#include "Model.hpp" #include "Print.hpp" #include namespace Slic3r { // Add or remove support modifier ModelVolumes from model_object_dst to match the ModelVolumes of model_object_new // in the exact order and with the same IDs. // It is expected, that the model_object_dst already contains the non-support volumes of model_object_new in the correct order. // Friend to ModelVolume to allow copying. // static is not accepted by gcc if declared as a friend of ModelObject. /* static */ void model_volume_list_update_supports(ModelObject &model_object_dst, const ModelObject &model_object_new) { typedef std::pair ModelVolumeWithStatus; std::vector old_volumes; old_volumes.reserve(model_object_dst.volumes.size()); for (const ModelVolume *model_volume : model_object_dst.volumes) old_volumes.emplace_back(ModelVolumeWithStatus(model_volume, false)); auto model_volume_lower = [](const ModelVolumeWithStatus &mv1, const ModelVolumeWithStatus &mv2){ return mv1.first->id() < mv2.first->id(); }; auto model_volume_equal = [](const ModelVolumeWithStatus &mv1, const ModelVolumeWithStatus &mv2){ return mv1.first->id() == mv2.first->id(); }; std::sort(old_volumes.begin(), old_volumes.end(), model_volume_lower); model_object_dst.volumes.clear(); model_object_dst.volumes.reserve(model_object_new.volumes.size()); for (const ModelVolume *model_volume_src : model_object_new.volumes) { ModelVolumeWithStatus key(model_volume_src, false); auto it = std::lower_bound(old_volumes.begin(), old_volumes.end(), key, model_volume_lower); if (it != old_volumes.end() && model_volume_equal(*it, key)) { // The volume was found in the old list. Just copy it. assert(! it->second); // not consumed yet it->second = true; ModelVolume *model_volume_dst = const_cast(it->first); // For support modifiers, the type may have been switched from blocker to enforcer and vice versa. assert((model_volume_dst->is_support_modifier() && model_volume_src->is_support_modifier()) || model_volume_dst->type() == model_volume_src->type()); model_object_dst.volumes.emplace_back(model_volume_dst); if (model_volume_dst->is_support_modifier()) { // For support modifiers, the type may have been switched from blocker to enforcer and vice versa. model_volume_dst->set_type(model_volume_src->type()); model_volume_dst->set_transformation(model_volume_src->get_transformation()); } assert(model_volume_dst->get_matrix().isApprox(model_volume_src->get_matrix())); } else { // The volume was not found in the old list. Create a new copy. assert(model_volume_src->is_support_modifier()); model_object_dst.volumes.emplace_back(new ModelVolume(*model_volume_src)); model_object_dst.volumes.back()->set_model_object(&model_object_dst); } } // Release the non-consumed old volumes (those were deleted from the new list). for (ModelVolumeWithStatus &mv_with_status : old_volumes) if (! mv_with_status.second) delete mv_with_status.first; } static inline void model_volume_list_copy_configs(ModelObject &model_object_dst, const ModelObject &model_object_src, const ModelVolumeType type) { size_t i_src, i_dst; for (i_src = 0, i_dst = 0; i_src < model_object_src.volumes.size() && i_dst < model_object_dst.volumes.size();) { const ModelVolume &mv_src = *model_object_src.volumes[i_src]; ModelVolume &mv_dst = *model_object_dst.volumes[i_dst]; if (mv_src.type() != type) { ++ i_src; continue; } if (mv_dst.type() != type) { ++ i_dst; continue; } assert(mv_src.id() == mv_dst.id()); // Copy the ModelVolume data. mv_dst.name = mv_src.name; mv_dst.config.assign_config(mv_src.config); assert(mv_dst.supported_facets.id() == mv_src.supported_facets.id()); mv_dst.supported_facets.assign(mv_src.supported_facets); assert(mv_dst.seam_facets.id() == mv_src.seam_facets.id()); mv_dst.seam_facets.assign(mv_src.seam_facets); assert(mv_dst.mmu_segmentation_facets.id() == mv_src.mmu_segmentation_facets.id()); mv_dst.mmu_segmentation_facets.assign(mv_src.mmu_segmentation_facets); //FIXME what to do with the materials? // mv_dst.m_material_id = mv_src.m_material_id; ++ i_src; ++ i_dst; } } static inline void layer_height_ranges_copy_configs(t_layer_config_ranges &lr_dst, const t_layer_config_ranges &lr_src) { assert(lr_dst.size() == lr_src.size()); auto it_src = lr_src.cbegin(); for (auto &kvp_dst : lr_dst) { const auto &kvp_src = *it_src ++; assert(std::abs(kvp_dst.first.first - kvp_src.first.first ) <= EPSILON); assert(std::abs(kvp_dst.first.second - kvp_src.first.second) <= EPSILON); // Layer heights are allowed do differ in case the layer height table is being overriden by the smooth profile. // assert(std::abs(kvp_dst.second.option("layer_height")->getFloat() - kvp_src.second.option("layer_height")->getFloat()) <= EPSILON); kvp_dst.second = kvp_src.second; } } static inline bool transform3d_lower(const Transform3d &lhs, const Transform3d &rhs) { typedef Transform3d::Scalar T; const T *lv = lhs.data(); const T *rv = rhs.data(); for (size_t i = 0; i < 16; ++ i, ++ lv, ++ rv) { if (*lv < *rv) return true; else if (*lv > *rv) return false; } return false; } static inline bool transform3d_equal(const Transform3d &lhs, const Transform3d &rhs) { typedef Transform3d::Scalar T; const T *lv = lhs.data(); const T *rv = rhs.data(); for (size_t i = 0; i < 16; ++ i, ++ lv, ++ rv) if (*lv != *rv) return false; return true; } struct PrintObjectTrafoAndInstances { Transform3d trafo; PrintInstances instances; bool operator<(const PrintObjectTrafoAndInstances &rhs) const { return transform3d_lower(this->trafo, rhs.trafo); } }; // Generate a list of trafos and XY offsets for instances of a ModelObject static std::vector print_objects_from_model_object(const ModelObject &model_object) { std::set trafos; PrintObjectTrafoAndInstances trafo; for (ModelInstance *model_instance : model_object.instances) if (model_instance->is_printable()) { trafo.trafo = model_instance->get_matrix(); auto shift = Point::new_scale(trafo.trafo.data()[12], trafo.trafo.data()[13]); // Reset the XY axes of the transformation. trafo.trafo.data()[12] = 0; trafo.trafo.data()[13] = 0; // Search or insert a trafo. auto it = trafos.emplace(trafo).first; const_cast(*it).instances.emplace_back(PrintInstance{ nullptr, model_instance, shift }); } return std::vector(trafos.begin(), trafos.end()); } // Compare just the layer ranges and their layer heights, not the associated configs. // Ignore the layer heights if check_layer_heights is false. static bool layer_height_ranges_equal(const t_layer_config_ranges &lr1, const t_layer_config_ranges &lr2, bool check_layer_height) { if (lr1.size() != lr2.size()) return false; auto it2 = lr2.begin(); for (const auto &kvp1 : lr1) { const auto &kvp2 = *it2 ++; if (std::abs(kvp1.first.first - kvp2.first.first ) > EPSILON || std::abs(kvp1.first.second - kvp2.first.second) > EPSILON || (check_layer_height && std::abs(kvp1.second.option("layer_height")->getFloat() - kvp2.second.option("layer_height")->getFloat()) > EPSILON)) return false; } return true; } // Returns true if va == vb when all CustomGCode items that are not ToolChangeCode are ignored. static bool custom_per_printz_gcodes_tool_changes_differ(const std::vector &va, const std::vector &vb) { auto it_a = va.begin(); auto it_b = vb.begin(); while (it_a != va.end() || it_b != vb.end()) { if (it_a != va.end() && it_a->type != CustomGCode::ToolChange) { // Skip any CustomGCode items, which are not tool changes. ++ it_a; continue; } if (it_b != vb.end() && it_b->type != CustomGCode::ToolChange) { // Skip any CustomGCode items, which are not tool changes. ++ it_b; continue; } if (it_a == va.end() || it_b == vb.end()) // va or vb contains more Tool Changes than the other. return true; assert(it_a->type == CustomGCode::ToolChange); assert(it_b->type == CustomGCode::ToolChange); if (*it_a != *it_b) // The two Tool Changes differ. return true; ++ it_a; ++ it_b; } // There is no change in custom Tool Changes. return false; } // Collect changes to print config, account for overrides of extruder retract values by filament presets. static t_config_option_keys print_config_diffs( const PrintConfig ¤t_config, const DynamicPrintConfig &new_full_config, DynamicPrintConfig &filament_overrides) { const std::vector &extruder_retract_keys = print_config_def.extruder_retract_keys(); const std::string filament_prefix = "filament_"; t_config_option_keys print_diff; for (const t_config_option_key &opt_key : current_config.keys()) { const ConfigOption *opt_old = current_config.option(opt_key); assert(opt_old != nullptr); const ConfigOption *opt_new = new_full_config.option(opt_key); // assert(opt_new != nullptr); if (opt_new == nullptr) //FIXME This may happen when executing some test cases. continue; const ConfigOption *opt_new_filament = std::binary_search(extruder_retract_keys.begin(), extruder_retract_keys.end(), opt_key) ? new_full_config.option(filament_prefix + opt_key) : nullptr; if (opt_new_filament != nullptr && ! opt_new_filament->is_nil()) { // An extruder retract override is available at some of the filament presets. if (*opt_old != *opt_new || opt_new->overriden_by(opt_new_filament)) { auto opt_copy = opt_new->clone(); opt_copy->apply_override(opt_new_filament); if (*opt_old == *opt_copy) delete opt_copy; else { filament_overrides.set_key_value(opt_key, opt_copy); print_diff.emplace_back(opt_key); } } } else if (*opt_new != *opt_old) print_diff.emplace_back(opt_key); } return print_diff; } // Prepare for storing of the full print config into new_full_config to be exported into the G-code and to be used by the PlaceholderParser. static t_config_option_keys full_print_config_diffs(const DynamicPrintConfig ¤t_full_config, const DynamicPrintConfig &new_full_config) { t_config_option_keys full_config_diff; for (const t_config_option_key &opt_key : new_full_config.keys()) { const ConfigOption *opt_old = current_full_config.option(opt_key); const ConfigOption *opt_new = new_full_config.option(opt_key); if (opt_old == nullptr || *opt_new != *opt_old) full_config_diff.emplace_back(opt_key); } return full_config_diff; } // Repository for solving partial overlaps of ModelObject::layer_config_ranges. // Here the const DynamicPrintConfig* point to the config in ModelObject::layer_config_ranges. class LayerRanges { public: struct LayerRange { t_layer_height_range layer_height_range; // Config is owned by the associated ModelObject. const DynamicPrintConfig* config { nullptr }; bool operator<(const LayerRange &rhs) const throw() { return this->layer_height_range < rhs.layer_height_range; } }; LayerRanges() = default; LayerRanges(const t_layer_config_ranges &in) { this->assign(in); } // Convert input config ranges into continuous non-overlapping sorted vector of intervals and their configs. void assign(const t_layer_config_ranges &in) { m_ranges.clear(); m_ranges.reserve(in.size()); // Input ranges are sorted lexicographically. First range trims the other ranges. coordf_t last_z = 0; for (const std::pair &range : in) if (range.first.second > last_z) { coordf_t min_z = std::max(range.first.first, 0.); if (min_z > last_z + EPSILON) { m_ranges.push_back({ t_layer_height_range(last_z, min_z) }); last_z = min_z; } if (range.first.second > last_z + EPSILON) { const DynamicPrintConfig *cfg = &range.second.get(); m_ranges.push_back({ t_layer_height_range(last_z, range.first.second), cfg }); last_z = range.first.second; } } if (m_ranges.empty()) m_ranges.push_back({ t_layer_height_range(0, DBL_MAX) }); else if (m_ranges.back().config == nullptr) m_ranges.back().layer_height_range.second = DBL_MAX; else m_ranges.push_back({ t_layer_height_range(m_ranges.back().layer_height_range.second, DBL_MAX) }); } const DynamicPrintConfig* config(const t_layer_height_range &range) const { auto it = std::lower_bound(m_ranges.begin(), m_ranges.end(), LayerRange{ { range.first - EPSILON, range.second - EPSILON } }); // #ys_FIXME_COLOR // assert(it != m_ranges.end()); // assert(it == m_ranges.end() || std::abs(it->first.first - range.first ) < EPSILON); // assert(it == m_ranges.end() || std::abs(it->first.second - range.second) < EPSILON); if (it == m_ranges.end() || std::abs(it->layer_height_range.first - range.first) > EPSILON || std::abs(it->layer_height_range.second - range.second) > EPSILON ) return nullptr; // desired range doesn't found return it == m_ranges.end() ? nullptr : it->config; } std::vector::const_iterator begin() const { return m_ranges.cbegin(); } std::vector::const_iterator end () const { return m_ranges.cend(); } size_t size () const { return m_ranges.size(); } private: // Layer ranges with their config overrides and list of volumes with their snug bounding boxes in a given layer range. std::vector m_ranges; }; // To track Model / ModelObject updates between the front end and back end, including layer height ranges, their configs, // and snug bounding boxes of ModelVolumes. struct ModelObjectStatus { enum Status { Unknown, Old, New, Moved, Deleted, }; enum class PrintObjectRegionsStatus { Invalid, Valid, PartiallyValid, }; ModelObjectStatus(ObjectID id, Status status = Unknown) : id(id), status(status) {} ~ModelObjectStatus() { if (print_object_regions) print_object_regions->ref_cnt_dec(); } // Key of the set. ObjectID id; // Status of this ModelObject with id on apply(). Status status; // PrintObjects to be generated for this ModelObject including their base transformation. std::vector print_instances; // Regions shared by the associated PrintObjects. PrintObjectRegions *print_object_regions { nullptr }; // Status of the above. PrintObjectRegionsStatus print_object_regions_status { PrintObjectRegionsStatus::Invalid }; // Search by id. bool operator<(const ModelObjectStatus &rhs) const { return id < rhs.id; } }; struct ModelObjectStatusDB { void add(const ModelObject &model_object, const ModelObjectStatus::Status status) { assert(db.find(ModelObjectStatus(model_object.id())) == db.end()); db.emplace(model_object.id(), status); } bool add_if_new(const ModelObject &model_object, const ModelObjectStatus::Status status) { auto it = db.find(ModelObjectStatus(model_object.id())); if (it == db.end()) { db.emplace_hint(it, model_object.id(), status); return true; } return false; } const ModelObjectStatus& get(const ModelObject &model_object) { auto it = db.find(ModelObjectStatus(model_object.id())); assert(it != db.end()); return *it; } const ModelObjectStatus& reuse(const ModelObject &model_object) { const ModelObjectStatus &result = this->get(model_object); assert(result.status != ModelObjectStatus::Deleted); return result; } std::set db; }; struct PrintObjectStatus { enum Status { Unknown, Deleted, Reused, New }; PrintObjectStatus(PrintObject *print_object, Status status = Unknown) : id(print_object->model_object()->id()), print_object(print_object), trafo(print_object->trafo()), status(status) {} PrintObjectStatus(ObjectID id) : id(id), print_object(nullptr), trafo(Transform3d::Identity()), status(Unknown) {} // ID of the ModelObject & PrintObject ObjectID id; // Pointer to the old PrintObject PrintObject *print_object; // Trafo generated with model_object->world_matrix(true) Transform3d trafo; Status status; // Search by id. bool operator<(const PrintObjectStatus &rhs) const { return id < rhs.id; } }; class PrintObjectStatusDB { public: using iterator = std::multiset::iterator; using const_iterator = std::multiset::const_iterator; PrintObjectStatusDB(const PrintObjectPtrs &print_objects) { for (PrintObject *print_object : print_objects) m_db.emplace(PrintObjectStatus(print_object)); } struct iterator_range : std::pair { using std::pair::pair; iterator_range(const std::pair in) : std::pair(in) {} const_iterator begin() throw() { return this->first; } const_iterator end() throw() { return this->second; } }; iterator_range get_range(const ModelObject &model_object) const { return m_db.equal_range(PrintObjectStatus(model_object.id())); } iterator_range get_range(const ModelObjectStatus &model_object_status) const { return m_db.equal_range(PrintObjectStatus(model_object_status.id)); } size_t count(const ModelObject &model_object) { return m_db.count(PrintObjectStatus(model_object.id())); } std::multiset::iterator begin() { return m_db.begin(); } std::multiset::iterator end() { return m_db.end(); } void clear() { m_db.clear(); } private: std::multiset m_db; }; static inline bool model_volume_solid_or_modifier(const ModelVolume &mv) { ModelVolumeType type = mv.type(); return type == ModelVolumeType::MODEL_PART || type == ModelVolumeType::NEGATIVE_VOLUME || type == ModelVolumeType::PARAMETER_MODIFIER; } static inline Transform3f trafo_for_bbox(const Transform3d &object_trafo, const Transform3d &volume_trafo) { Transform3d m = object_trafo * volume_trafo; m.translation().x() = 0.; m.translation().y() = 0.; return m.cast(); } static inline bool trafos_differ_in_rotation_by_z_and_mirroring_by_xy_only(const Transform3d &t1, const Transform3d &t2) { if (std::abs(t1.translation().z() - t2.translation().z()) > EPSILON) // One of the object is higher than the other above the build plate (or below the build plate). return false; Matrix3d m1 = t1.matrix().block<3, 3>(0, 0); Matrix3d m2 = t2.matrix().block<3, 3>(0, 0); Matrix3d m = m2.inverse() * m1; Vec3d z = m.block<3, 1>(0, 2); if (std::abs(z.x()) > EPSILON || std::abs(z.y()) > EPSILON || std::abs(z.z() - 1.) > EPSILON) // Z direction or length changed. return false; // Z still points in the same direction and it has the same length. Vec3d x = m.block<3, 1>(0, 0); Vec3d y = m.block<3, 1>(0, 1); if (std::abs(x.z()) > EPSILON || std::abs(y.z()) > EPSILON) return false; double lx2 = x.squaredNorm(); double ly2 = y.squaredNorm(); if (lx2 - 1. > EPSILON * EPSILON || ly2 - 1. > EPSILON * EPSILON) return false; // Verify whether the vectors x, y are still perpendicular. double d = x.dot(y); return std::abs(d * d) < EPSILON * lx2 * ly2; } static PrintObjectRegions::BoundingBox transformed_its_bbox2d(const indexed_triangle_set &its, const Transform3f &m, float offset) { assert(! its.indices.empty()); PrintObjectRegions::BoundingBox bbox(m * its.vertices[its.indices.front()(0)]); for (const stl_triangle_vertex_indices &tri : its.indices) for (int i = 0; i < 3; ++ i) bbox.extend(m * its.vertices[tri(i)]); bbox.min() -= Vec3f(offset, offset, float(EPSILON)); bbox.max() += Vec3f(offset, offset, float(EPSILON)); return bbox; } static void transformed_its_bboxes_in_z_ranges( const indexed_triangle_set &its, const Transform3f &m, const std::vector &z_ranges, std::vector> &bboxes, const float offset) { bboxes.assign(z_ranges.size(), std::make_pair(PrintObjectRegions::BoundingBox(), false)); for (const stl_triangle_vertex_indices &tri : its.indices) { const Vec3f pts[3] = { m * its.vertices[tri(0)], m * its.vertices[tri(1)], m * its.vertices[tri(2)] }; for (size_t irange = 0; irange < z_ranges.size(); ++ irange) { const t_layer_height_range &z_range = z_ranges[irange]; std::pair &bbox = bboxes[irange]; auto bbox_extend = [&bbox](const Vec3f& p) { if (bbox.second) { bbox.first.extend(p); } else { bbox.first.min() = bbox.first.max() = p; bbox.second = true; } }; int iprev = 2; for (int iedge = 0; iedge < 3; ++ iedge) { const Vec3f *p1 = &pts[iprev]; const Vec3f *p2 = &pts[iedge]; // Sort the edge points by Z. if (p1->z() > p2->z()) std::swap(p1, p2); if (p2->z() <= z_range.first || p1->z() >= z_range.second) { // Out of this slab. } else if (p1->z() < z_range.first) { if (p1->z() > z_range.second) { // Two intersections. float zspan = p2->z() - p1->z(); float t1 = (z_range.first - p1->z()) / zspan; float t2 = (z_range.second - p1->z()) / zspan; Vec2f p = to_2d(*p1); Vec2f v(p2->x() - p1->x(), p2->y() - p1->y()); bbox_extend(to_3d((p + v * t1).eval(), float(z_range.first))); bbox_extend(to_3d((p + v * t2).eval(), float(z_range.second))); } else { // Single intersection with the lower limit. float t = (z_range.first - p1->z()) / (p2->z() - p1->z()); Vec2f v(p2->x() - p1->x(), p2->y() - p1->y()); bbox_extend(to_3d((to_2d(*p1) + v * t).eval(), float(z_range.first))); bbox_extend(*p2); } } else if (p2->z() > z_range.second) { // Single intersection with the upper limit. float t = (z_range.second - p1->z()) / (p2->z() - p1->z()); Vec2f v(p2->x() - p1->x(), p2->y() - p1->y()); bbox_extend(to_3d((to_2d(*p1) + v * t).eval(), float(z_range.second))); bbox_extend(*p1); } else { // Both points are inside. bbox_extend(*p1); bbox_extend(*p2); } iprev = iedge; } } } for (std::pair &bbox : bboxes) { bbox.first.min() -= Vec3f(offset, offset, float(EPSILON)); bbox.first.max() += Vec3f(offset, offset, float(EPSILON)); } } // Last PrintObject for this print_object_regions has been fully invalidated (deleted). // Keep print_object_regions, but delete those volumes, which were either removed from new_volumes, or which rotated or scaled, so they need // their bounding boxes to be recalculated. void print_objects_regions_invalidate_keep_some_volumes(PrintObjectRegions &print_object_regions, ModelVolumePtrs old_volumes, ModelVolumePtrs new_volumes) { print_object_regions.all_regions.clear(); model_volumes_sort_by_id(old_volumes); model_volumes_sort_by_id(new_volumes); size_t i_cached_volume = 0; size_t last_cached_volume = 0; size_t i_old = 0; for (size_t i_new = 0; i_new < new_volumes.size(); ++ i_new) if (model_volume_solid_or_modifier(*new_volumes[i_new])) { for (; i_old < old_volumes.size(); ++ i_old) if (old_volumes[i_old]->id() >= new_volumes[i_new]->id()) break; if (i_old != old_volumes.size() && old_volumes[i_old]->id() == new_volumes[i_new]->id()) { if (old_volumes[i_old]->get_matrix().isApprox(new_volumes[i_new]->get_matrix())) { // Reuse the volume. for (; print_object_regions.cached_volume_ids[i_cached_volume] < old_volumes[i_old]->id(); ++ i_cached_volume) assert(i_cached_volume < print_object_regions.cached_volume_ids.size()); assert(i_cached_volume < print_object_regions.cached_volume_ids.size() && print_object_regions.cached_volume_ids[i_cached_volume] == old_volumes[i_old]->id()); print_object_regions.cached_volume_ids[last_cached_volume ++] = print_object_regions.cached_volume_ids[i_cached_volume ++]; } else { // Don't reuse the volume. } } } print_object_regions.cached_volume_ids.erase(print_object_regions.cached_volume_ids.begin() + last_cached_volume, print_object_regions.cached_volume_ids.end()); } const PrintObjectRegions::BoundingBox* find_volume_extents(const PrintObjectRegions::LayerRangeRegions &layer_range, const ModelVolume &volume) { auto it = lower_bound_by_predicate(layer_range.volumes.begin(), layer_range.volumes.end(), [&volume](const PrintObjectRegions::VolumeExtents &l){ return l.volume_id < volume.id(); }); return it != layer_range.volumes.end() && it->volume_id == volume.id() ? &it->bbox : nullptr; } PrintRegionConfig region_config_from_model_volume(const PrintRegionConfig &default_or_parent_region_config, const DynamicPrintConfig *layer_range_config, const ModelVolume &volume, size_t num_extruders); void print_region_ref_inc(PrintRegion &r) { ++ r.m_ref_cnt; } void print_region_ref_reset(PrintRegion &r) { r.m_ref_cnt = 0; } int print_region_ref_cnt(const PrintRegion &r) { return r.m_ref_cnt; } // Verify whether the PrintRegions of a PrintObject are still valid, possibly