# The slicing work horse. # Extends C++ class Slic3r::Print package Slic3r::Print; use strict; use warnings; use File::Basename qw(basename fileparse); use File::Spec; use List::Util qw(min max first sum); use Slic3r::ExtrusionLoop ':roles'; use Slic3r::ExtrusionPath ':roles'; use Slic3r::Flow ':roles'; use Slic3r::Geometry qw(X Y Z X1 Y1 X2 Y2 MIN MAX PI scale unscale convex_hull); use Slic3r::Geometry::Clipper qw(diff_ex union_ex intersection_ex intersection offset offset2 union union_pt_chained JT_ROUND JT_SQUARE); use Slic3r::Print::State ':steps'; our $status_cb; sub set_status_cb { my ($class, $cb) = @_; $status_cb = $cb; } sub status_cb { return $status_cb // sub {}; } # this value is not supposed to be compared with $layer->id # since they have different semantics sub total_layer_count { my $self = shift; return max(map $_->total_layer_count, @{$self->objects}); } sub size { my $self = shift; return $self->bounding_box->size; } # Slicing process, running at a background thread. sub process { my ($self) = @_; $self->status_cb->(20, "Generating perimeters"); $_->make_perimeters for @{$self->objects}; $self->status_cb->(70, "Infilling layers"); $_->infill for @{$self->objects}; $_->generate_support_material for @{$self->objects}; $self->make_skirt; $self->make_brim; # must come after make_skirt # time to make some statistics if (0) { eval "use Devel::Size"; print "MEMORY USAGE:\n"; printf " meshes = %.1fMb\n", List::Util::sum(map Devel::Size::total_size($_->meshes), @{$self->objects})/1024/1024; printf " layer slices = %.1fMb\n", List::Util::sum(map Devel::Size::total_size($_->slices), map @{$_->layers}, @{$self->objects})/1024/1024; printf " region slices = %.1fMb\n", List::Util::sum(map Devel::Size::total_size($_->slices), map @{$_->regions}, map @{$_->layers}, @{$self->objects})/1024/1024; printf " perimeters = %.1fMb\n", List::Util::sum(map Devel::Size::total_size($_->perimeters), map @{$_->regions}, map @{$_->layers}, @{$self->objects})/1024/1024; printf " fills = %.1fMb\n", List::Util::sum(map Devel::Size::total_size($_->fills), map @{$_->regions}, map @{$_->layers}, @{$self->objects})/1024/1024; printf " print object = %.1fMb\n", Devel::Size::total_size($self)/1024/1024; } if (0) { eval "use Slic3r::Test::SectionCut"; Slic3r::Test::SectionCut->new(print => $self)->export_svg("section_cut.svg"); } } sub export_gcode { my $self = shift; my %params = @_; # prerequisites $self->process; # output everything to a G-code file my $output_file = $self->expanded_output_filepath($params{output_file}); $self->status_cb->(90, "Exporting G-code" . ($output_file ? " to $output_file" : "")); $self->write_gcode($params{output_fh} || $output_file); # run post-processing scripts if (@{$self->config->post_process}) { $self->status_cb->(95, "Running post-processing scripts"); $self->config->setenv; for my $script (@{$self->config->post_process}) { Slic3r::debugf " '%s' '%s'\n", $script, $output_file; # -x doesn't return true on Windows except for .exe files if (($^O eq 'MSWin32') ? !(-e $script) : !(-x $script)) { die "The configured post-processing script is not executable: check permissions. ($script)\n"; } system($script, $output_file); } } } # Export SVG slices for the offline SLA printing. sub export_svg { my $self = shift; my %params = @_; $_->slice for @{$self->objects}; my $fh = $params{output_fh}; if (!$fh) { my $output_file = $self->expanded_output_filepath($params{output_file}); $output_file =~ s/\.gcode$/.svg/i; Slic3r::open(\$fh, ">", $output_file) or die "Failed to open $output_file for writing\n"; print "Exporting to $output_file..." unless $params{quiet}; } my $print_bb = $self->bounding_box; my $print_size = $print_bb->size; print $fh sprintf <<"EOF", unscale($print_size->[X]), unscale($print_size->[Y]); EOF my $print_polygon = sub { my ($polygon, $type) = @_; printf $fh qq{ \n}, $type, (join ' ', map { join ',', map unscale $_, @$_ } @$polygon), ($type eq 'contour' ? 