package Slic3r::Print; use Moo; use Config; use Math::ConvexHull 1.0.4 qw(convex_hull); use Slic3r::Geometry qw(X Y Z PI MIN MAX scale unscale move_points); use Slic3r::Geometry::Clipper qw(explode_expolygons safety_offset diff_ex intersection_ex union_ex offset JT_ROUND JT_MITER); use XXX; has 'x_length' => (is => 'ro', required => 1); has 'y_length' => (is => 'ro', required => 1); has 'total_x_length' => (is => 'rw'); # including duplicates has 'total_y_length' => (is => 'rw'); # including duplicates has 'copies' => (is => 'rw', default => sub {[]}); has 'layers' => ( traits => ['Array'], is => 'rw', #isa => 'ArrayRef[Slic3r::Layer]', default => sub { [] }, ); has 'total_extrusion_length' => (is => 'rw'); sub new_from_mesh { my $class = shift; my ($mesh) = @_; $mesh->rotate($Slic3r::rotate); $mesh->scale($Slic3r::scale / $Slic3r::resolution); $mesh->align_to_origin; # initialize print job my @size = $mesh->size; my $print = $class->new( x_length => $size[X], y_length => $size[Y], ); # process facets { my $apply_lines = sub { my $lines = shift; foreach my $layer_id (keys %$lines) { my $layer = $print->layer($layer_id); $layer->add_line($_) for @{ $lines->{$layer_id} }; } }; Slic3r::parallelize( disable => ($#{$mesh->facets} < 500), # don't parallelize when too few facets items => [ 0..$#{$mesh->facets} ], thread_cb => sub { my $q = shift; my $result_lines = {}; while (defined (my $facet_id = $q->dequeue)) { my $lines = $mesh->slice_facet($print, $facet_id); foreach my $layer_id (keys %$lines) { $result_lines->{$layer_id} ||= []; push @{ $result_lines->{$layer_id} }, @{ $lines->{$layer_id} }; } } return $result_lines; }, collect_cb => sub { $apply_lines->($_[0]); }, no_threads_cb => sub { for (0..$#{$mesh->facets}) { my $lines = $mesh->slice_facet($print, $_); $apply_lines->($lines); } }, ); } die "Invalid input file\n" if !@{$print->layers}; # remove last layer if empty # (we might have created it because of the $max_layer = ... + 1 code below) pop @{$print->layers} if !@{$print->layers->[-1]->surfaces} && !@{$print->layers->[-1]->lines}; foreach my $layer (@{ $print->layers }) { Slic3r::debugf "Making surfaces for layer %d (slice z = %f):\n", $layer->id, unscale $layer->slice_z if $Slic3r::debug; # layer currently has many lines representing intersections of # model facets with the layer plane. there may also be lines # that we need to ignore (for example, when two non-horizontal # facets share a common edge on our plane, we get a single line; # however that line has no meaning for our layer as it's enclosed # inside a closed polyline) # build surfaces from sparse lines $layer->make_surfaces($mesh->make_loops($layer)); # free memory $layer->lines(undef); } # detect slicing errors my $warning_thrown = 0; for (my $i = 0; $i <= $#{$print->layers}; $i++) { my $layer = $print->layers->[$i]; next unless $layer->slicing_errors; if (!$warning_thrown) { warn "The model has overlapping or self-intersecting facets. I tried to repair it, " . "however you might want to check the results or repair the input file and retry.\n"; $warning_thrown = 1; } # try to repair the layer surfaces by merging all contours and all holes from # neighbor layers Slic3r::debugf "Attempting to repair layer %d\n", $i; my (@upper_surfaces, @lower_surfaces); for (my $j = $i+1; $j <= $#{$print->layers}; $j++) { if (!