after updating the region configs. // Before region configs are updated, callback_invalidate() is called to possibly stop background processing. // Returns false if this object needs to be resliced because regions were merged or split. bool verify_update_print_object_regions( ModelVolumePtrs model_volumes, const PrintRegionConfig &default_region_config, size_t num_extruders, const std::vector &painting_extruders, PrintObjectRegions &print_object_regions, const std::function &callback_invalidate) { // Sort by ModelVolume ID. model_volumes_sort_by_id(model_volumes); for (std::unique_ptr ®ion : print_object_regions.all_regions) print_region_ref_reset(*region); // Verify and / or update PrintRegions produced by ModelVolumes, layer range modifiers, modifier volumes. for (PrintObjectRegions::LayerRangeRegions &layer_range : print_object_regions.layer_ranges) for (PrintObjectRegions::VolumeRegion ®ion : layer_range.volume_regions) if (region.model_volume->is_model_part() || region.model_volume->is_modifier()) { auto it_model_volume = lower_bound_by_predicate(model_volumes.begin(), model_volumes.end(), [®ion](const ModelVolume *l){ return l->id() < region.model_volume->id(); }); assert(it_model_volume != model_volumes.end() && (*it_model_volume)->id() == region.model_volume->id()); PrintRegionConfig cfg = region.parent == -1 ? region_config_from_model_volume(default_region_config, layer_range.config, **it_model_volume, num_extruders) : region_config_from_model_volume(layer_range.volume_regions[region.parent].region->config(), nullptr, **it_model_volume, num_extruders); if (cfg != region.region->config()) { // Region configuration changed. if (print_region_ref_cnt(*region.region) == 0) { // Region is referenced for the first time. Just change its parameters. // Stop the background process before assigning new configuration to the regions. t_config_option_keys diff = region.region->config().diff(cfg); callback_invalidate(region.region->config(), cfg, diff); region.region->config_apply_only(cfg, diff, false); } else { // Region is referenced multiple times, thus the region is being split. We need to reslice. return false; } } print_region_ref_inc(*region.region); } // Verify and / or update PrintRegions produced by color painting. for (const PrintObjectRegions::LayerRangeRegions &layer_range : print_object_regions.layer_ranges) for (const PrintObjectRegions::PaintedRegion ®ion : layer_range.painted_regions) { const PrintObjectRegions::VolumeRegion &parent_region = layer_range.volume_regions[region.parent]; PrintRegionConfig cfg = parent_region.region->config(); cfg.perimeter_extruder.value = region.extruder_id; cfg.solid_infill_extruder.value = region.extruder_id; cfg.infill_extruder.value = region.extruder_id; if (cfg != region.region->config()) { // Region configuration changed. if (print_region_ref_cnt(*region.region) == 0) { // Region is referenced for the first time. Just change its parameters. // Stop the background process before assigning new configuration to the regions. t_config_option_keys diff = region.region->config().diff(cfg); callback_invalidate(region.region->config(), cfg, diff); region.region->config_apply_only(cfg, diff, false); } else { // Region is referenced multiple times, thus the region is being split. We need to reslice. return false; } } print_region_ref_inc(*region.region); } // Lastly verify, whether some regions were not merged. { std::vector regions; regions.reserve(print_object_regions.all_regions.size()); for (std::unique_ptr ®ion : print_object_regions.all_regions) { assert(print_region_ref_cnt(*region) > 0); regions.emplace_back(&(*region.get())); } std::sort(regions.begin(), regions.end(), [](const PrintRegion *l, const PrintRegion *r){ return l->config_hash() < r->config_hash(); }); for (size_t i = 0; i < regions.size(); ++ i) { size_t hash = regions[i]->config_hash(); size_t j = i; for (++ j; j < regions.size() && regions[j]->config_hash() == hash; ++ j) if (regions[i]->config() == regions[j]->config()) { // Regions were merged. We need to reslice. return false; } } } return true; } // Update caches of volume bounding boxes. void update_volume_bboxes( std::vector &layer_ranges, std::vector &cached_volume_ids, ModelVolumePtrs model_volumes, const Transform3d &object_trafo, const float offset) { // output will be sorted by the order of model_volumes sorted by their ObjectIDs. model_volumes_sort_by_id(model_volumes); if (layer_ranges.size() == 1) { PrintObjectRegions::LayerRangeRegions &layer_range = layer_ranges.front(); std::vector volumes_old(std::move(layer_range.volumes)); layer_range.volumes.reserve(model_volumes.size()); for (const ModelVolume *model_volume : model_volumes) if (model_volume_solid_or_modifier(*model_volume)) { if (std::binary_search(cached_volume_ids.begin(), cached_volume_ids.end(), model_volume->id())) { auto it = lower_bound_by_predicate(volumes_old.begin(), volumes_old.end(), [model_volume](PrintObjectRegions::VolumeExtents &l) { return l.volume_id < model_volume->id(); }); if (it != volumes_old.end() && it->volume_id == model_volume->id()) layer_range.volumes.emplace_back(*it); } else layer_range.volumes.push_back({ model_volume->id(), transformed_its_bbox2d(model_volume->mesh().its, trafo_for_bbox(object_trafo, model_volume->get_matrix(false)), offset) }); } } else { std::vector> volumes_old; if (cached_volume_ids.empty()) for (PrintObjectRegions::LayerRangeRegions &layer_range : layer_ranges) layer_range.volumes.clear(); else { volumes_old.reserve(layer_ranges.size()); for (PrintObjectRegions::LayerRangeRegions &layer_range : layer_ranges) volumes_old.emplace_back(std::move(layer_range.volumes)); } std::vector> bboxes; std::vector ranges; ranges.reserve(layer_ranges.size()); for (const PrintObjectRegions::LayerRangeRegions &layer_range : layer_ranges) { t_layer_height_range r = layer_range.layer_height_range; r.first -= EPSILON; r.second += EPSILON; ranges.emplace_back(r); } for (const ModelVolume *model_volume : model_volumes) if (model_volume_solid_or_modifier(*model_volume)) { if (std::binary_search(cached_volume_ids.begin(), cached_volume_ids.end(), model_volume->id())) { for (PrintObjectRegions::LayerRangeRegions &layer_range : layer_ranges) { const auto &vold = volumes_old[&layer_range - layer_ranges.data()]; auto it = lower_bound_by_predicate(vold.begin(), vold.end(), [model_volume](const PrintObjectRegions::VolumeExtents &l) { return l.volume_id < model_volume->id(); }); if (it != vold.end() && it->volume_id == model_volume->id()) layer_range.volumes.emplace_back(*it); } } else { transformed_its_bboxes_in_z_ranges(model_volume->mesh().its, trafo_for_bbox(object_trafo, model_volume->get_matrix(false)), ranges, bboxes, offset); for (PrintObjectRegions::LayerRangeRegions &layer_range : layer_ranges) if (auto &bbox = bboxes[&layer_range - layer_ranges.data()]; bbox.second) layer_range.volumes.push_back({ model_volume->id(), bbox.first }); } } } cached_volume_ids.clear(); cached_volume_ids.reserve(model_volumes.size()); for (const ModelVolume *v : model_volumes) if (model_volume_solid_or_modifier(*v)) cached_volume_ids.emplace_back(v->id()); } // Either a fresh PrintObject, or PrintObject regions were invalidated (merged, split). // Generate PrintRegions from scratch. static PrintObjectRegions* generate_print_object_regions( PrintObjectRegions *print_object_regions_old, const ModelVolumePtrs &model_volumes, const LayerRanges &model_layer_ranges, const PrintRegionConfig &default_region_config, const Transform3d &trafo, size_t num_extruders, const float xy_size_compensation, const std::vector &painting_extruders) { // Reuse the old object or generate a new one. auto out = print_object_regions_old ? std::unique_ptr(print_object_regions_old) : std::make_unique(); auto &all_regions = out->all_regions; auto &layer_ranges_regions = out->layer_ranges; all_regions.clear(); bool reuse_old = print_object_regions_old && !print_object_regions_old->layer_ranges.empty(); if (reuse_old) { // Reuse old bounding boxes of some ModelVolumes and their ranges. // Verify that the old ranges match the new ranges. assert(model_layer_ranges.size() == layer_ranges_regions.size()); for (const auto &range : model_layer_ranges) { PrintObjectRegions::LayerRangeRegions &r = layer_ranges_regions[&range - &*model_layer_ranges.begin()]; assert(range.layer_height_range == r.layer_height_range); // If model::assign_copy() is called, layer_ranges_regions is copied thus the pointers to configs are lost. r.config = range.config; r.volume_regions.clear(); r.painted_regions.clear(); } } else { out->trafo_bboxes = trafo; layer_ranges_regions.reserve(model_layer_ranges.size()); for (const auto &range : model_layer_ranges) layer_ranges_regions.push_back({ range.layer_height_range, range.config }); } update_volume_bboxes(layer_ranges_regions, out->cached_volume_ids, model_volumes, out->trafo_bboxes, std::max(0.f, xy_size_compensation)); std::vector region_set; auto get_create_region = [®ion_set, &all_regions](PrintRegionConfig &&config) -> PrintRegion* { size_t hash = config.hash(); auto it = Slic3r::lower_bound_by_predicate(region_set.begin(), region_set.end(), [&config, hash](const PrintRegion* l) { return l->config_hash() < hash || (l->config_hash() == hash && l->config() < config); }); if (it != region_set.end() && (*it)->config_hash() == hash && (*it)->config() == config) return *it; // Insert into a sorted array, it has O(n) complexity, but the calling algorithm has an O(n^2*log(n)) complexity anyways. all_regions.emplace_back(std::make_unique(std::move(config), hash, int(all_regions.size()))); PrintRegion *region = all_regions.back().get(); region_set.emplace(it, region); return region; }; // Chain the regions in the order they are stored in the volumes list. for (int volume_id = 0; volume_id < int(model_volumes.size()); ++ volume_id) { const ModelVolume &volume = *model_volumes[volume_id]; if (model_volume_solid_or_modifier(volume)) { for (PrintObjectRegions::LayerRangeRegions &layer_range : layer_ranges_regions) if (const PrintObjectRegions::BoundingBox *bbox = find_volume_extents(layer_range, volume); bbox) { if (volume.is_model_part()) { // Add a model volume, assign an existing region or generate a new one. layer_range.volume_regions.push_back({ &volume, -1, get_create_region(region_config_from_model_volume(default_region_config, layer_range.config, volume, num_extruders)), bbox }); } else if (volume.is_negative_volume()) { // Add a negative (subtractor) volume. Such volume has neither region nor parent volume assigned. layer_range.volume_regions.push_back({ &volume, -1, nullptr, bbox }); } else { assert(volume.is_modifier()); // Modifiers may be chained one over the other. Check for overlap, merge DynamicPrintConfigs. for (int parent_region_id = int(layer_range.volume_regions.size()) - 1; parent_region_id >= 0; -- parent_region_id) if (const PrintObjectRegions::VolumeRegion &parent_region = layer_range.volume_regions[parent_region_id]; parent_region.model_volume->is_model_part() || parent_region.model_volume->is_modifier()) { const PrintObjectRegions::BoundingBox *parent_bbox = find_volume_extents(layer_range, *parent_region.model_volume); assert(parent_bbox != nullptr); if (parent_bbox->intersects(*bbox)) layer_range.volume_regions.push_back({ &volume, parent_region_id, get_create_region(region_config_from_model_volume(parent_region.region->config(), nullptr, volume, num_extruders)), bbox }); } } } } } // Finally add painting regions. for (PrintObjectRegions::LayerRangeRegions &layer_range : layer_ranges_regions) { for (unsigned int painted_extruder_id : painting_extruders) for (int parent_region_id = 0; parent_region_id < int(layer_range.volume_regions.size()); ++ parent_region_id) if (const PrintObjectRegions::VolumeRegion &parent_region = layer_range.volume_regions[parent_region_id]; parent_region.model_volume->is_model_part() || parent_region.model_volume->is_modifier()) { PrintRegionConfig cfg = parent_region.region->config(); cfg.perimeter_extruder.value = painted_extruder_id; cfg.solid_infill_extruder.value = painted_extruder_id; cfg.infill_extruder.value = painted_extruder_id; layer_range.painted_regions.push_back({ painted_extruder_id, parent_region_id, get_create_region(std::move(cfg))}); } // Sort the regions by parent region::print_object_region_id() and extruder_id to help the slicing algorithm when applying MMU segmentation. std::sort(layer_range.painted_regions.begin(), layer_range.painted_regions.end(), [&layer_range](auto &l, auto &r) { int lid = layer_range.volume_regions[l.parent].region->print_object_region_id(); int rid = layer_range.volume_regions[r.parent].region->print_object_region_id(); return lid < rid || (lid == rid && l.extruder_id < r.extruder_id); }); } return out.release(); } Print::ApplyStatus Print::apply(const Model &model, DynamicPrintConfig new_full_config) { #ifdef _DEBUG check_model_ids_validity(model); #endif /* _DEBUG */ // Normalize the config. new_full_config.option("print_settings_id", true); new_full_config.option("filament_settings_id", true); new_full_config.option("printer_settings_id", true); new_full_config.option("physical_printer_settings_id", true); new_full_config.normalize_fdm(); // Find modified keys of the various configs. Resolve overrides extruder retract values by filament profiles. DynamicPrintConfig filament_overrides; t_config_option_keys print_diff = print_config_diffs(m_config, new_full_config, filament_overrides); t_config_option_keys full_config_diff = full_print_config_diffs(m_full_print_config, new_full_config); // Collect changes to object and region configs. t_config_option_keys object_diff = m_default_object_config.diff(new_full_config); t_config_option_keys region_diff = m_default_region_config.diff(new_full_config); // Do not use the ApplyStatus as we will use the max function when updating apply_status. unsigned int apply_status = APPLY_STATUS_UNCHANGED; auto update_apply_status = [&apply_status](bool invalidated) { apply_status = std::max(apply_status, invalidated ? APPLY_STATUS_INVALIDATED : APPLY_STATUS_CHANGED); }; if (! (print_diff.empty() && object_diff.empty() && region_diff.empty())) update_apply_status(false); // Grab the lock for the Print / PrintObject milestones. std::scoped_lock lock(this->state_mutex()); // The following call may stop the background processing. if (! print_diff.empty()) update_apply_status(this->invalidate_state_by_config_options(new_full_config, print_diff)); // Apply variables to placeholder parser. The placeholder parser is used by G-code export, // which should be stopped if print_diff is not empty. size_t num_extruders = m_config.nozzle_diameter.size(); bool num_extruders_changed = false; if (! full_config_diff.empty()) { update_apply_status(this->invalidate_step(psGCodeExport)); // Set the profile aliases for the PrintBase::output_filename() m_placeholder_parser.set("print_preset", new_full_config.option("print_settings_id")->clone()); m_placeholder_parser.set("filament_preset", new_full_config.option("filament_settings_id")->clone()); m_placeholder_parser.set("printer_preset", new_full_config.option("printer_settings_id")->clone()); m_placeholder_parser.set("physical_printer_preset", new_full_config.option("physical_printer_settings_id")->clone()); // We want the filament overrides to be applied over their respective extruder parameters by the PlaceholderParser. // see "Placeholders