#include "SLAPrint.hpp" #include "SLAPrintSteps.hpp" #include "ClipperUtils.hpp" #include "Geometry.hpp" #include "MTUtils.hpp" #include #include #include #include #include // #define SLAPRINT_DO_BENCHMARK #ifdef SLAPRINT_DO_BENCHMARK #include #endif //#include //#include "tbb/mutex.h" #include "I18N.hpp" //! macro used to mark string used at localization, //! return same string #define L(s) Slic3r::I18N::translate(s) namespace Slic3r { bool is_zero_elevation(const SLAPrintObjectConfig &c) { return c.pad_enable.getBool() && c.pad_around_object.getBool(); } // Compile the argument for support creation from the static print config. sla::SupportTreeConfig make_support_cfg(const SLAPrintObjectConfig& c) { sla::SupportTreeConfig scfg; scfg.enabled = c.supports_enable.getBool(); scfg.head_front_radius_mm = 0.5*c.support_head_front_diameter.getFloat(); double pillar_r = 0.5 * c.support_pillar_diameter.getFloat(); scfg.head_back_radius_mm = pillar_r; scfg.head_fallback_radius_mm = 0.01 * c.support_small_pillar_diameter_percent.getFloat() * pillar_r; scfg.head_penetration_mm = c.support_head_penetration.getFloat(); scfg.head_width_mm = c.support_head_width.getFloat(); scfg.object_elevation_mm = is_zero_elevation(c) ? 0. : c.support_object_elevation.getFloat(); scfg.bridge_slope = c.support_critical_angle.getFloat() * PI / 180.0 ; scfg.max_bridge_length_mm = c.support_max_bridge_length.getFloat(); scfg.max_pillar_link_distance_mm = c.support_max_pillar_link_distance.getFloat(); switch(c.support_pillar_connection_mode.getInt()) { case slapcmZigZag: scfg.pillar_connection_mode = sla::PillarConnectionMode::zigzag; break; case slapcmCross: scfg.pillar_connection_mode = sla::PillarConnectionMode::cross; break; case slapcmDynamic: scfg.pillar_connection_mode = sla::PillarConnectionMode::dynamic; break; } scfg.ground_facing_only = c.support_buildplate_only.getBool(); scfg.pillar_widening_factor = c.support_pillar_widening_factor.getFloat(); scfg.base_radius_mm = 0.5*c.support_base_diameter.getFloat(); scfg.base_height_mm = c.support_base_height.getFloat(); scfg.pillar_base_safety_distance_mm = c.support_base_safety_distance.getFloat() < EPSILON ? scfg.safety_distance_mm : c.support_base_safety_distance.getFloat(); scfg.max_bridges_on_pillar = unsigned(c.support_max_bridges_on_pillar.getInt()); return scfg; } sla::PadConfig::EmbedObject builtin_pad_cfg(const SLAPrintObjectConfig& c) { sla::PadConfig::EmbedObject ret; ret.enabled = is_zero_elevation(c); if(ret.enabled) { ret.everywhere = c.pad_around_object_everywhere.getBool(); ret.object_gap_mm = c.pad_object_gap.getFloat(); ret.stick_width_mm = c.pad_object_connector_width.getFloat(); ret.stick_stride_mm = c.pad_object_connector_stride.getFloat(); ret.stick_penetration_mm = c.pad_object_connector_penetration .getFloat(); } return ret; } sla::PadConfig make_pad_cfg(const SLAPrintObjectConfig& c) { sla::PadConfig pcfg; pcfg.wall_thickness_mm = c.pad_wall_thickness.getFloat(); pcfg.wall_slope = c.pad_wall_slope.getFloat() * PI / 180.0; pcfg.max_merge_dist_mm = c.pad_max_merge_distance.getFloat(); pcfg.wall_height_mm = c.pad_wall_height.getFloat(); pcfg.brim_size_mm = c.pad_brim_size.getFloat(); // set builtin pad implicitly ON pcfg.embed_object = builtin_pad_cfg(c); return pcfg; } bool validate_pad(const TriangleMesh &pad, const sla::PadConfig &pcfg) { // An empty pad can only be created if embed_object mode is enabled // and the pad is not forced everywhere return !pad.empty() || (pcfg.embed_object.enabled && !pcfg.embed_object.everywhere); } void SLAPrint::clear() { tbb::mutex::scoped_lock lock(this->state_mutex()); // The following call should stop background processing if it is running. this->invalidate_all_steps(); for (SLAPrintObject *object : m_objects) delete object; m_objects.clear(); m_model.clear_objects(); } // Transformation without rotation around Z and without a shift by X and Y. Transform3d SLAPrint::sla_trafo(const ModelObject &model_object) const { Vec3d corr = this->relative_correction(); ModelInstance &model_instance = *model_object.instances.front(); Vec3d offset = model_instance.get_offset(); Vec3d rotation = model_instance.get_rotation(); offset(0) = 0.; offset(1) = 0.; rotation(2) = 0.; offset(Z) *= corr(Z); auto trafo = Transform3d::Identity(); trafo.translate(offset); trafo.scale(corr); trafo.rotate(Eigen::AngleAxisd(rotation(2), Vec3d::UnitZ())); trafo.rotate(Eigen::AngleAxisd(rotation(1), Vec3d::UnitY())); trafo.rotate(Eigen::AngleAxisd(rotation(0), Vec3d::UnitX())); trafo.scale(model_instance.get_scaling_factor()); trafo.scale(model_instance.get_mirror()); if (model_instance.is_left_handed()) trafo = Eigen::Scaling(Vec3d(-1., 1., 1.)) * trafo; return trafo; } // List of instances, where the ModelInstance transformation is a composite of sla_trafo and the transformation defined by SLAPrintObject::Instance. static std::vector sla_instances(const ModelObject &model_object) { std::vector instances; assert(! model_object.instances.empty()); if (! model_object.instances.empty()) { Vec3d rotation0 = model_object.instances.front()->get_rotation(); rotation0(2) = 0.; for (ModelInstance *model_instance : model_object.instances) if (model_instance->is_printable()) { instances.emplace_back( model_instance->id(), Point::new_scale(model_instance->get_offset(X), model_instance->get_offset(Y)), float(Geometry::rotation_diff_z(rotation0, model_instance->get_rotation()))); } } return