#include "Model.hpp" #include "Geometry.hpp" namespace Slic3r { Model::Model() {} Model::Model(const Model &other) { // copy materials for (ModelMaterialMap::const_iterator i = other.materials.begin(); i != other.materials.end(); ++i) this->add_material(i->first, *i->second); // copy objects this->objects.reserve(other.objects.size()); for (ModelObjectPtrs::const_iterator i = other.objects.begin(); i != other.objects.end(); ++i) this->add_object(**i, true); } Model& Model::operator= (Model other) { this->swap(other); return *this; } void Model::swap(Model &other) { std::swap(this->materials, other.materials); std::swap(this->objects, other.objects); } Model::~Model() { this->clear_objects(); this->clear_materials(); } ModelObject* Model::add_object() { ModelObject* new_object = new ModelObject(this); this->objects.push_back(new_object); return new_object; } ModelObject* Model::add_object(const ModelObject &other, bool copy_volumes) { ModelObject* new_object = new ModelObject(this, other, copy_volumes); this->objects.push_back(new_object); return new_object; } void Model::delete_object(size_t idx) { ModelObjectPtrs::iterator i = this->objects.begin() + idx; delete *i; this->objects.erase(i); } void Model::clear_objects() { // int instead of size_t because it can be -1 when vector is empty for (int i = this->objects.size()-1; i >= 0; --i) this->delete_object(i); } void Model::delete_material(t_model_material_id material_id) { ModelMaterialMap::iterator i = this->materials.find(material_id); if (i != this->materials.end()) { delete i->second; this->materials.erase(i); } } void Model::clear_materials() { while (!this->materials.empty()) this->delete_material( this->materials.begin()->first ); } ModelMaterial* Model::add_material(t_model_material_id material_id) { ModelMaterial* material = this->get_material(material_id); if (material == NULL) { material = this->materials[material_id] = new ModelMaterial(this); } return material; } ModelMaterial* Model::add_material(t_model_material_id material_id, const ModelMaterial &other) { // delete existing material if any ModelMaterial* material = this->get_material(material_id); if (material != NULL) { delete material; } // set new material material = new ModelMaterial(this, other); this->materials[material_id] = material; return material; } ModelMaterial* Model::get_material(t_model_material_id material_id) { ModelMaterialMap::iterator i = this->materials.find(material_id); if (i == this->materials.end()) { return NULL; } else { return i->second; } } /* void Model::duplicate_objects_grid(unsigned int x, unsigned int y, coordf_t distance) { if (this->objects.size() > 1) throw "Grid duplication is not supported with multiple objects"; if (this->objects.empty()) throw "No objects!"; ModelObject* object = this->objects.front(); object->clear_instances(); BoundingBoxf3 bb = object->bounding_box(); Sizef3 size = bb.size(); for (unsigned int x_copy = 1; x_copy <= x; ++x_copy) { for (unsigned int y_copy = 1; y_copy <= y; ++y_copy) { ModelInstance* instance = object->add_instance(); instance->offset.x = (size.x + distance) * (x_copy-1); instance->offset.y = (size.y + distance) * (y_copy-1); } } } */ bool Model::has_objects_with_no_instances() const { for (ModelObjectPtrs::const_iterator i = this->objects.begin(); i != this->objects.end(); ++i) { if ((*i)->instances.empty()) { return true; } } return false; } // makes sure all objects have at least one instance bool Model::add_default_instances() { // apply a default position to all objects not having one for (ModelObjectPtrs::const_iterator o = this->objects.begin(); o != this->objects.end(); ++o) { if ((*o)->instances.empty()) { (*o)->add_instance(); } } return true; } // this returns the