigned int volume_id = 0; for (const ModelVolume *volume : model_object.volumes) { if (! volume->is_model_part() && ! volume->is_modifier()) { ++ volume_id; continue; } // Filter the layer ranges, so they do not overlap and they contain at least a single layer. // Now insert a volume with a layer range to its own region. for (auto it_range = layer_ranges->begin(); it_range != layer_ranges->end(); ++ it_range) { int region_id = -1; // Get the config applied to this volume. PrintRegionConfig config = PrintObject::region_config_from_model_volume(m_default_region_config, it_range->second, *volume, num_extruders); size_t hash = config.hash(); for (size_t i = 0; i < print_object0.m_all_regions.size(); ++ i) if (hash == print_object0.m_all_regions[i]->config_hash() && config == *print_object0.m_all_regions[i]) { region_id = int(i); break; } // If no region exists with the same config, create a new one. if (region_id == -1) { region_id = int(print_object0.m_all_regions.size()); print_object0.m_all_regions.emplace_back(std::make_unique<PrintRegion>(std::move(config), hash)); } print_object0.add_region_volume(region_id, volume_id, it_range->first); } ++ volume_id; } print_regions_reshuffled = true; } for (++ idx_print_object; idx_print_object < m_objects.size() && m_objects[idx_print_object]->model_object() == &model_object; ++ idx_print_object) { PrintObject &print_object = *m_objects[idx_print_object]; if (print_object.m_region_volumes.empty()) { // Copy region volumes and regions from print_object0. print_object.m_region_volumes = print_object0.m_region_volumes; print_object.m_all_regions.reserve(print_object0.m_all_regions.size()); for (const std::unique_ptr<Slic3r::PrintRegion> ®ion : print_object0.m_all_regions) print_object.m_all_regions.emplace_back(std::make_unique<PrintRegion>(*region)); print_regions_reshuffled = true; } } } if (print_regions_reshuffled) { // Update Print::m_print_regions from objects. struct cmp { bool operator() (const PrintRegion *l, const PrintRegion *r) const { return l->config_hash() == r->config_hash() && l->config() == r->config(); } }; std::set<const PrintRegion*, cmp> region_set; m_print_regions.clear(); for (PrintObject *print_object : m_objects) for (std::unique_ptr<Slic3r::PrintRegion> &print_region : print_object->m_all_regions) if (auto it = region_set.find(print_region.get()); it == region_set.end()) { int print_region_id = int(m_print_regions.size()); m_print_regions.emplace_back(print_region.get()); print_region->m_print_region_id = print_region_id; } else { print_region->m_print_region_id = (*it)->print_region_id(); } } // Update SlicingParameters for each object where the SlicingParameters is not valid. // If it is not valid, then it is ensured that PrintObject.m_slicing_params is not in use // (posSlicing and posSupportMaterial was invalidated). for (PrintObject *object : m_objects) object->update_slicing_parameters(); #ifdef _DEBUG check_model_ids_equal(m_model, model); #endif /* _DEBUG */ return static_cast<ApplyStatus>(apply_status); } } // namespace Slic3r