instances; } SLAPrint::ApplyStatus SLAPrint::apply(const Model &model, DynamicPrintConfig config) { #ifdef _DEBUG check_model_ids_validity(model); #endif /* _DEBUG */ // Normalize the config. config.option("sla_print_settings_id", true); config.option("sla_material_settings_id", true); config.option("printer_settings_id", true); // Collect changes to print config. t_config_option_keys print_diff = m_print_config.diff(config); t_config_option_keys printer_diff = m_printer_config.diff(config); t_config_option_keys material_diff = m_material_config.diff(config); t_config_option_keys object_diff = m_default_object_config.diff(config); t_config_option_keys placeholder_parser_diff = m_placeholder_parser.config_diff(config); // Do not use the ApplyStatus as we will use the max function when updating apply_status. unsigned int apply_status = APPLY_STATUS_UNCHANGED; auto update_apply_status = [&apply_status](bool invalidated) { apply_status = std::max(apply_status, invalidated ? APPLY_STATUS_INVALIDATED : APPLY_STATUS_CHANGED); }; if (! (print_diff.empty() && printer_diff.empty() && material_diff.empty() && object_diff.empty())) update_apply_status(false); // Grab the lock for the Print / PrintObject milestones. tbb::mutex::scoped_lock lock(this->state_mutex()); // The following call may stop the background processing. bool invalidate_all_model_objects = false; if (! print_diff.empty()) update_apply_status(this->invalidate_state_by_config_options(print_diff, invalidate_all_model_objects)); if (! printer_diff.empty()) update_apply_status(this->invalidate_state_by_config_options(printer_diff, invalidate_all_model_objects)); if (! material_diff.empty()) update_apply_status(this->invalidate_state_by_config_options(material_diff, invalidate_all_model_objects)); // Apply variables to placeholder parser. The placeholder parser is currently used // only to generate the output file name. if (! placeholder_parser_diff.empty()) { // update_apply_status(this->invalidate_step(slapsRasterize)); m_placeholder_parser.apply_config(config); // Set the profile aliases for the PrintBase::output_filename() m_placeholder_parser.set("print_preset", config.option("sla_print_settings_id")->clone()); m_placeholder_parser.set("material_preset", config.option("sla_material_settings_id")->clone()); m_placeholder_parser.set("printer_preset", config.option("printer_settings_id")->clone()); } // It is also safe to change m_config now after this->invalidate_state_by_config_options() call. m_print_config.apply_only(config, print_diff, true); m_printer_config.apply_only(config, printer_diff, true); // Handle changes to material config. m_material_config.apply_only(config, material_diff, true); // Handle changes to object config defaults m_default_object_config.apply_only(config, object_diff, true); if (m_printer) m_printer->apply(m_printer_config); struct ModelObjectStatus { enum Status { Unknown, Old, New, Moved, Deleted, }; ModelObjectStatus(ObjectID id, Status status = Unknown) : id(id), status(status) {} ObjectID id; Status status; // Search by id. bool operator<(const ModelObjectStatus &rhs) const { return id < rhs.id; } }; std::set model_object_status; // 1) Synchronize model objects. if (model.id() != m_model.id() || invalidate_all_model_objects) { // Kill everything, initialize from scratch. // Stop background processing. this->call_cancel_callback(); update_apply_status(this->invalidate_all_steps()); for (SLAPrintObject *object : m_objects) { model_object_status.emplace(object->model_object()->id(), ModelObjectStatus::Deleted); update_apply_status(object->invalidate_all_steps()); delete object; } m_objects.clear(); m_model.assign_copy(model); for (const ModelObject *model_object : m_model.objects) model_object_status.emplace(model_object->id(), ModelObjectStatus::New); } else { if (model_object_list_equal(m_model, model)) { // The object list did not change. for (const ModelObject *model_object : m_model.objects) model_object_status.emplace(model_object->id(), ModelObjectStatus::Old); } else if (model_object_list_extended(m_model, model)) { // Add new objects. Their volumes and configs will be synchronized later. update_apply_status(this->invalidate_step(slapsMergeSlicesAndEval)); for (const ModelObject *model_object : m_model.objects) model_object_status.emplace(model_object->id(), ModelObjectStatus::Old); for (size_t i = m_model.objects.size(); i < model.objects.size(); ++ i) { model_object_status.emplace(model.objects[i]->id(), ModelObjectStatus::New); m_model.objects.emplace_back(ModelObject::new_copy(*model.objects[i])); m_model.objects.back()->set_model(&m_model); } } else { // Reorder the objects, add new objects. // First stop background processing before shuffling or deleting the PrintObjects in the object list. this->call_cancel_callback(); update_apply_status(this->invalidate_step(slapsMergeSlicesAndEval)); // Second create a new list of objects. std::vector model_objects_old(std::move(m_model.objects)); m_model.objects.clear(); m_model.objects.reserve(model.objects.size()); auto by_id_lower = [](const ModelObject *lhs, const ModelObject *rhs){ return lhs->id() < rhs->id(); }; std::sort(model_objects_old.begin(), model_objects_old.end(), by_id_lower); for (const ModelObject *mobj : model.objects) { auto