'white' : 'black'); }; my @layers = sort { $a->print_z <=> $b->print_z } map { @{$_->layers}, @{$_->support_layers} } @{$self->objects}; my $layer_id = -1; my @previous_layer_slices = (); for my $layer (@layers) { $layer_id++; if ($layer->slice_z == -1) { printf $fh qq{ \n}, $layer_id; } else { printf $fh qq{ \n}, $layer_id, unscale($layer->slice_z); } my @current_layer_slices = (); # sort slices so that the outermost ones come first my @slices = sort { $a->contour->contains_point($b->contour->first_point) ? 0 : 1 } @{$layer->slices}; foreach my $copy (@{$layer->object->_shifted_copies}) { foreach my $slice (@slices) { my $expolygon = $slice->clone; $expolygon->translate(@$copy); $expolygon->translate(-$print_bb->x_min, -$print_bb->y_min); $print_polygon->($expolygon->contour, 'contour'); $print_polygon->($_, 'hole') for @{$expolygon->holes}; push @current_layer_slices, $expolygon; } } # generate support material if ($self->has_support_material && $layer->id > 0) { my (@supported_slices, @unsupported_slices) = (); foreach my $expolygon (@current_layer_slices) { my $intersection = intersection_ex( [ map @$_, @previous_layer_slices ], [ @$expolygon ], ); @$intersection ? push @supported_slices, $expolygon : push @unsupported_slices, $expolygon; } my @supported_points = map @$_, @$_, @supported_slices; foreach my $expolygon (@unsupported_slices) { # look for the nearest point to this island among all # supported points my $contour = $expolygon->contour; my $support_point = $contour->first_point->nearest_point(\@supported_points) or next; my $anchor_point = $support_point->nearest_point([ @$contour ]); printf $fh qq{ \n}, map @$_, $support_point, $anchor_point; } } print $fh qq{ \n}; @previous_layer_slices = @current_layer_slices; } print $fh "\n"; close $fh; print "Done.\n" unless $params{quiet}; } sub make_skirt { my $self = shift; # prerequisites $_->make_perimeters for @{$self->objects}; $_->infill for @{$self->objects}; $_->generate_support_material for @{$self->objects}; return if $self->step_done(STEP_SKIRT); $self->set_step_started(STEP_SKIRT); # since this method must be idempotent, we clear skirt paths *before* # checking whether we need to generate them $self->skirt->clear; if (!$self->has_skirt) { $self->set_step_done(STEP_SKIRT); return; } $self->status_cb->(88, "Generating skirt"); # First off we need to decide how tall the skirt must be. # The skirt_height option from config is expressed in layers, but our # object might have different layer heights, so we need to find the print_z # of the highest layer involved. # Note that unless has_infinite_skirt() == true # the actual skirt might not reach this $skirt_height_z value since the print # order of objects on each layer is not guaranteed and will not generally # include the thickest object first. It is just guaranteed that a skirt is # prepended to the first 'n' layers (with 'n' = skirt_height). # $skirt_height_z in this case is the highest possible skirt height for safety. my $skirt_height_z = -1; foreach my $object (@{$self->objects}) { my $skirt_height = $self->has_infinite_skirt ? $object->layer_count : min($self->config->skirt_height, $object->layer_count); my $highest_layer = $object->get_layer($skirt_height - 1); $skirt_height_z = max($skirt_height_z, $highest_layer->print_z); } # collect points from all layers contained in skirt height my @points = (); foreach my $object (@{$self->objects}) { my @object_points = (); # get object layers up to $skirt_height_z foreach my $layer (@{$object->layers}) { last if $layer->print_z > $skirt_height_z; push @object_points, map @$_, map @$_, @{$layer->slices}; } # get support layers