bounding box of the *transformed* instances BoundingBoxf3 Model::bounding_box() const { BoundingBoxf3 bb; for (ModelObjectPtrs::const_iterator o = this->objects.begin(); o != this->objects.end(); ++o) { bb.merge((*o)->bounding_box()); } return bb; } void Model::center_instances_around_point(const Pointf &point) { BoundingBoxf3 bb = this->bounding_box(); Sizef3 size = bb.size(); double shift_x = -bb.min.x + point.x - size.x/2; double shift_y = -bb.min.y + point.y - size.y/2; for (ModelObjectPtrs::const_iterator o = this->objects.begin(); o != this->objects.end(); ++o) { for (ModelInstancePtrs::const_iterator i = (*o)->instances.begin(); i != (*o)->instances.end(); ++i) { (*i)->offset.translate(shift_x, shift_y); } (*o)->update_bounding_box(); } } void Model::align_instances_to_origin() { BoundingBoxf3 bb = this->bounding_box(); Pointf new_center = (Pointf)bb.size(); new_center.translate(-new_center.x/2, -new_center.y/2); this->center_instances_around_point(new_center); } void Model::translate(coordf_t x, coordf_t y, coordf_t z) { for (ModelObjectPtrs::const_iterator o = this->objects.begin(); o != this->objects.end(); ++o) { (*o)->translate(x, y, z); } } // flattens everything to a single mesh TriangleMesh Model::mesh() const { TriangleMesh mesh; for (ModelObjectPtrs::const_iterator o = this->objects.begin(); o != this->objects.end(); ++o) { mesh.merge((*o)->mesh()); } return mesh; } // flattens everything to a single mesh TriangleMesh Model::raw_mesh() const { TriangleMesh mesh; for (ModelObjectPtrs::const_iterator o = this->objects.begin(); o != this->objects.end(); ++o) { mesh.merge((*o)->raw_mesh()); } return mesh; } Pointfs Model::_arrange(const Pointfs &sizes, coordf_t dist, const BoundingBoxf &bb) const { // we supply unscaled data to arrange() return Slic3r::Geometry::arrange( sizes.size(), // number of parts BoundingBoxf(sizes).max, // width and height of a single cell dist, // distance between cells bb // bounding box of the area to fill ); } /* arrange objects preserving their instance count but altering their instance positions */ void Model::arrange_objects(coordf_t dist, BoundingBoxf bb) { // get the (transformed) size of each instance so that we take // into account their different transformations when packing Pointfs instance_sizes; for (ModelObjectPtrs::const_iterator o = this->objects.begin(); o != this->objects.end(); ++o) { for (size_t i = 0; i < (*o)->instances.size(); ++i) { instance_sizes.push_back((*o)->instance_bounding_box(i).size()); } } Pointfs positions = this->_arrange(instance_sizes, dist, bb); for (ModelObjectPtrs::const_iterator o = this->objects.begin(); o != this->objects.end(); ++o) { for (ModelInstancePtrs::const_iterator i = (*o)->instances.begin(); i != (*o)->instances.end(); ++i) { (*i)->offset = positions.back(); positions.pop_back(); } } } #ifdef SLIC3RXS REGISTER_CLASS(Model, "Model"); #endif ModelMaterial::ModelMaterial(Model *model) : model(model) {} ModelMaterial::ModelMaterial(Model *model, const ModelMaterial &other) : attributes(other.attributes), config(other.config), model(model) {} void ModelMaterial::apply(const t_model_material_attributes &attributes) { this->attributes.insert(attributes.begin(), attributes.end()); } #ifdef SLIC3RXS REGISTER_CLASS(ModelMaterial, "Model::Material"); #endif ModelObject::ModelObject(Model *model) : model(model) {} ModelObject::ModelObject(Model *model, const ModelObject &other, bool copy_volumes) : name(other.name), input_file(other.input_file), instances(), volumes(), config(other.config), layer_height_ranges(other.layer_height_ranges), origin_translation(other.origin_translation), _bounding_box(other._bounding_box), _bounding_box_valid(other._bounding_box_valid), model(model) { if (copy_volumes) { this->volumes.reserve(other.volumes.size()); for (ModelVolumePtrs::const_iterator i = other.volumes.begin(); i != other.volumes.end(); ++i) this->add_volume(**i); } this->instances.reserve(other.instances.size()); for (ModelInstancePtrs::const_iterator i = other.instances.begin(); i != other.instances.end(); ++i) this->add_instance(**i); } ModelObject& ModelObject::operator= (ModelObject other) { this->swap(other); return *this; } void ModelObject::swap(ModelObject &other) { std::swap(this->input_file, other.input_file); std::swap(this->instances, other.instances); std::swap(this->volumes, other.volumes); std::swap(this->config, other.config); std::swap(this->layer_height_ranges, other.layer_height_ranges); std::swap(this->origin_translation, other.origin_translation); std::swap(this->_bounding_box, other._bounding_box); std::swap(this->_bounding_box_valid, other._bounding_box_valid); } ModelObject::~ModelObject() { this->clear_volumes(); this->clear_instances(); } ModelVolume* ModelObject::add_volume(const TriangleMesh &mesh) { ModelVolume* v = new ModelVolume(this, mesh); this->volumes.push_back(v); this->invalidate_bounding_box(); return v; } ModelVolume* ModelObject::add_volume(const ModelVolume &other) { ModelVolume* v = new ModelVolume(this, other); this->volumes.push_back(v); this->invalidate_bounding_box(); return v; } void ModelObject::delete_volume(size_t idx) { ModelVolumePtrs::iterator i = this->volumes.begin() + idx; delete *i; this->volumes.erase(i); this->invalidate_bounding_box(); } void ModelObject::clear_volumes() { // int instead of size_t because it can be -1 when vector is empty for (int i = this->volumes.size()-1; i >= 0; --i) this->delete_volume(i); } ModelInstance* ModelObject::add_instance() { ModelInstance* i = new ModelInstance(this); this->instances.push_back(i); this->invalidate_bounding_box(); return i; } ModelInstance* ModelObject::add_instance(const ModelInstance &other) { ModelInstance* i = new ModelInstance(this, other); this->instances.push_back(i); this->invalidate_bounding_box(); return i; } void ModelObject::delete_instance(size_t idx) { ModelInstancePtrs::iterator i = this->instances.begin() + idx; delete *i; this->instances.erase(i); this->invalidate_bounding_box(); } void ModelObject::delete_last_instance() { this->delete_instance(this->instances.size() - 1); } void ModelObject::clear_instances() { for (size_t i = 0; i < this->instances.size(); ++i) this->delete_instance(i); } // this returns the bounding box of the *transformed* instances BoundingBoxf3 ModelObject::bounding_box() { if (!this->_bounding_box_valid) this->update_bounding_box(); return this->_bounding_box; } void ModelObject::invalidate_bounding_box() { this->_bounding_box_valid = false; } void ModelObject::update_bounding_box() { this->_bounding_box = this->mesh().bounding_box(); this->_bounding_box_valid = true; } // flattens all volumes and instances into a single mesh TriangleMesh ModelObject::mesh() const { TriangleMesh mesh; TriangleMesh raw_mesh = this->raw_mesh(); for (ModelInstancePtrs::const_iterator i = this->instances.begin(); i != this->instances.end(); ++i) { TriangleMesh m = raw_mesh; (*i)->transform_mesh(&m); mesh.merge(m); } return mesh; } TriangleMesh ModelObject::raw_mesh() const { TriangleMesh mesh; for (ModelVolumePtrs::const_iterator v = this->volumes.begin(); v != this->volumes.end(); ++v) { if ((*v)->modifier) continue; mesh.merge((*v)->mesh); } return mesh; } BoundingBoxf3 ModelObject::raw_bounding_box() const { BoundingBoxf3 bb; for (ModelVolumePtrs::const_iterator v = this->volumes.begin(); v != this->volumes.end(); ++v) { if ((*v)->modifier) continue; TriangleMesh mesh = (*v)->mesh; if (this->instances.empty()) CONFESS("Can't call