it = std::lower_bound(model_objects_old.begin(), model_objects_old.end(), mobj, by_id_lower); if (it == model_objects_old.end() || (*it)->id() != mobj->id()) { // New ModelObject added. m_model.objects.emplace_back(ModelObject::new_copy(*mobj)); m_model.objects.back()->set_model(&m_model); model_object_status.emplace(mobj->id(), ModelObjectStatus::New); } else { // Existing ModelObject re-added (possibly moved in the list). m_model.objects.emplace_back(*it); model_object_status.emplace(mobj->id(), ModelObjectStatus::Moved); } } bool deleted_any = false; for (ModelObject *&model_object : model_objects_old) { if (model_object_status.find(ModelObjectStatus(model_object->id())) == model_object_status.end()) { model_object_status.emplace(model_object->id(), ModelObjectStatus::Deleted); deleted_any = true; } else // Do not delete this ModelObject instance. model_object = nullptr; } if (deleted_any) { // Delete PrintObjects of the deleted ModelObjects. std::vector print_objects_old = std::move(m_objects); m_objects.clear(); m_objects.reserve(print_objects_old.size()); for (SLAPrintObject *print_object : print_objects_old) { auto it_status = model_object_status.find(ModelObjectStatus(print_object->model_object()->id())); assert(it_status != model_object_status.end()); if (it_status->status == ModelObjectStatus::Deleted) { update_apply_status(print_object->invalidate_all_steps()); delete print_object; } else m_objects.emplace_back(print_object); } for (ModelObject *model_object : model_objects_old) delete model_object; } } } // 2) Map print objects including their transformation matrices. struct PrintObjectStatus { enum Status { Unknown, Deleted, Reused, New }; PrintObjectStatus(SLAPrintObject *print_object, Status status = Unknown) : id(print_object->model_object()->id()), print_object(print_object), trafo(print_object->trafo()), status(status) {} PrintObjectStatus(ObjectID id) : id(id), print_object(nullptr), trafo(Transform3d::Identity()), status(Unknown) {} // ID of the ModelObject & PrintObject ObjectID id; // Pointer to the old PrintObject SLAPrintObject *print_object; // Trafo generated with model_object->world_matrix(true) Transform3d trafo; Status status; // Search by id. bool operator<(const PrintObjectStatus &rhs) const { return id < rhs.id; } }; std::multiset print_object_status; for (SLAPrintObject *print_object : m_objects) print_object_status.emplace(PrintObjectStatus(print_object)); // 3) Synchronize ModelObjects & PrintObjects. std::vector print_objects_new; print_objects_new.reserve(std::max(m_objects.size(), m_model.objects.size())); bool new_objects = false; for (size_t idx_model_object = 0; idx_model_object < model.objects.size(); ++ idx_model_object) { ModelObject &model_object = *m_model.objects[idx_model_object]; auto it_status = model_object_status.find(ModelObjectStatus(model_object.id())); assert(it_status != model_object_status.end()); assert(it_status->status != ModelObjectStatus::Deleted); // PrintObject for this ModelObject, if it exists. auto it_print_object_status = print_object_status.end(); if (it_status->status != ModelObjectStatus::New) { // Update the ModelObject instance, possibly invalidate the linked PrintObjects. assert(it_status->status == ModelObjectStatus::Old || it_status->status == ModelObjectStatus::Moved); const ModelObject &model_object_new = *model.objects[idx_model_object]; it_print_object_status = print_object_status.lower_bound(PrintObjectStatus(model_object.id())); if (it_print_object_status != print_object_status.end() && it_print_object_status->id != model_object.id()) it_print_object_status = print_object_status.end(); // Check whether a model part volume was added or removed, their transformations or order changed. bool model_parts_differ = model_volume_list_changed(model_object, model_object_new, ModelVolumeType::MODEL_PART); bool sla_trafo_differs = model_object.instances.empty() != model_object_new.instances.empty() || (! model_object.instances.empty() && (! sla_trafo(model_object).isApprox(sla_trafo(model_object_new)) || model_object.instances.front()->is_left_handed() != model_object_new.instances.front()->is_left_handed())); if (model_parts_differ || sla_trafo_differs) { // The very first step (the slicing step) is invalidated. One may freely remove all associated PrintObjects. if (it_print_object_status != print_object_status.end()) { update_apply_status(it_print_object_status->print_object->invalidate_all_steps()); const_cast(*it_print_object_status).status = PrintObjectStatus::Deleted; } // Copy content of the ModelObject including its ID, do not change the parent. model_object.assign_copy(model_object_new); } else { // Synchronize Object's config. bool object_config_changed = ! model_object.config.timestamp_matches(model_object_new.config); if (object_config_changed) model_object.config.assign_config(model_object_new.config); if (! object_diff.empty() || object_config_changed) { SLAPrintObjectConfig new_config = m_default_object_config; new_config.apply(model_object.config.get(), true); if (it_print_object_status != print_object_status.end()) { t_config_option_keys diff = it_print_object_status->print_object->config().diff(new_config); if (! diff.empty()) { update_apply_status(it_print_object_status->print_object->invalidate_state_by_config_options(diff)); it_print_object_status->print_object->config_apply_only(new_config, diff, true); } } } bool