up to $skirt_height_z foreach my $layer (@{$object->support_layers}) { last if $layer->print_z > $skirt_height_z; push @object_points, map @{$_->polyline}, @{$layer->support_fills} if $layer->support_fills; push @object_points, map @{$_->polyline}, @{$layer->support_interface_fills} if $layer->support_interface_fills; } # repeat points for each object copy foreach my $copy (@{$object->_shifted_copies}) { my @copy_points = map $_->clone, @object_points; $_->translate(@$copy) for @copy_points; push @points, @copy_points; } } return if @points < 3; # at least three points required for a convex hull # find out convex hull my $convex_hull = convex_hull(\@points); my @extruded_length = (); # for each extruder # skirt may be printed on several layers, having distinct layer heights, # but loops must be aligned so can't vary width/spacing # TODO: use each extruder's own flow my $first_layer_height = $self->skirt_first_layer_height; my $flow = $self->skirt_flow; my $spacing = $flow->spacing; my $mm3_per_mm = $flow->mm3_per_mm; my @extruders_e_per_mm = (); my $extruder_idx = 0; my $skirts = $self->config->skirts; $skirts ||= 1 if $self->has_infinite_skirt; # draw outlines from outside to inside # loop while we have less skirts than required or any extruder hasn't reached the min length if any my $distance = scale max($self->config->skirt_distance, $self->config->brim_width); for (my $i = $skirts; $i > 0; $i--) { $distance += scale $spacing; my $loop = offset([$convex_hull], $distance, JT_ROUND, scale(0.1))->[0]; my $eloop = Slic3r::ExtrusionLoop->new_from_paths( Slic3r::ExtrusionPath->new( polyline => Slic3r::Polygon->new(@$loop)->split_at_first_point, role => EXTR_ROLE_SKIRT, mm3_per_mm => $mm3_per_mm, # this will be overridden at G-code export time width => $flow->width, height => $first_layer_height, # this will be overridden at G-code export time ), ); $eloop->role(EXTRL_ROLE_SKIRT); $self->skirt->append($eloop); if ($self->config->min_skirt_length > 0) { $extruded_length[$extruder_idx] ||= 0; if (!$extruders_e_per_mm[$extruder_idx]) { my $config = Slic3r::Config::GCode->new; $config->apply_static($self->config); my $extruder = Slic3r::Extruder->new($extruder_idx, $config); $extruders_e_per_mm[$extruder_idx] = $extruder->e_per_mm($mm3_per_mm); } $extruded_length[$extruder_idx] += unscale $loop->length * $extruders_e_per_mm[$extruder_idx]; $i++ if defined first { ($extruded_length[$_] // 0) < $self->config->min_skirt_length } 0 .. $#{$self->extruders}; if ($extruded_length[$extruder_idx] >= $self->config->min_skirt_length) { if ($extruder_idx < $#{$self->extruders}) { $extruder_idx++; next; } } } } $self->skirt->reverse; $self->set_step_done(STEP_SKIRT); } sub make_brim { my $self = shift; # prerequisites $_->make_perimeters for @{$self->objects}; $_->infill for @{$self->objects}; $_->generate_support_material for @{$self->objects}; $self->make_skirt; return if $self->step_done(STEP_BRIM); $self->set_step_started(STEP_BRIM); # since this method must be idempotent, we clear brim paths *before* # checking whether we need to generate them $self->brim->clear; if ($self->config->brim_width == 0) { $self->set_step_done(STEP_BRIM); return; } $self->status_cb->(88, "Generating brim"); # brim is only printed on first layer and uses perimeter extruder my $first_layer_height = $self->skirt_first_layer_height; my $flow = $self->brim_flow; my $mm3_per_mm = $flow->mm3_per_mm; my $grow_distance = $flow->scaled_width / 2; my @islands = (); # array of polygons foreach my $obj_idx (0 .. ($self->object_count - 1)) { my $object = $self->objects->[$obj_idx]; my $layer0 = $object->get_layer(0); my @object_islands = ( (map $_->contour, @{$layer0->slices}), ); if (@{ $object->support_layers }) { my $support_layer0 = $object->support_layers->[0]; push @object_islands, (map @{$_->polyline->grow($grow_distance)}, @{$support_layer0->support_fills}) if $support_layer0->support_fills; push @object_islands, (map @{$_->polyline->grow($grow_distance)}, @{$support_layer0->support_interface_fills}) if $support_layer0->support_interface_fills; } foreach my $copy (@{$object->_shifted_copies}) { push @islands, map { $_->translate(@$copy); $_ } map $_->clone, @object_islands; } } my @loops = (); my $num_loops = sprintf "%.0f", $self->config->brim_width / $flow->width; for my $i (reverse 1 .. $num_loops) { # JT_SQUARE ensures no vertex is outside the given offset distance # -0.5 because islands are not represented by their centerlines # (first offset more, then step back - reverse order than the one used for # perimeters because here we're offsetting outwards) push @loops, @{offset2(\@islands, ($i + 0.5) * $flow->scaled_spacing, -1.0 * $flow->scaled_spacing, JT_SQUARE)}; } $self->brim->append(map Slic3r::ExtrusionLoop->new_from_paths( Slic3r::ExtrusionPath->new( polyline => Slic3r::Polygon->new(@$_)->split_at_first_point, role => EXTR_ROLE_SKIRT, mm3_per_mm => $mm3_per_mm, width => $flow->width, height => $first_layer_height, ), ), reverse @{union_pt_chained(\@loops)}); $self->set_step_done(STEP_BRIM); } sub write_gcode { my $self = shift; my ($file) = @_; my $tempfile; # open output gcode file if we weren't supplied a file-handle my $fh; if (ref $file eq 'IO::Scalar') { $fh = $file; } else { $tempfile = "$file.tmp"; Slic3r::open(\$fh, ">", $tempfile) or die "Failed to open $tempfile for writing\n"; # enable UTF-8 output since user might have entered Unicode characters in fields like notes binmode $fh, ':utf8'; } my $exporter = Slic3r::Print::GCode->new( print => $self, fh => $fh, ); $exporter->export; # close our gcode file close $fh; if ($tempfile) { my $i; for ($i = 0; $i < 5; $i += 1) { last if (rename $tempfile, $file); # Wait for 1/4 seconds and try to rename once again. select(undef, undef, undef, 0.25); } Slic3r::debugf "Faild t remove the output G-code file from $tempfile to $file. Is $tempfile locked?\n" if ($i == 5); } } # this method will return the supplied input file path after expanding its # format variables with their values sub expanded_output_filepath { my $self = shift; my ($path) = @_; return undef if !@{$self->objects}; my $input_file = first { defined $_ } map $_->model_object->input_file, @{$self->objects}; return undef if !defined $input_file; my $filename = my $filename_base = basename($input_file); $filename_base =~ s/\.[^.]+$//; # without suffix # set filename in placeholder parser so that it's available also in custom G-code $self->placeholder_parser->set(input_filename => $filename); $self->placeholder_parser->set(input_filename_base => $filename_base); # set other variables from model object $self->placeholder_parser->set_multiple( scale => [ map $_->model_object->instances->[0]->scaling_factor * 100 . "%", @{$self->objects} ], ); if ($path && -d $path) { # if output path is an existing directory, we take that and append # the specified filename format $path = File::Spec->join($path, $self->config->output_filename_format); } elsif (!$path) { # if no explicit output file was defined, we take the input # file directory and append the specified filename format $path = (fileparse($input_file))[1] . $self->config->output_filename_format; } else { # path is a full path to a file so we use it as it is } # make sure we use an up-to-date timestamp $self->placeholder_parser->update_timestamp; return $self->placeholder_parser->process($path); } # Wrapper around the C++ Slic3r::Print::validate() # to produce a Perl exception without a hang-up on some Strawberry perls. sub validate { my $self = shift; my $err = $self->_validate; die $err . "\n" if (defined($err) && $err ne ''); } 1;