$print->layers->[$j]->slicing_errors) { @upper_surfaces = @{$print->layers->[$j]->slices}; last; } } for (my $j = $i-1; $j >= 0; $j--) { if (!$print->layers->[$j]->slicing_errors) { @lower_surfaces = @{$print->layers->[$j]->slices}; last; } } my $union = union_ex([ map $_->expolygon->contour, @upper_surfaces, @lower_surfaces, ]); my $diff = diff_ex( [ map @$_, @$union ], [ map $_->expolygon->holes, @upper_surfaces, @lower_surfaces, ], ); @{$layer->slices} = map Slic3r::Surface->new (expolygon => $_, surface_type => 'internal'), @$diff; } # remove empty layers from bottom while (@{$print->layers} && !@{$print->layers->[0]->slices} && !@{$print->layers->[0]->thin_walls}) { shift @{$print->layers}; for (my $i = 0; $i <= $#{$print->layers}; $i++) { $print->layers->[$i]->id($i); } } warn "No layers were detected. You might want to repair your STL file and retry.\n" if !@{$print->layers}; return $print; } sub BUILD { my $self = shift; my $dist = scale $Slic3r::duplicate_distance; if ($Slic3r::duplicate_grid->[X] > 1 || $Slic3r::duplicate_grid->[Y] > 1) { $self->total_x_length($self->x_length * $Slic3r::duplicate_grid->[X] + $dist * ($Slic3r::duplicate_grid->[X] - 1)); $self->total_y_length($self->y_length * $Slic3r::duplicate_grid->[Y] + $dist * ($Slic3r::duplicate_grid->[Y] - 1)); # generate offsets for copies for my $x_copy (1..$Slic3r::duplicate_grid->[X]) { for my $y_copy (1..$Slic3r::duplicate_grid->[Y]) { push @{$self->copies}, [ ($self->x_length + $dist) * ($x_copy-1), ($self->y_length + $dist) * ($y_copy-1), ]; } } } elsif ($Slic3r::duplicate > 1) { my $linint = sub { my ($value, $oldmin, $oldmax, $newmin, $newmax) = @_; return ($value - $oldmin) * ($newmax - $newmin) / ($oldmax - $oldmin) + $newmin; }; # use actual part size plus separation distance (half on each side) in spacing algorithm my $partx = unscale($self->x_length) + $Slic3r::duplicate_distance; my $party = unscale($self->y_length) + $Slic3r::duplicate_distance; # this is how many cells we have available into which to put parts my $cellw = int($Slic3r::bed_size->[X] / $partx); my $cellh = int($Slic3r::bed_size->[Y] / $party); die "$Slic3r::duplicate parts won't fit in your print area!\n" if $Slic3r::duplicate > ($cellw * $cellh); # width and height of space used by cells my $w = $cellw * $partx; my $h = $cellh * $party; # left and right border positions of space used by cells my $l = ($Slic3r::bed_size->[X] - $w) / 2; my $r = $l + $w; # top and bottom border positions my $t = ($Slic3r::bed_size->[Y] - $h) / 2; my $b = $t + $h; # list of cells, sorted by distance from center my @cellsorder; # work out distance for all cells, sort into list for my $i (0..$cellw-1) { for my $j (0..$cellh-1) { my $cx = $linint->($i + 0.5, 0, $cellw, $l, $r); my $cy = $linint->($j + 0.5, 0, $cellh, $t, $b); my $xd = abs(($Slic3r::bed_size->[X] / 2) - $cx); my $yd = abs(($Slic3r::bed_size->[Y] / 2) - $cy); my $c = { location => [$cx, $cy], index => [$i, $j], distance => $xd * $xd + $yd * $yd - abs(($cellw / 2) - ($i + 0.5)), }; BINARYINSERTIONSORT: { my $index = $c->{distance}; my $low = 0; my $high = @cellsorder; while ($low < $high) { my $mid = ($low + (($high - $low) / 2)) | 0; my $midval = $cellsorder[$mid]->[0]; if ($midval < $index) { $low = $mid + 1; } elsif ($midval > $index) { $high = $mid; } else { splice @cellsorder, $mid, 0, [$index, $c]; last BINARYINSERTIONSORT; } } splice @cellsorder, $low, 0, [$index, $c]; } } } # the extents of cells actually used by objects my ($lx, $ty, $rx, $by) = (0, 0, 0, 0); # now find cells actually used by objects, map out the extents so we can position correctly for my $i (1..