old_user_modified = model_object.sla_points_status == sla::PointsStatus::UserModified; bool new_user_modified = model_object_new.sla_points_status == sla::PointsStatus::UserModified; if ((old_user_modified && ! new_user_modified) || // switching to automatic supports from manual supports (! old_user_modified && new_user_modified) || // switching to manual supports from automatic supports (new_user_modified && model_object.sla_support_points != model_object_new.sla_support_points)) { if (it_print_object_status != print_object_status.end()) update_apply_status(it_print_object_status->print_object->invalidate_step(slaposSupportPoints)); model_object.sla_support_points = model_object_new.sla_support_points; } model_object.sla_points_status = model_object_new.sla_points_status; // Invalidate hollowing if drain holes have changed if (model_object.sla_drain_holes != model_object_new.sla_drain_holes) { model_object.sla_drain_holes = model_object_new.sla_drain_holes; update_apply_status(it_print_object_status->print_object->invalidate_step(slaposDrillHoles)); } // Copy the ModelObject name, input_file and instances. The instances will compared against PrintObject instances in the next step. model_object.name = model_object_new.name; model_object.input_file = model_object_new.input_file; model_object.clear_instances(); model_object.instances.reserve(model_object_new.instances.size()); for (const ModelInstance *model_instance : model_object_new.instances) { model_object.instances.emplace_back(new ModelInstance(*model_instance)); model_object.instances.back()->set_model_object(&model_object); } } } std::vector new_instances = sla_instances(model_object); if (it_print_object_status != print_object_status.end() && it_print_object_status->status != PrintObjectStatus::Deleted) { // The SLAPrintObject is already there. if (new_instances.empty()) { const_cast(*it_print_object_status).status = PrintObjectStatus::Deleted; } else { if (new_instances != it_print_object_status->print_object->instances()) { // Instances changed. it_print_object_status->print_object->set_instances(new_instances); update_apply_status(this->invalidate_step(slapsMergeSlicesAndEval)); } print_objects_new.emplace_back(it_print_object_status->print_object); const_cast(*it_print_object_status).status = PrintObjectStatus::Reused; } } else if (! new_instances.empty()) { auto print_object = new SLAPrintObject(this, &model_object); // FIXME: this invalidates the transformed mesh in SLAPrintObject // which is expensive to calculate (especially the raw_mesh() call) print_object->set_trafo(sla_trafo(model_object), model_object.instances.front()->is_left_handed()); print_object->set_instances(std::move(new_instances)); print_object->config_apply(m_default_object_config, true); print_object->config_apply(model_object.config.get(), true); print_objects_new.emplace_back(print_object); new_objects = true; } } if (m_objects != print_objects_new) { this->call_cancel_callback(); update_apply_status(this->invalidate_all_steps()); m_objects = print_objects_new; // Delete the PrintObjects marked as Unknown or Deleted. for (auto &pos : print_object_status) if (pos.status == PrintObjectStatus::Unknown || pos.status == PrintObjectStatus::Deleted) { update_apply_status(pos.print_object->invalidate_all_steps()); delete pos.print_object; } if (new_objects) update_apply_status(false); } if(m_objects.empty()) { m_printer_input = {}; m_print_statistics = {}; } #ifdef _DEBUG check_model_ids_equal(m_model, model); #endif /* _DEBUG */ m_full_print_config = std::move(config); return static_cast(apply_status); } // After calling the apply() function, set_task() may be called to limit the task to be processed by process(). void SLAPrint::set_task(const TaskParams ¶ms) { // Grab the lock for the Print / PrintObject milestones. tbb::mutex::scoped_lock lock(this->state_mutex()); int n_object_steps = int(params.to_object_step) + 1; if (n_object_steps == 0) n_object_steps = int(slaposCount); if (params.single_model_object.valid()) { // Find the print object to be processed with priority. SLAPrintObject *print_object = nullptr; size_t idx_print_object = 0; for (; idx_print_object < m_objects.size(); ++ idx_print_object) if (m_objects[idx_print_object]->model_object()->id() == params.single_model_object) { print_object = m_objects[idx_print_object]; break; } assert(print_object != nullptr); // Find out whether the priority print object is being currently processed. bool running = false; for (int istep = 0; istep < n_object_steps; ++ istep) { if (! print_object->m_stepmask[size_t(istep)]) // Step was skipped, cancel. break; if (print_object->is_step_started_unguarded(SLAPrintObjectStep(istep))) { // No step was skipped, and a wanted step is being processed. Don't cancel. running = true; break; } } if (! running) this->call_cancel_callback(); // Now the background process is either stopped, or it is inside one of the print object steps to be calculated anyway. if (params.single_model_instance_only) { // Suppress all the steps of other instances. for (SLAPrintObject *po : m_objects) for (size_t istep = 0; istep < slaposCount; ++ istep) po->m_stepmask[istep] = false; } else if (! running) { // Swap the print objects, so that the selected print_object is first in the row. // At this point