do not respect filament overrides." GH issue #3649 m_placeholder_parser.apply_config(filament_overrides); // It is also safe to change m_config now after this->invalidate_state_by_config_options() call. m_config.apply_only(new_full_config, print_diff, true); //FIXME use move semantics once ConfigBase supports it. m_config.apply(filament_overrides); // Handle changes to object config defaults m_default_object_config.apply_only(new_full_config, object_diff, true); // Handle changes to regions config defaults m_default_region_config.apply_only(new_full_config, region_diff, true); m_full_print_config = std::move(new_full_config); if (num_extruders != m_config.nozzle_diameter.size()) { num_extruders = m_config.nozzle_diameter.size(); num_extruders_changed = true; } } ModelObjectStatusDB model_object_status_db; // 1) Synchronize model objects. bool print_regions_reshuffled = false; if (model.id() != m_model.id()) { // Kill everything, initialize from scratch. // Stop background processing. this->call_cancel_callback(); update_apply_status(this->invalidate_all_steps()); for (PrintObject *object : m_objects) { model_object_status_db.add(*object->model_object(), ModelObjectStatus::Deleted); update_apply_status(object->invalidate_all_steps()); delete object; } m_objects.clear(); print_regions_reshuffled = true; m_model.assign_copy(model); for (const ModelObject *model_object : m_model.objects) model_object_status_db.add(*model_object, ModelObjectStatus::New); } else { if (m_model.custom_gcode_per_print_z != model.custom_gcode_per_print_z) { update_apply_status(num_extruders_changed || // Tool change G-codes are applied as color changes for a single extruder printer, no need to invalidate tool ordering. //FIXME The tool ordering may be invalidated unnecessarily if the custom_gcode_per_print_z.mode is not applicable // to the active print / model state, and then it is reset, so it is being applicable, but empty, thus the effect is the same. (num_extruders > 1 && custom_per_printz_gcodes_tool_changes_differ(m_model.custom_gcode_per_print_z.gcodes, model.custom_gcode_per_print_z.gcodes)) ? // The Tool Ordering and the Wipe Tower are no more valid. this->invalidate_steps({ psWipeTower, psGCodeExport }) : // There is no change in Tool Changes stored in custom_gcode_per_print_z, therefore there is no need to update Tool Ordering. this->invalidate_step(psGCodeExport)); m_model.custom_gcode_per_print_z = model.custom_gcode_per_print_z; } if (model_object_list_equal(m_model, model)) { // The object list did not change. for (const ModelObject *model_object : m_model.objects) model_object_status_db.add(*model_object, ModelObjectStatus::Old); } else if (model_object_list_extended(m_model, model)) { // Add new objects. Their volumes and configs will be synchronized later. update_apply_status(this->invalidate_step(psGCodeExport)); for (const ModelObject *model_object : m_model.objects) model_object_status_db.add(*model_object, ModelObjectStatus::Old); for (size_t i = m_model.objects.size(); i < model.objects.size(); ++ i) { model_object_status_db.add(*model.objects[i], ModelObjectStatus::New); m_model.objects.emplace_back(ModelObject::new_copy(*model.objects[i])); m_model.objects.back()->set_model(&m_model); } } else { // Reorder the objects, add new objects. // First stop background processing before shuffling or deleting the PrintObjects in the object list. this->call_cancel_callback(); update_apply_status(this->invalidate_step(psGCodeExport)); // Second create a new list of objects. std::vector model_objects_old(std::move(m_model.objects)); m_model.objects.clear(); m_model.objects.reserve(model.objects.size()); auto by_id_lower = [](const ModelObject *lhs, const ModelObject *rhs){ return lhs->id() < rhs->id(); }; std::sort(model_objects_old.begin(), model_objects_old.end(), by_id_lower); for (const ModelObject *mobj : model.objects) { auto it = std::lower_bound(model_objects_old.begin(), model_objects_old.end(), mobj, by_id_lower); if (it == model_objects_old.end() || (*it)->id() != mobj->id()) { // New ModelObject added. m_model.objects.emplace_back(ModelObject::new_copy(*mobj)); m_model.objects.back()->set_model(&m_model); model_object_status_db.add(*mobj, ModelObjectStatus::New); } else { // Existing ModelObject re-added (possibly moved in the list). m_model.objects.emplace_back(*it); model_object_status_db.add(*mobj, ModelObjectStatus::Moved); } } bool deleted_any = false; for (ModelObject *&model_object : model_objects_old) if (model_object_status_db.add_if_new(*model_object, ModelObjectStatus::Deleted)) deleted_any = true; else // Do not delete this ModelObject instance. model_object = nullptr; if (deleted_any) { // Delete PrintObjects of the deleted ModelObjects. PrintObjectPtrs print_objects_old = std::move(m_objects); m_objects.clear(); m_objects.reserve(print_objects_old.size()); for (PrintObject *print_object : print_objects_old) { const ModelObjectStatus &status = model_object_status_db.get(*print_object->model_object()); if (status.status == ModelObjectStatus::Deleted) { update_apply_status(print_object->invalidate_all_steps()); delete print_object; } else m_objects.emplace_back(print_object); } for (ModelObject *model_object : model_objects_old) delete model_object; print_regions_reshuffled = true; } } } // 2) Map print objects including their transformation matrices. PrintObjectStatusDB print_object_status_db(m_objects); // 3) Synchronize ModelObjects & PrintObjects. const std::initializer_list solid_or_modifier_types { ModelVolumeType::MODEL_PART, ModelVolumeType::NEGATIVE_VOLUME, ModelVolumeType::PARAMETER_MODIFIER }; for (size_t idx_model_object = 0; idx_model_object < model.objects.size(); ++ idx_model_object) { ModelObject &model_object = *m_model.objects[idx_model_object]; ModelObjectStatus &model_object_status = const_cast(model_object_status_db.reuse(model_object)); const ModelObject &model_object_new = *model.objects[idx_model_object]; if (model_object_status.status == ModelObjectStatus::New) // PrintObject instances will be added in the next loop. continue; // Update the ModelObject instance, possibly invalidate the linked PrintObjects. assert(model_object_status.status == ModelObjectStatus::Old || model_object_status.status == ModelObjectStatus::Moved); // Check whether a model part volume was added or removed, their transformations or order changed. // Only volume IDs, volume types, transformation matrices and their order are checked, configuration and other parameters are NOT checked. bool solid_or_modifier_differ = model_volume_list_changed(model_object, model_object_new, solid_or_modifier_types) || model_mmu_segmentation_data_changed(model_object, model_object_new); bool supports_differ = model_volume_list_changed(model_object, model_object_new, ModelVolumeType::SUPPORT_BLOCKER) || model_volume_list_changed(model_object, model_object_new, ModelVolumeType::SUPPORT_ENFORCER); bool layer_height_ranges_differ = ! layer_height_ranges_equal(model_object.layer_config_ranges, model_object_new.layer_config_ranges, model_object_new.layer_height_profile.empty()); bool model_origin_translation_differ = model_object.origin_translation != model_object_new.origin_translation; auto print_objects_range = print_object_status_db.get_range(model_object); // The list actually can be empty if all instances are out of the print bed. //assert(print_objects_range.begin() != print_objects_range.end()); // All PrintObjects in print_objects_range shall point to the same prints_objects_regions if (print_objects_range.begin() != print_objects_range.end()) { model_object_status.print_object_regions = print_objects_range.begin()->print_object->m_shared_regions; model_object_status.print_object_regions->ref_cnt_inc(); } if (solid_or_modifier_differ || model_origin_translation_differ || layer_height_ranges_differ || ! model_object.layer_height_profile.timestamp_matches(model_object_new.layer_height_profile)) { // The very first step (the slicing step) is invalidated. One may freely remove all associated PrintObjects. model_object_status.print_object_regions_status = model_object_status.print_object_regions == nullptr || model_origin_translation_differ || layer_height_ranges_differ ? // Drop print_objects_regions. ModelObjectStatus::PrintObjectRegionsStatus::Invalid : // Reuse bounding boxes of print_objects_regions for ModelVolumes with unmodified transformation. ModelObjectStatus::PrintObjectRegionsStatus::PartiallyValid; for (const PrintObjectStatus &print_object_status : print_objects_range) { update_apply_status(print_object_status.print_object->invalidate_all_steps()); const_cast(print_object_status).status = PrintObjectStatus::Deleted; } if (model_object_status.print_object_regions_status == ModelObjectStatus::PrintObjectRegionsStatus::PartiallyValid) // Drop everything from PrintObjectRegions but those VolumeExtents (of their particular ModelVolumes) that are still valid. print_objects_regions_invalidate_keep_some_volumes(*model_object_status.print_object_regions, model_object.volumes, model_object_new.volumes); else if (model_object_status.print_object_regions != nullptr) model_object_status.print_object_regions->clear(); // Copy content of the ModelObject including its ID, do not change the parent. model_object.assign_copy(model_object_new); } else { model_object_status.print_object_regions_status = ModelObjectStatus::PrintObjectRegionsStatus::Valid; if (supports_differ || model_custom_supports_data_changed(model_object, model_object_new)) { // First stop background processing before shuffling or deleting the ModelVolumes in the ModelObject's list. if (supports_differ) { this->call_cancel_callback(); update_apply_status(false); } // Invalidate just the supports step. for (const PrintObjectStatus &print_object_status : print_objects_range) update_apply_status(print_object_status.print_object->invalidate_step(posSupportMaterial)); if (supports_differ) { // Copy just the support volumes. model_volume_list_update_supports(model_object, model_object_new); } } else if (model_custom_seam_data_changed(model_object, model_object_new)) { update_apply_status(this->invalidate_step(psGCodeExport)); } } if (! solid_or_modifier_differ) { // Synchronize Object's config. bool object_config_changed = ! model_object.config.timestamp_matches(model_object_new.config); if (object_config_changed) model_object.config.assign_config(model_object_new.config); if (! object_diff.empty() || object_config_changed || num_extruders_changed) { PrintObjectConfig new_config = PrintObject::object_config_from_model_object(m_default_object_config, model_object, num_extruders); for (const PrintObjectStatus &print_object_status : print_object_status_db.get_range(model_object)) { t_config_option_keys diff = print_object_status.print_object->config().diff(new_config); if (! diff.empty()) { update_apply_status(print_object_status.print_object->invalidate_state_by_config_options(print_object_status.print_object->config(), new_config, diff)); print_object_status.print_object->config_apply_only(new_config, diff, true); } } } // Synchronize (just copy) the remaining data of ModelVolumes (name, config, custom supports data). //FIXME What to do with m_material_id? model_volume_list_copy_configs(model_object /* dst */, model_object_new /* src */, ModelVolumeType::MODEL_PART); model_volume_list_copy_configs(model_object /* dst */, model_object_new /* src */, ModelVolumeType::PARAMETER_MODIFIER); layer_height_ranges_copy_configs(model_object.layer_config_ranges /* dst */, model_object_new.layer_config_ranges /* src */); // Copy the ModelObject name, input_file and instances. The instances will be compared against PrintObject instances in the next step. model_object.name = model_object_new.name; model_object.input_file = model_object_new.input_file; // Only refresh ModelInstances if there is any change. if (model_object.instances.size() != model_object_new.instances.size() || ! std::equal(model_object.instances.begin(), model_object.instances.end(), model_object_new.instances.begin(), [](auto l, auto r){ return l->id() == r->id(); })) { // G-code generator accesses model_object.instances to generate sequential print ordering matching the Plater object list. update_apply_status(this->invalidate_step(psGCodeExport)); model_object.clear_instances(); model_object.instances.reserve(model_object_new.instances.size()); for (const ModelInstance *model_instance : model_object_new.instances) { model_object.instances.emplace_back(new ModelInstance(*model_instance)); model_object.instances.back()->set_model_object(&model_object); } } else if (! std::equal(model_object.instances.begin(), model_object.instances.end(), model_object_new.instances.begin(), [](auto l, auto r){ return l->print_volume_state == r->print_volume_state && l->printable == r->printable && l->get_transformation().get_matrix().isApprox(r->get_transformation().get_matrix()); })) { // If some of the instances changed, the bounding box of the updated ModelObject is likely no more valid. // This is safe as the ModelObject's bounding box is only accessed from this function, which is called from the main thread only. model_object.invalidate_bounding_box(); // Synchronize the content of instances. auto new_instance = model_object_new.instances.begin(); for (auto old_instance = model_object.instances.begin(); old_instance != model_object.instances.end(); ++ old_instance, ++ new_instance) { (*old_instance)->set_transformation((*new_instance)->get_transformation()); (*old_instance)->print_volume_state = (*new_instance)->print_volume_state; (*old_instance)->printable = (*new_instance)->printable; } } } } // 4) Generate PrintObjects from ModelObjects and their instances. { PrintObjectPtrs print_objects_new; print_objects_new.reserve(std::max(m_objects.size(), m_model.objects.size())); bool new_objects = false; // Walk over all new model objects and check, whether there are matching PrintObjects. for (ModelObject *model_object : m_model.objects) { ModelObjectStatus &model_object_status = const_cast(model_object_status_db.reuse(*model_object)); model_object_status.print_instances = print_objects_from_model_object(*model_object); std::vector old; old.reserve(print_object_status_db.count(*model_object)); for (const PrintObjectStatus &print_object_status : print_object_status_db.get_range(*model_object)) if (print_object_status.status != PrintObjectStatus::Deleted) old.emplace_back(&print_object_status); // Generate a list of trafos and XY offsets for instances of a ModelObject // Producing the config for PrintObject on demand, caching it at print_object_last. const PrintObject *print_object_last = nullptr; auto print_object_apply_config = [this, &print_object_last, model_object, num_extruders](PrintObject *print_object) { print_object->config_apply(print_object_last ? print_object_last->config() : PrintObject::object_config_from_model_object(m_default_object_config, *model_object, num_extruders)); print_object_last = print_object; }; if (old.empty()) { // Simple case, just generate new instances. for (PrintObjectTrafoAndInstances &print_instances : model_object_status.print_instances) { PrintObject *print_object = new PrintObject(this, model_object, print_instances.trafo, std::move(print_instances.instances)); print_object_apply_config(print_object); print_objects_new.emplace_back(print_object); // print_object_status.emplace(PrintObjectStatus(print_object, PrintObjectStatus::New)); new_objects = true; } continue; } // Complex case, try to merge the two lists. // Sort the old lexicographically by their trafos. std::sort(old.begin(), old.end(), [](const PrintObjectStatus *lhs, const PrintObjectStatus *rhs){ return transform3d_lower(lhs->trafo, rhs->trafo); }); // Merge the old / new lists. auto it_old = old.begin(); for (PrintObjectTrafoAndInstances &new_instances : model_object_status.print_instances) { for (; it_old != old.end() && transform3d_lower((*it_old)->trafo, new_instances.trafo); ++ it_old); if (it_old == old.end() || ! transform3d_equal((*it_old)->trafo, new_instances.trafo)) { // This is a new instance (or a set of instances with the same trafo). Just add it. PrintObject *print_object = new PrintObject(this, model_object, new_instances.trafo, std::move(new_instances.instances)); print_object_apply_config(print_object); print_objects_new.emplace_back(print_object); // print_object_status.emplace(PrintObjectStatus(print_object, PrintObjectStatus::New)); new_objects = true; if (it_old != old.end()) const_cast(*it_old)->status = PrintObjectStatus::Deleted; } else { // The PrintObject already exists and the copies differ. PrintBase::ApplyStatus status = (*it_old)->print_object->set_instances(std::move(new_instances.instances)); if (status != PrintBase::APPLY_STATUS_UNCHANGED) update_apply_status(status == PrintBase::APPLY_STATUS_INVALIDATED); print_objects_new.emplace_back((*it_old)->print_object); const_cast(*it_old)->status = PrintObjectStatus::Reused; } } } if (m_objects != print_objects_new) { this->call_cancel_callback(); update_apply_status(this->invalidate_all_steps()); m_objects = print_objects_new; // Delete the PrintObjects marked as Unknown or Deleted. bool deleted_objects = false; for (const PrintObjectStatus &pos : print_object_status_db) if (pos.status == PrintObjectStatus::Unknown || pos.status == PrintObjectStatus::Deleted) { update_apply_status(pos.print_object->invalidate_all_steps()); delete pos.print_object; deleted_objects = true; } if (new_objects || deleted_objects) update_apply_status(this->invalidate_steps({ psSkirt, psBrim, psWipeTower, psGCodeExport })); if (new_objects) update_apply_status(false); print_regions_reshuffled = true; } print_object_status_db.clear(); } // All regions now have distinct settings. // Check whether applying the new region config defaults we would get different regions, // update regions or create regions from scratch. for (auto it_print_object = m_objects.begin(); it_print_object != m_objects.end();) { // Find the range of PrintObjects sharing the same associated ModelObject. auto it_print_object_end = it_print_object; PrintObject &print_object = *(*it_print_object); const ModelObject &model_object = *print_object.model_object(); ModelObjectStatus &model_object_status = const_cast(model_object_status_db.reuse(model_object)); PrintObjectRegions *print_object_regions = model_object_status.print_object_regions; for (++ it_print_object_end; it_print_object_end != m_objects.end() && (*it_print_object)->model_object() == (*it_print_object_end)->model_object(); ++ it_print_object_end) assert((*it_print_object_end)->m_shared_regions == nullptr || (*it_print_object_end)->m_shared_regions == print_object_regions); if (print_object_regions == nullptr) { print_object_regions = new PrintObjectRegions{}; model_object_status.print_object_regions = print_object_regions; print_object_regions->ref_cnt_inc(); } std::vector painting_extruders; if (const auto &volumes = print_object.model_object()->volumes; std::find_if(volumes.begin(), volumes.end(), [](const ModelVolume *v) { return ! v->mmu_segmentation_facets.empty(); }) != volumes.end()) { //FIXME be more specific! Don't enumerate extruders that are not used for painting! painting_extruders.assign(num_extruders, 0); std::iota(painting_extruders.begin(), painting_extruders.end(), 1); } if (model_object_status.print_object_regions_status == ModelObjectStatus::PrintObjectRegionsStatus::Valid) { // Verify that the trafo for regions & volume bounding boxes thus for regions is still applicable. auto invalidate = [it_print_object, it_print_object_end, update_apply_status]() { for (auto it = it_print_object; it != it_print_object_end; ++ it) if ((*it)->m_shared_regions != nullptr) update_apply_status((*it)->invalidate_all_steps()); }; if (print_object_regions && ! trafos_differ_in_rotation_by_z_and_mirroring_by_xy_only(print_object_regions->trafo_bboxes, model_object_status.print_instances.front().trafo)) { invalidate(); print_object_regions->clear(); model_object_status.print_object_regions_status = ModelObjectStatus::PrintObjectRegionsStatus::Invalid; print_regions_reshuffled = true; } else if (print_object_regions && verify_update_print_object_regions( print_object.model_object()->volumes, m_default_region_config, num_extruders, painting_extruders, *print_object_regions, [&print_object, &update_apply_status](const PrintRegionConfig &old_config, const PrintRegionConfig &new_config, const t_config_option_keys &diff_keys) { update_apply_status(print_object.invalidate_state_by_config_options(old_config, new_config, diff_keys)); })) { // Regions are valid, just keep them. } else { // Regions were reshuffled. invalidate(); // At least reuse layer ranges and bounding boxes of ModelVolumes. model_object_status.print_object_regions_status = ModelObjectStatus::PrintObjectRegionsStatus::PartiallyValid; print_regions_reshuffled = true; } } if (print_object_regions == nullptr || model_object_status.print_object_regions_status != ModelObjectStatus::PrintObjectRegionsStatus::Valid) { // Layer ranges with their associated configurations. Remove overlaps between the ranges // and create the regions from scratch. print_object_regions = generate_print_object_regions( print_object_regions, print_object.model_object()->volumes, LayerRanges(print_object.model_object()->layer_config_ranges), m_default_region_config, model_object_status.print_instances.front().trafo, num_extruders, float(print_object.config().xy_size_compensation.value), painting_extruders); } for (auto it = it_print_object; it != it_print_object_end; ++it) if ((*it)->m_shared_regions) { assert((*it)->m_shared_regions == print_object_regions); } else { (*it)->m_shared_regions = print_object_regions; print_object_regions->ref_cnt_inc(); } it_print_object = it_print_object_end; } if (print_regions_reshuffled) { // Update Print::m_print_regions from objects. struct cmp { bool operator() (const PrintRegion *l, const PrintRegion *r) const { return l->config_hash() == r->config_hash() && l->config() == r->config(); } }; std::set region_set; m_print_regions.clear(); PrintObjectRegions *print_object_regions = nullptr; for (PrintObject *print_object : m_objects) if (print_object_regions != print_object->m_shared_regions) { print_object_regions = print_object->m_shared_regions; for (std::unique_ptr &print_region : print_object_regions->all_regions) if (auto it = region_set.find(print_region.get()); it == region_set.end()) { int print_region_id = int(m_print_regions.size()); m_print_regions.emplace_back(print_region.get()); print_region->m_print_region_id = print_region_id; } else { print_region->m_print_region_id = (*it)->print_region_id(); } } } // Update SlicingParameters for each object where the SlicingParameters is not valid. // If it is not valid, then it is ensured that PrintObject.m_slicing_params is not in use // (posSlicing and posSupportMaterial was invalidated). for (PrintObject *object : m_objects) object->update_slicing_parameters(); #ifdef _DEBUG check_model_ids_equal(m_model, model); #endif /* _DEBUG */ return static_cast(apply_status); } } // namespace Slic3r