$Slic3r::duplicate) { my $c = $cellsorder[$i - 1]; my $cx = $c->[1]->{index}->[0]; my $cy = $c->[1]->{index}->[1]; if ($i == 1) { $lx = $rx = $cx; $ty = $by = $cy; } else { $rx = $cx if $cx > $rx; $lx = $cx if $cx < $lx; $by = $cy if $cy > $by; $ty = $cy if $cy < $ty; } } # now we actually place objects into cells, positioned such that the left and bottom borders are at 0 for my $i (1..$Slic3r::duplicate) { my $c = shift @cellsorder; my $cx = $c->[1]->{index}->[0] - $lx; my $cy = $c->[1]->{index}->[1] - $ty; push @{$self->copies}, [scale($cx * $partx - (unscale($self->x_length) / 2)), scale($cy * $party - (unscale($self->y_length) / 2))]; } # save size of area used $self->total_x_length(scale(($rx - $lx) * $partx)); $self->total_y_length(scale(($by - $ty) * $party)); } else { $self->total_x_length($self->x_length); $self->total_y_length($self->y_length); push @{$self->copies}, [0, 0]; } } sub layer_count { my $self = shift; return scalar @{ $self->layers }; } sub max_length { my $self = shift; return ($self->x_length > $self->y_length) ? $self->x_length : $self->y_length; } sub layer { my $self = shift; my ($layer_id) = @_; # extend our print by creating all necessary layers if ($self->layer_count < $layer_id + 1) { for (my $i = $self->layer_count; $i <= $layer_id; $i++) { push @{ $self->layers }, Slic3r::Layer->new(id => $i); } } return $self->layers->[$layer_id]; } sub detect_surfaces_type { my $self = shift; Slic3r::debugf "Detecting solid surfaces...\n"; # prepare a reusable subroutine to make surface differences my $surface_difference = sub { my ($subject_surfaces, $clip_surfaces, $result_type) = @_; my $expolygons = diff_ex( [ map { ref $_ eq 'ARRAY' ? $_ : ref $_ eq 'Slic3r::ExPolygon' ? @$_ : $_->p } @$subject_surfaces ], [ map { ref $_ eq 'ARRAY' ? $_ : ref $_ eq 'Slic3r::ExPolygon' ? @$_ : $_->p } @$clip_surfaces ], 1, ); return grep $_->contour->is_printable, map Slic3r::Surface->new(expolygon => $_, surface_type => $result_type), @$expolygons; }; for (my $i = 0; $i < $self->layer_count; $i++) { my $layer = $self->layers->[$i]; my $upper_layer = $self->layers->[$i+1]; my $lower_layer = $i > 0 ? $self->layers->[$i-1] : undef; my (@bottom, @top, @internal) = (); # find top surfaces (difference between current surfaces # of current layer and upper one) if ($upper_layer) { @top = $surface_difference->($layer->slices, $upper_layer->slices, 'top'); } else { # if no upper layer, all surfaces of this one are solid @top = @{$layer->slices}; $_->surface_type('top') for @top; } # find bottom surfaces (difference between current surfaces # of current layer and lower one) if ($lower_layer) { @bottom = $surface_difference->($layer->slices, $lower_layer->slices, 'bottom'); } else { # if no lower layer, all surfaces of this one are solid @bottom = @{$layer->slices}; $_->surface_type('bottom') for @bottom; } # now, if the object contained a thin membrane, we could have overlapping bottom # and top surfaces; let's do an intersection to discover them and consider them # as bottom surfaces (to allow for bridge detection) if (@top && @bottom) { my $overlapping = intersection_ex([ map $_->p, @top ], [ map $_->p, @bottom ]); Slic3r::debugf " layer %d contains %d membrane(s)\n", $layer->id, scalar(@$overlapping); @top = $surface_difference->([@top], $overlapping, 'top'); } # find internal surfaces (difference between top/bottom surfaces and others) @internal = $surface_difference->($layer->slices, [@top, @bottom], 'internal'); # save surfaces to layer @{$layer->slices} = (@bottom, @top, @internal); Slic3r::debugf " layer %d has %d bottom, %d top and %d internal surfaces\n", $layer->id, scalar(@bottom), scalar(@top), scalar(@internal); } # clip surfaces to the fill boundaries foreach my $layer (@{$self->layers}) { @{$layer->surfaces} = (); foreach my $surface (@{$layer->slices}) { my $intersection = intersection_ex( [ $surface->p ], [ map @$_, @{$layer->fill_boundaries} ], ); push @{$layer->surfaces}, map Slic3r::Surface->new (expolygon => $_, surface_type => $surface->surface_type), @$intersection; } # free memory @{$layer->fill_boundaries} = (); } } sub discover_horizontal_shells { my $self = shift; Slic3r::debugf "==> DISCOVERING HORIZONTAL SHELLS\n"; for (my $i = 0; $i < $self->layer_count; $i++) { my $layer = $self->layers->[$i]; foreach my $type (qw(top bottom)) { # find surfaces of current type for current layer # and offset them to take perimeters into account my @surfaces = map $_->offset($Slic3r::perimeters * scale $Slic3r::flow_width), grep $_->surface_type eq $type, @{$layer->fill_surfaces} or next; my $surfaces_p = [ map $_->p, @surfaces ]; Slic3r::debugf "Layer %d has %d surfaces of type '%s'\n", $i, scalar(@surfaces), $type; for (my $n = $type eq 'top' ? $i-1 : $i+1; abs($n - $i) <= $Slic3r::solid_layers-1; $type eq 'top' ? $n-- : $n++) { next if $n < 0 || $n >= $self->layer_count; Slic3r::debugf " looking for neighbors on layer %d...\n", $n; my @neighbor_surfaces = @{$self->layers->[$n]->surfaces}; my @neighbor_fill_surfaces = @{$self->layers->[$n]->fill_surfaces}; # find intersection between neighbor and current layer's surfaces # intersections have contours and holes my $new_internal_solid = intersection_ex( $surfaces_p, [ map $_->p, grep $_->surface_type =~ /internal/, @neighbor_surfaces ], undef, 1, ); next if !@$new_internal_solid; # internal-solid are the union of the existing internal-solid surfaces # and new ones my $internal_solid = union_ex([ ( map $_->p, grep $_->surface_type eq 'internal-solid', @neighbor_fill_surfaces ), ( map @$_, @$new_internal_solid ), ]); # subtract intersections from layer surfaces to get resulting inner surfaces my $internal = diff_ex( [ map $_->p, grep $_->surface_type eq 'internal', @neighbor_fill_surfaces ], [ map @$_, @$internal_solid ], ); Slic3r::debugf " %d internal-solid and %d internal surfaces found\n", scalar(@$internal_solid), scalar(@$internal); # Note: due to floating point math we're going to get some very small # polygons as $internal; they will be removed by removed_small_features() # assign resulting inner surfaces to layer my $neighbor_fill_surfaces = $self->layers->[$n]->fill_surfaces; @$neighbor_fill_surfaces = (); push @$neighbor_fill_surfaces, Slic3r::Surface->new (expolygon => $_, surface_type => 'internal') for @$internal; # assign new internal-solid surfaces to layer push @$neighbor_fill_surfaces, Slic3r::Surface->new (expolygon => $_, surface_type => 'internal-solid') for @$internal_solid; # assign top and bottom surfaces to layer