the background processing must be stopped, so it is safe to shuffle print objects. if (idx_print_object != 0) std::swap(m_objects.front(), m_objects[idx_print_object]); } // and set the steps for the current object. for (int istep = 0; istep < n_object_steps; ++ istep) print_object->m_stepmask[size_t(istep)] = true; for (int istep = n_object_steps; istep < int(slaposCount); ++ istep) print_object->m_stepmask[size_t(istep)] = false; } else { // Slicing all objects. bool running = false; for (SLAPrintObject *print_object : m_objects) for (int istep = 0; istep < n_object_steps; ++ istep) { if (! print_object->m_stepmask[size_t(istep)]) { // Step may have been skipped. Restart. goto loop_end; } if (print_object->is_step_started_unguarded(SLAPrintObjectStep(istep))) { // This step is running, and the state cannot be changed due to the this->state_mutex() being locked. // It is safe to manipulate m_stepmask of other SLAPrintObjects and SLAPrint now. running = true; goto loop_end; } } loop_end: if (! running) this->call_cancel_callback(); for (SLAPrintObject *po : m_objects) { for (int istep = 0; istep < n_object_steps; ++ istep) po->m_stepmask[size_t(istep)] = true; for (auto istep = size_t(n_object_steps); istep < slaposCount; ++ istep) po->m_stepmask[istep] = false; } } if (params.to_object_step != -1 || params.to_print_step != -1) { // Limit the print steps. size_t istep = (params.to_object_step != -1) ? 0 : size_t(params.to_print_step) + 1; for (; istep < m_stepmask.size(); ++ istep) m_stepmask[istep] = false; } } // Clean up after process() finished, either with success, error or if canceled. // The adjustments on the SLAPrint / SLAPrintObject data due to set_task() are to be reverted here. void SLAPrint::finalize() { for (SLAPrintObject *po : m_objects) for (size_t istep = 0; istep < slaposCount; ++ istep) po->m_stepmask[istep] = true; for (size_t istep = 0; istep < slapsCount; ++ istep) m_stepmask[istep] = true; } // Generate a recommended output file name based on the format template, default extension, and template parameters // (timestamps, object placeholders derived from the model, current placeholder prameters and print statistics. // Use the final print statistics if available, or just keep the print statistics placeholders if not available yet (before the output is finalized). std::string SLAPrint::output_filename(const std::string &filename_base) const { DynamicConfig config = this->finished() ? this->print_statistics().config() : this->print_statistics().placeholders(); return this->PrintBase::output_filename(m_print_config.output_filename_format.value, ".sl1", filename_base, &config); } std::string SLAPrint::validate() const { for(SLAPrintObject * po : m_objects) { const ModelObject *mo = po->model_object(); bool supports_en = po->config().supports_enable.getBool(); if(supports_en && mo->sla_points_status == sla::PointsStatus::UserModified && mo->sla_support_points.empty()) return L("Cannot proceed without support points! " "Add support points or disable support generation."); sla::SupportTreeConfig cfg = make_support_cfg(po->config()); double elv = cfg.object_elevation_mm; sla::PadConfig padcfg = make_pad_cfg(po->config()); sla::PadConfig::EmbedObject &builtinpad = padcfg.embed_object; if(supports_en && !builtinpad.enabled && elv < cfg.head_fullwidth()) return L( "Elevation is too low for object. Use the \"Pad around " "object\" feature to print the object without elevation."); if(supports_en && builtinpad.enabled && cfg.pillar_base_safety_distance_mm < builtinpad.object_gap_mm) { return L( "The endings of the support pillars will be deployed on the " "gap between the object and the pad. 'Support base safety " "distance' has to be greater than the 'Pad object gap' " "parameter to avoid this."); } std::string pval = padcfg.validate(); if (!pval.empty()) return pval; } double expt_max = m_printer_config.max_exposure_time.getFloat(); double expt_min = m_printer_config.min_exposure_time.getFloat(); double expt_cur = m_material_config.exposure_time.getFloat(); if (expt_cur < expt_min || expt_cur > expt_max) return L("Exposition time is out of printer profile bounds."); double iexpt_max = m_printer_config.max_initial_exposure_time.getFloat(); double iexpt_min = m_printer_config.min_initial_exposure_time.getFloat(); double iexpt_cur = m_material_config.initial_exposure_time.getFloat(); if (iexpt_cur < iexpt_min || iexpt_cur > iexpt_max) return L("Initial exposition time is out of printer profile bounds."); return ""; } void SLAPrint::set_printer(SLAPrinter *arch) { invalidate_step(slapsRasterize); m_printer = arch; } bool SLAPrint::invalidate_step(SLAPrintStep step) { bool invalidated = Inherited::invalidate_step(step); // propagate to dependent steps if (step == slapsMergeSlicesAndEval) { invalidated |= this->invalidate_all_steps(); } return invalidated; } void SLAPrint::process() { if(m_objects.empty()) return; // Assumption: at this point the print objects should be populated only with // the model objects we have to process and the instances are also filtered Steps printsteps(this); // We want to first process all objects... std::vector level1_obj_steps = { slaposHollowing, slaposDrillHoles, slaposObjectSlice, slaposSupportPoints, slaposSupportTree, slaposPad }; // and then slice all supports to allow preview to be displayed ASAP std::vector