raw_bounding_box() with no instances"); this->instances.front()->transform_mesh(&mesh, true); bb.merge(mesh.bounding_box()); } return bb; } // this returns the bounding box of the *transformed* given instance BoundingBoxf3 ModelObject::instance_bounding_box(size_t instance_idx) const { TriangleMesh mesh = this->raw_mesh(); this->instances[instance_idx]->transform_mesh(&mesh); return mesh.bounding_box(); } void ModelObject::center_around_origin() { // calculate the displacements needed to // center this object around the origin BoundingBoxf3 bb = this->raw_mesh().bounding_box(); // first align to origin on XYZ Vectorf3 vector(-bb.min.x, -bb.min.y, -bb.min.z); // then center it on XY Sizef3 size = bb.size(); vector.x -= size.x/2; vector.y -= size.y/2; this->translate(vector); this->origin_translation.translate(vector); if (!this->instances.empty()) { for (ModelInstancePtrs::const_iterator i = this->instances.begin(); i != this->instances.end(); ++i) { // apply rotation and scaling to vector as well before translating instance, // in order to leave final position unaltered Vectorf3 v = vector.negative(); v.rotate((*i)->rotation, (*i)->offset); v.scale((*i)->scaling_factor); (*i)->offset.translate(v.x, v.y); } this->update_bounding_box(); } } void ModelObject::translate(const Vectorf3 &vector) { this->translate(vector.x, vector.y, vector.z); } void ModelObject::translate(coordf_t x, coordf_t y, coordf_t z) { for (ModelVolumePtrs::const_iterator v = this->volumes.begin(); v != this->volumes.end(); ++v) { (*v)->mesh.translate(x, y, z); } if (this->_bounding_box_valid) this->_bounding_box.translate(x, y, z); } void ModelObject::scale(const Pointf3 &versor) { for (ModelVolumePtrs::const_iterator v = this->volumes.begin(); v != this->volumes.end(); ++v) { (*v)->mesh.scale(versor); } // reset origin translation since it doesn't make sense anymore this->origin_translation = Pointf3(0,0,0); this->invalidate_bounding_box(); } void ModelObject::rotate(float angle, const Axis &axis) { for (ModelVolumePtrs::const_iterator v = this->volumes.begin(); v != this->volumes.end(); ++v) { (*v)->mesh.rotate(angle, axis); } this->origin_translation = Pointf3(0,0,0); this->invalidate_bounding_box(); } void ModelObject::mirror(const Axis &axis) { for (ModelVolumePtrs::const_iterator v = this->volumes.begin(); v != this->volumes.end(); ++v) { (*v)->mesh.mirror(axis); } this->origin_translation = Pointf3(0,0,0); this->invalidate_bounding_box(); } size_t ModelObject::materials_count() const { std::set material_ids; for (ModelVolumePtrs::const_iterator v = this->volumes.begin(); v != this->volumes.end(); ++v) { material_ids.insert((*v)->material_id()); } return material_ids.size(); } size_t ModelObject::facets_count() const { size_t num = 0; for (ModelVolumePtrs::const_iterator v = this->volumes.begin(); v != this->volumes.end(); ++v) { if ((*v)->modifier) continue; num += (*v)->mesh.stl.stats.number_of_facets; } return num; } bool ModelObject::needed_repair() const { for (ModelVolumePtrs::const_iterator v = this->volumes.begin(); v != this->volumes.end(); ++v) { if ((*v)->modifier) continue; if ((*v)->mesh.needed_repair()) return true; } return false; } void ModelObject::cut(coordf_t z, Model* model) const { // clone this one to duplicate instances, materials etc. ModelObject* upper = model->add_object(*this); ModelObject* lower = model->add_object(*this); upper->clear_volumes(); lower->clear_volumes(); for (ModelVolumePtrs::const_iterator v = this->volumes.begin(); v != this->volumes.end(); ++v) { ModelVolume* volume = *v; if (volume->modifier) { // don't cut modifiers upper->add_volume(*volume); lower->add_volume(*volume); } else { TriangleMeshSlicer tms(&volume->mesh); TriangleMesh upper_mesh, lower_mesh; // TODO: shouldn't we use object bounding box instead of per-volume bb? tms.cut(z + volume->mesh.bounding_box().min.z, &upper_mesh, &lower_mesh); upper_mesh.repair(); lower_mesh.repair(); upper_mesh.reset_repair_stats(); lower_mesh.reset_repair_stats(); if (upper_mesh.facets_count() > 0) { ModelVolume* vol = upper->add_volume(upper_mesh); vol->name = volume->name; vol->config = volume->config; vol->set_material(volume->material_id(), *volume->material()); } if (lower_mesh.facets_count() > 0) { ModelVolume* vol = lower->add_volume(lower_mesh); vol->name = volume->name; vol->config = volume->config; vol->set_material(volume->material_id(), *volume->material()); } } } } void ModelObject::split(ModelObjectPtrs* new_objects) { if (this->volumes.size() > 1) { // We can't split meshes if there's more than one volume, because // we can't group the resulting meshes by object afterwards new_objects->push_back(this); return; } ModelVolume* volume = this->volumes.front(); TriangleMeshPtrs meshptrs = volume->mesh.split(); for (TriangleMeshPtrs::iterator mesh = meshptrs.begin(); mesh != meshptrs.end(); ++mesh) { (*mesh)->repair(); ModelObject* new_object = this->model->add_object(*this, false); ModelVolume* new_volume = new_object->add_volume(**mesh); new_volume->name = volume->name; new_volume->config = volume->config; new_volume->modifier = volume->modifier; new_volume->material_id(volume->material_id()); new_objects->push_back(new_object); delete *mesh; } return; } #ifdef SLIC3RXS REGISTER_CLASS(ModelObject, "Model::Object"); #endif ModelVolume::ModelVolume(ModelObject* object, const TriangleMesh &mesh) : mesh(mesh), modifier(false), object(object) {} ModelVolume::ModelVolume(ModelObject* object, const ModelVolume &other) : name(other.name), mesh(other.mesh), config(other.config), modifier(other.modifier), object(object) { this->material_id(other.material_id()); } t_model_material_id ModelVolume::material_id() const { return this->_material_id; } void ModelVolume::material_id(t_model_material_id material_id) { this->_material_id = material_id; // ensure this->_material_id references an existing material (void)this->object->get_model()->add_material(material_id); } ModelMaterial* ModelVolume::material() const { return this->object->get_model()->get_material(this->_material_id); } void ModelVolume::set_material(t_model_material_id material_id, const ModelMaterial &material) { this->_material_id = material_id; (void)this->object->get_model()->add_material(material_id, material); } ModelMaterial* ModelVolume::assign_unique_material() { Model* model = this->get_object()->get_model(); // as material-id "0" is reserved by the AMF spec we start from 1 this->_material_id = 1 + model->materials.size(); // watchout for implicit cast return model->add_material(this->_material_id); } #ifdef SLIC3RXS REGISTER_CLASS(ModelVolume, "Model::Volume"); #endif ModelInstance::ModelInstance(ModelObject *object) : rotation(0), scaling_factor(1), object(object) {} ModelInstance::ModelInstance(ModelObject *object, const ModelInstance &other) : rotation(other.rotation), scaling_factor(other.scaling_factor), offset(other.offset), object(object) {} void ModelInstance::transform_mesh(TriangleMesh* mesh, bool dont_translate) const { mesh->rotate_z(this->rotation); // rotate around mesh origin mesh->scale(this->scaling_factor); // scale around mesh origin if (!dont_translate) mesh->translate(this->offset.x, this->offset.y, 0); } void ModelInstance::transform_polygon(Polygon* polygon) const { polygon->rotate(this->rotation, Point(0,0)); // rotate around polygon origin polygon->scale(this->scaling_factor); // scale around polygon origin } #ifdef SLIC3RXS REGISTER_CLASS(ModelInstance, "Model::Instance"); #endif }