foreach my $s (Slic3r::Surface->group(grep $_->surface_type =~ /top|bottom/, @neighbor_fill_surfaces)) { my $solid_surfaces = diff_ex( [ map $_->p, @$s ], [ map @$_, @$internal_solid, @$internal ], ); push @$neighbor_fill_surfaces, Slic3r::Surface->new (expolygon => $_, surface_type => $s->[0]->surface_type, bridge_angle => $s->[0]->bridge_angle) for @$solid_surfaces; } } } } } sub extrude_skirt { my $self = shift; return unless $Slic3r::skirts > 0; # collect points from all layers contained in skirt height my $skirt_height = $Slic3r::skirt_height; $skirt_height = $self->layer_count if $skirt_height > $self->layer_count; my @layers = map $self->layer($_), 0..($skirt_height-1); my @points = ( (map @$_, map @{$_->expolygon}, map @{$_->slices}, @layers), (map @$_, map @{$_->thin_walls}, @layers), (map @{$_->polyline}, map @{$_->support_fills->paths}, grep $_->support_fills, @layers), ); return if @points < 3; # at least three points required for a convex hull # duplicate points to take copies into account my @all_points = map move_points($_, @points), @{$self->copies}; # find out convex hull my $convex_hull = convex_hull(\@all_points); # draw outlines from outside to inside my @skirts = (); for (my $i = $Slic3r::skirts - 1; $i >= 0; $i--) { my $distance = scale ($Slic3r::skirt_distance + ($Slic3r::flow_spacing * $i)); my $outline = offset([$convex_hull], $distance, $Slic3r::resolution * 100, JT_ROUND); push @skirts, Slic3r::ExtrusionLoop->new( polygon => Slic3r::Polygon->new(@{$outline->[0]}), role => 'skirt', ); } # apply skirts to all layers push @{$_->skirts}, @skirts for @layers; } # combine fill surfaces across layers sub infill_every_layers { my $self = shift; return unless $Slic3r::infill_every_layers > 1 && $Slic3r::fill_density > 0; # start from bottom, skip first layer for (my $i = 1; $i < $self->layer_count; $i++) { my $layer = $self->layer($i); # skip layer if no internal fill surfaces next if !grep $_->surface_type eq 'internal', @{$layer->fill_surfaces}; # for each possible depth, look for intersections with the lower layer # we do this from the greater depth to the smaller for (my $d = $Slic3r::infill_every_layers - 1; $d >= 1; $d--) { next if ($i - $d) < 0; my $lower_layer = $self->layer($i - 1); # select surfaces of the lower layer having the depth we're looking for my @lower_surfaces = grep $_->depth_layers == $d && $_->surface_type eq 'internal', @{$lower_layer->fill_surfaces}; next if !@lower_surfaces; # calculate intersection between our surfaces and theirs my $intersection = intersection_ex( [ map $_->p, grep $_->depth_layers <= $d, @lower_surfaces ], [ map $_->p, grep $_->surface_type eq 'internal', @{$layer->fill_surfaces} ], ); next if !@$intersection; # new fill surfaces of the current layer are: # - any non-internal surface # - intersections found (with a $d + 1 depth) # - any internal surface not belonging to the intersection (with its original depth) { my @new_surfaces = (); push @new_surfaces, grep $_->surface_type ne 'internal', @{$layer->fill_surfaces}; push @new_surfaces, map Slic3r::Surface->new (expolygon => $_, surface_type => 'internal', depth_layers => $d + 1), @$intersection; foreach my $depth (reverse $d..