level2_obj_steps = { slaposSliceSupports }; SLAPrintStep print_steps[] = { slapsMergeSlicesAndEval, slapsRasterize }; double st = Steps::min_objstatus; BOOST_LOG_TRIVIAL(info) << "Start slicing process."; #ifdef SLAPRINT_DO_BENCHMARK Benchmark bench; #else struct { void start() {} void stop() {} double getElapsedSec() { return .0; } } bench; #endif std::array step_times {}; auto apply_steps_on_objects = [this, &st, &printsteps, &step_times, &bench] (const std::vector &steps) { double incr = 0; for (SLAPrintObject *po : m_objects) { for (SLAPrintObjectStep step : steps) { // Cancellation checking. Each step will check for // cancellation on its own and return earlier gracefully. // Just after it returns execution gets to this point and // throws the canceled signal. throw_if_canceled(); st += incr; if (po->m_stepmask[step] && po->set_started(step)) { m_report_status(*this, st, printsteps.label(step)); bench.start(); printsteps.execute(step, *po); bench.stop(); step_times[step] += bench.getElapsedSec(); throw_if_canceled(); po->set_done(step); } incr = printsteps.progressrange(step); } } }; apply_steps_on_objects(level1_obj_steps); apply_steps_on_objects(level2_obj_steps); // this would disable the rasterization step // std::fill(m_stepmask.begin(), m_stepmask.end(), false); st = Steps::max_objstatus; for(SLAPrintStep currentstep : print_steps) { throw_if_canceled(); if (m_stepmask[currentstep] && set_started(currentstep)) { m_report_status(*this, st, printsteps.label(currentstep)); bench.start(); printsteps.execute(currentstep); bench.stop(); step_times[slaposCount + currentstep] += bench.getElapsedSec(); throw_if_canceled(); set_done(currentstep); } st += printsteps.progressrange(currentstep); } // If everything vent well m_report_status(*this, 100, L("Slicing done")); #ifdef SLAPRINT_DO_BENCHMARK std::string csvbenchstr; for (size_t i = 0; i < size_t(slaposCount); ++i) csvbenchstr += printsteps.label(SLAPrintObjectStep(i)) + ";"; for (size_t i = 0; i < size_t(slapsCount); ++i) csvbenchstr += printsteps.label(SLAPrintStep(i)) + ";"; csvbenchstr += "\n"; for (double t : step_times) csvbenchstr += std::to_string(t) + ";"; std::cout << "Performance stats: \n" << csvbenchstr << std::endl; #endif } bool SLAPrint::invalidate_state_by_config_options(const std::vector &opt_keys, bool &invalidate_all_model_objects) { if (opt_keys.empty()) return false; static std::unordered_set steps_full = { "initial_layer_height", "material_correction", "relative_correction", "absolute_correction", "elefant_foot_compensation", "elefant_foot_min_width", "gamma_correction" }; // Cache the plenty of parameters, which influence the final rasterization only, // or they are only notes not influencing the rasterization step. static std::unordered_set steps_rasterize = { "min_exposure_time", "max_exposure_time", "exposure_time", "min_initial_exposure_time", "max_initial_exposure_time", "initial_exposure_time", "display_width", "display_height", "display_pixels_x", "display_pixels_y", "display_mirror_x", "display_mirror_y", "display_orientation" }; static std::unordered_set steps_ignore = { "bed_shape", "max_print_height", "printer_technology", "output_filename_format", "fast_tilt_time", "slow_tilt_time", "area_fill", "bottle_cost", "bottle_volume", "bottle_weight", "material_density" }; std::vector steps; std::vector osteps; bool invalidated = false; for (const t_config_option_key &opt_key : opt_keys) { if (steps_rasterize.find(opt_key) != steps_rasterize.end()) { // These options only affect the final rasterization, or they are just notes without influence on the output, // so there is nothing to invalidate. steps.emplace_back(slapsMergeSlicesAndEval); } else if (steps_ignore.find(opt_key) != steps_ignore.end()) { // These steps have no influence on the output. Just ignore them. } else if (steps_full.find(opt_key) != steps_full.end()) { steps.emplace_back(slapsMergeSlicesAndEval); osteps.emplace_back(slaposObjectSlice); invalidate_all_model_objects = true; } else { // All values should be covered. assert(false); } } sort_remove_duplicates(steps); for (SLAPrintStep step : steps) invalidated |= this->invalidate_step(step); sort_remove_duplicates(osteps); for (SLAPrintObjectStep ostep : osteps) for (SLAPrintObject *object : m_objects) invalidated |= object->invalidate_step(ostep); return invalidated; } // Returns true if an object step is done on all objects and there's at least one object. bool SLAPrint::is_step_done(SLAPrintObjectStep step) const { if (m_objects.empty()) return false; tbb::mutex::scoped_lock lock(this->state_mutex()); for (const SLAPrintObject *object : m_objects) if (! object->is_step_done_unguarded(step)) return false; return true; } SLAPrintObject::SLAPrintObject(SLAPrint *print, ModelObject *model_object) : Inherited(print, model_object) , m_stepmask(slaposCount, true) , m_transformed_rmesh([this](TriangleMesh &obj) { obj = m_model_object->raw_mesh(); if (!obj.empty()) { obj.transform(m_trafo); obj.require_shared_vertices(); } }) {} SLAPrintObject::~SLAPrintObject() {} // Called by SLAPrint::apply(). // This method only accepts SLAPrintObjectConfig option keys. bool SLAPrintObject::invalidate_state_by_config_options(const std::vector &opt_keys) { if (opt_keys.empty()) return false; std::vector steps; bool invalidated = false; for (const t_config_option_key &opt_key : opt_keys) { if ( opt_key == "hollowing_enable" || opt_key == "hollowing_min_thickness" || opt_key == "hollowing_quality" || opt_key == "hollowing_closing_distance" ) { steps.emplace_back(slaposHollowing); } else if ( opt_key == "layer_height" || opt_key == "faded_layers" || opt_key == "pad_enable" || opt_key == "pad_wall_thickness" || opt_key == "supports_enable" || opt_key == "support_object_elevation" || opt_key == "pad_around_object" || opt_key == "pad_around_object_everywhere" || opt_key == "slice_closing_radius") { steps.emplace_back(slaposObjectSlice); } else if ( opt_key == "support_points_density_relative" || opt_key == "support_points_minimal_distance") { steps.emplace_back(slaposSupportPoints); } else if ( opt_key == "support_head_front_diameter" || opt_key == "support_head_penetration" || opt_key == "support_head_width" || opt_key == "support_pillar_diameter" || opt_key == "support_small_pillar_diameter_percent" || opt_key == "support_max_bridges_on_pillar" || opt_key == "support_pillar_connection_mode" || opt_key == "support_buildplate_only" || opt_key == "support_base_diameter" || opt_key == "support_base_height" || opt_key == "support_critical_angle" || opt_key == "support_max_bridge_length" || opt_key == "support_max_pillar_link_distance" || opt_key == "support_base_safety_distance" ) { steps.emplace_back(slaposSupportTree); } else if ( opt_key == "pad_wall_height" || opt_key == "pad_brim_size" || opt_key == "pad_max_merge_distance" || opt_key == "pad_wall_slope" || opt_key == "pad_edge_radius" || opt_key == "pad_object_gap" || opt_key == "pad_object_connector_stride" || opt_key == "pad_object_connector_width" || opt_key == "pad_object_connector_penetration" ) { steps.emplace_back(slaposPad); } else { // All keys should be covered. assert(false); } } sort_remove_duplicates(steps); for (SLAPrintObjectStep step : steps) invalidated |= this->invalidate_step(step); return invalidated; } bool SLAPrintObject::invalidate_step(SLAPrintObjectStep step) { bool invalidated = Inherited::invalidate_step(step); // propagate to dependent steps if (step == slaposHollowing) { invalidated |= this->invalidate_all_steps(); } else if (step == slaposDrillHoles) { invalidated |= this->invalidate_steps({ slaposObjectSlice, slaposSupportPoints, slaposSupportTree, slaposPad, slaposSliceSupports }); invalidated |= m_print->invalidate_step(slapsMergeSlicesAndEval); } else if (step == slaposObjectSlice) { invalidated |= this->invalidate_steps({ slaposSupportPoints, slaposSupportTree, slaposPad, slaposSliceSupports }); invalidated |= m_print->invalidate_step(slapsMergeSlicesAndEval); } else if (step == slaposSupportPoints) { invalidated |= this->invalidate_steps({ slaposSupportTree, slaposPad, slaposSliceSupports }); invalidated |= m_print->invalidate_step(slapsMergeSlicesAndEval); } else if (step == slaposSupportTree) { invalidated |= this->invalidate_steps({ slaposPad, slaposSliceSupports }); invalidated |= m_print->invalidate_step(slapsMergeSlicesAndEval); } else if (step == slaposPad) { invalidated |= this->invalidate_steps({slaposSliceSupports}); invalidated |= m_print->invalidate_step(slapsMergeSlicesAndEval); } else if (step == slaposSliceSupports) { invalidated |= m_print->invalidate_step(slapsMergeSlicesAndEval); } return invalidated; } bool SLAPrintObject::invalidate_all_steps() { return Inherited::invalidate_all_steps() | m_print->invalidate_all_steps(); } double SLAPrintObject::get_elevation() const { if (is_zero_elevation(m_config)) return 0.; bool en = m_config.supports_enable.getBool(); double ret = en ? m_config.support_object_elevation.getFloat() : 0.; if(m_config.pad_enable.getBool()) { // Normally the elevation for the pad itself would be the thickness of // its walls but currently it is half of its thickness. Whatever it // will be in the future, we provide the config to the get_pad_elevation // method and we will have the correct value sla::PadConfig pcfg = make_pad_cfg(m_config); if(!pcfg.embed_object) ret += pcfg.required_elevation(); } return ret; } double SLAPrintObject::get_current_elevation() const { if (is_zero_elevation(m_config)) return 0.; bool has_supports = is_step_done(slaposSupportTree); bool has_pad = is_step_done(slaposPad); if(!has_supports && !has_pad) return 0; else if(has_supports && !has_pad) { return m_config.support_object_elevation.getFloat(); } return get_elevation(); } Vec3d SLAPrint::relative_correction() const { Vec3d corr(1., 1., 1.); if(printer_config().relative_correction.values.size() >= 2) { corr(X) = printer_config().relative_correction.values[0]; corr(Y) = printer_config().relative_correction.values[0]; corr(Z) = printer_config().relative_correction.values.back(); } if(material_config().material_correction.values.size() >= 2) { corr(X) *= material_config().material_correction.values[0]; corr(Y) *= material_config().material_correction.values[0]; corr(Z) *= material_config().material_correction.values.back(); } return corr; } namespace { // dummy empty static containers for return values in some methods const std::vector EMPTY_SLICES; const TriangleMesh EMPTY_MESH; const ExPolygons EMPTY_SLICE; const std::vector EMPTY_SUPPORT_POINTS; } const SliceRecord SliceRecord::EMPTY(0, std::nanf(""), 0.f); const std::vector& SLAPrintObject::get_support_points() const { return m_supportdata? m_supportdata->pts : EMPTY_SUPPORT_POINTS; } const std::vector &SLAPrintObject::get_support_slices() const { // assert(is_step_done(slaposSliceSupports)); if (!m_supportdata) return EMPTY_SLICES; return m_supportdata->support_slices; } const ExPolygons &SliceRecord::get_slice(SliceOrigin o) const { size_t idx = o == soModel ? m_model_slices_idx : m_support_slices_idx; if(m_po == nullptr) return EMPTY_SLICE; const std::vector& v = o == soModel? m_po->get_model_slices() : m_po->get_support_slices(); return idx >= v.size() ? EMPTY_SLICE : v[idx]; } bool SLAPrintObject::has_mesh(SLAPrintObjectStep step) const { switch (step) { case slaposDrillHoles: return m_hollowing_data && !m_hollowing_data->hollow_mesh_with_holes.empty(); case slaposSupportTree: return ! this->support_mesh().empty(); case slaposPad: return ! this->pad_mesh().empty(); default: return false; } } TriangleMesh SLAPrintObject::get_mesh(SLAPrintObjectStep step) const { switch (step) { case slaposSupportTree: return this->support_mesh(); case slaposPad: return this->pad_mesh(); case slaposDrillHoles: if (m_hollowing_data) return m_hollowing_data->hollow_mesh_with_holes; [[fallthrough]]; default: return TriangleMesh(); } } const TriangleMesh& SLAPrintObject::support_mesh() const { sla::SupportTree::UPtr &stree = m_supportdata->support_tree_ptr; if(m_config.supports_enable.getBool() && m_supportdata && stree) return stree->retrieve_mesh(sla::MeshType::Support); return EMPTY_MESH; } const TriangleMesh& SLAPrintObject::pad_mesh() const { sla::SupportTree::UPtr &stree = m_supportdata->support_tree_ptr; if(m_config.pad_enable.getBool() && m_supportdata && stree) return stree->retrieve_mesh(sla::MeshType::Pad); return EMPTY_MESH; } const TriangleMesh &SLAPrintObject::hollowed_interior_mesh() const { if (m_hollowing_data && m_config.hollowing_enable.getBool()) return m_hollowing_data->interior; return EMPTY_MESH; } const TriangleMesh &SLAPrintObject::transformed_mesh() const { // we need to transform the raw mesh... // currently all the instances share the same x and y rotation and scaling // so we have to extract those from e.g. the first instance and apply to the // raw mesh. This is also true for the support points. // BUT: when the support structure is spawned for each instance than it has // to omit the X, Y rotation and scaling as those have been already applied // or apply an inverse transformation on the support structure after it // has been created. return m_transformed_rmesh.get(); } sla::SupportPoints SLAPrintObject::transformed_support_points() const { assert(m_model_object != nullptr); auto spts = m_model_object->sla_support_points; auto tr = trafo().cast(); for (sla::SupportPoint& suppt : spts) { suppt.pos = tr * suppt.pos; } return spts; } sla::DrainHoles SLAPrintObject::transformed_drainhole_points() const { assert(m_model_object != nullptr); auto pts = m_model_object->sla_drain_holes; auto tr = trafo().cast(); auto sc = m_model_object->instances.front()->get_scaling_factor().cast(); for (sla::DrainHole &hl : pts) { hl.pos = tr * hl.pos; hl.normal = tr * hl.normal - tr.translation(); // The normal scales as a covector (and we must also // undo the damage already done). hl.normal = Vec3f(hl.normal(0)/(sc(0)*sc(0)), hl.normal(1)/(sc(1)*sc(1)), hl.normal(2)/(sc(2)*sc(2))); // Now shift the hole a bit above the object and make it deeper to // compensate for it. This is to avoid problems when the hole is placed // on (nearly) flat surface. hl.pos -= hl.normal.normalized() * sla::HoleStickOutLength; hl.height += sla::HoleStickOutLength; } return pts; } DynamicConfig SLAPrintStatistics::config() const { DynamicConfig config; const std::string print_time = Slic3r::short_time(get_time_dhms(float(this->estimated_print_time))); config.set_key_value("print_time", new ConfigOptionString(print_time)); config.set_key_value("objects_used_material", new ConfigOptionFloat(this->objects_used_material)); config.set_key_value("support_used_material", new ConfigOptionFloat(this->support_used_material)); config.set_key_value("total_cost", new ConfigOptionFloat(this->total_cost)); config.set_key_value("total_weight", new ConfigOptionFloat(this->total_weight)); return config; } DynamicConfig SLAPrintStatistics::placeholders() { DynamicConfig config; for (const std::string &key : { "print_time", "total_cost", "total_weight", "objects_used_material", "support_used_material" }) config.set_key_value(key, new ConfigOptionString(std::string("{") + key + "}")); return config; } std::string SLAPrintStatistics::finalize_output_path(const std::string &path_in) const { std::string final_path; try { boost::filesystem::path path(path_in); DynamicConfig cfg = this->config(); PlaceholderParser pp; std::string new_stem = pp.process(path.stem().string(), 0, &cfg); final_path = (path.parent_path() / (new_stem + path.extension().string())).string(); } catch (const std::exception &ex) { BOOST_LOG_TRIVIAL(error) << "Failed to apply the print statistics to the export file name: " << ex.what(); final_path = path_in; } return final_path; } void SLAPrint::StatusReporter::operator()(SLAPrint & p, double st, const std::string &msg, unsigned flags, const std::string &logmsg) { m_st = st; BOOST_LOG_TRIVIAL(info) << st << "% " << msg << (logmsg.empty() ? "" : ": ") << logmsg << log_memory_info(); p.set_status(int(std::round(st)), msg, flags); } } // namespace Slic3r