$Slic3r::infill_every_layers) { push @new_surfaces, map Slic3r::Surface->new (expolygon => $_, surface_type => 'internal', depth_layers => $depth), # difference between our internal layers with depth == $depth # and the intersection found @{diff_ex( [ map $_->p, grep $_->surface_type eq 'internal' && $_->depth_layers == $depth, @{$layer->fill_surfaces}, ], [ map @$_, @$intersection ], 1, )}; } @{$layer->fill_surfaces} = @new_surfaces; } # now we remove the intersections from lower layer { my @new_surfaces = (); push @new_surfaces, grep $_->surface_type ne 'internal', @{$lower_layer->fill_surfaces}; foreach my $depth (1..$Slic3r::infill_every_layers) { push @new_surfaces, map Slic3r::Surface->new (expolygon => $_, surface_type => 'internal', depth_layers => $depth), # difference between internal layers with depth == $depth # and the intersection found @{diff_ex( [ map $_->p, grep $_->surface_type eq 'internal' && $_->depth_layers == $depth, @{$lower_layer->fill_surfaces}, ], [ map @$_, @$intersection ], 1, )}; } @{$lower_layer->fill_surfaces} = @new_surfaces; } } } } sub generate_support_material { my $self = shift; # determine unsupported surfaces my %layers = (); my @unsupported_expolygons = (); { my (@a, @b) = (); for my $i (reverse 0 .. $#{$self->layers}) { my $layer = $self->layers->[$i]; my @c = (); if (@b) { @c = @{diff_ex( [ map @$_, @b ], [ map @$_, map $_->expolygon->offset_ex(scale $Slic3r::flow_width), @{$layer->slices} ], )}; $layers{$i} = [@c]; } @b = @{union_ex([ map @$_, @c, @a ])}; # get unsupported surfaces for current layer @a = map $_->expolygon->offset_ex(scale $Slic3r::flow_spacing * $Slic3r::perimeters), grep $_->surface_type eq 'bottom' && !defined $_->bridge_angle, @{$layer->fill_surfaces}; $_->simplify(scale $Slic3r::flow_spacing * 3) for @a; push @unsupported_expolygons, @a; } } return if !@unsupported_expolygons; # generate paths for the pattern that we're going to use my $support_patterns = []; { my @support_material_areas = map $_->offset_ex(scale 5), @{union_ex([ map @$_, @unsupported_expolygons ])}; my $fill = Slic3r::Fill->new(print => $self); foreach my $angle (0, 90) { my @patterns = (); foreach my $expolygon (@support_material_areas) { my @paths = $fill->fillers->{rectilinear}->fill_surface( Slic3r::Surface->new( expolygon => $expolygon, bridge_angle => $Slic3r::fill_angle + 45 + $angle, ), density => 0.20, flow_spacing => $Slic3r::flow_spacing, ); my $params = shift @paths; push @patterns, map Slic3r::ExtrusionPath->new( polyline => Slic3r::Polyline->new(@$_), role => 'support-material', depth_layers => 1, flow_spacing => $params->{flow_spacing}, ), @paths; } push @$support_patterns, [@patterns]; } } if (0) { require "Slic3r/SVG.pm"; Slic3r::SVG::output(undef, "support.svg", polylines => [ map $_->polyline, map @$_, @$support_patterns ], ); } # apply the pattern to layers { my $clip_pattern = sub { my ($layer_id, $expolygons) = @_; my @paths = (); foreach my $expolygon (@$expolygons) { push @paths, map $_->clip_with_expolygon($expolygon), map $_->clip_with_polygon($expolygon->bounding_box_polygon), @{$support_patterns->[ $layer_id % 2 ]}; }; return @paths; }; my %layer_paths = (); Slic3r::parallelize( items => [ keys %layers ], thread_cb => sub { my $q = shift; my $paths = {}; while (defined (my $layer_id = $q->dequeue)) { $paths->{$layer_id} = [ $clip_pattern->($layer_id, $layers{$layer_id}) ]; } return $paths; }, collect_cb => sub { my $paths = shift; $layer_paths{$_} = $paths->{$_} for keys %$paths; }, no_threads_cb => sub { $layer_paths{$_} = [ $clip_pattern->($_, $layers{$_}) ] for keys %layers; }, ); foreach my $layer_id (keys %layer_paths) { my $layer = $self->layers->[$layer_id]; $layer->support_fills(Slic3r::ExtrusionPath::Collection->new); push @{$layer->support_fills->paths}, @{$layer_paths{$layer_id}}; } } } sub export_gcode { my $self = shift; my ($file) = @_; # open output gcode file open my $fh, ">", $file or die "Failed to open $file for writing\n"; # write some information my @lt = localtime; printf $fh "; generated by Slic3r $Slic3r::VERSION on %02d-%02d-%02d at %02d:%02d:%02d\n\n", $lt[5] + 1900, $lt[4]+1, $lt[3], $lt[2], $lt[1], $lt[0]; print $fh "; $_\n" foreach split /\R/, $Slic3r::notes; print $fh "\n" if $Slic3r::notes; for (qw(layer_height perimeters solid_layers fill_density nozzle_diameter filament_diameter extrusion_multiplier perimeter_speed infill_speed travel_speed extrusion_width_ratio scale)) { printf $fh "; %s = %s\n", $_, Slic3r::Config->get($_); } printf $fh "; single wall width = %.2fmm\n", $Slic3r::flow_width; print $fh "\n"; # write start commands to file printf $fh "M%s %s%d ; set bed temperature\n", ($Slic3r::gcode_flavor eq 'makerbot' ? '109' : '190'), ($Slic3r::gcode_flavor eq 'mach3' ? 'P' : 'S'), $Slic3r::first_layer_bed_temperature if $Slic3r::first_layer_bed_temperature && $Slic3r::start_gcode !~ /M190/i; printf $fh "M104 %s%d ; set temperature\n", ($Slic3r::gcode_flavor eq 'mach3' ? 'P' : 'S'), $Slic3r::first_layer_temperature if $Slic3r::first_layer_temperature; printf $fh "%s\n", Slic3r::Config->replace_options($Slic3r::start_gcode); printf $fh "M109 %s%d ; wait for temperature to be reached\n", ($Slic3r::gcode_flavor eq 'mach3' ? 'P' : 'S'), $Slic3r::first_layer_temperature if $Slic3r::first_layer_temperature && $Slic3r::gcode_flavor ne 'makerbot' && $Slic3r::start_gcode !~ /M109/i; print $fh "G90 ; use absolute coordinates\n"; print $fh "G21 ; set units to millimeters\n"; if ($Slic3r::gcode_flavor =~ /^(?:reprap|teacup)$/) { printf $fh "G92 %s0 ; reset extrusion distance\n", $Slic3r::extrusion_axis; if ($Slic3r::gcode_flavor =~ /^(?:reprap|makerbot)$/) { if ($Slic3r::use_relative_e_distances) { print $fh "M83 ; use relative distances for extrusion\n"; } else { print $fh "M82 ; use absolute distances for extrusion\n"; } } } # calculate X,Y shift to center print around specified origin my @shift = ( $Slic3r::print_center->[X] - (unscale $self->total_x_length / 2), $Slic3r::print_center->[Y] - (unscale $self->total_y_length / 2), ); # set up our extruder object my $extruder = Slic3r::Extruder->new; my $min_print_speed = 60 * $Slic3r::min_print_speed; my $dec = $extruder->dec; if ($Slic3r::support_material && $Slic3r::support_material_tool > 0) { print $fh $extruder->set_tool(0); } print $fh $extruder->set_fan(0, 1) if $Slic3r::cooling && $Slic3r::disable_fan_first_layers; # write gcode commands layer by layer foreach my $layer (@{ $self->layers }) { if ($layer->id == 1) { printf $fh "M104 %s%d ; set temperature\n", ($Slic3r::gcode_flavor eq 'mach3' ? 'P' : 'S'), $Slic3r::temperature if $Slic3r::temperature && $Slic3r::temperature != $Slic3r::first_layer_temperature; printf $fh "M140 %s%d ; set bed temperature\n", ($Slic3r::gcode_flavor eq 'mach3' ? 'P' : 'S'), $Slic3r::bed_temperature if $Slic3r::bed_temperature && $Slic3r::bed_temperature != $Slic3r::first_layer_bed_temperature; } # go to layer my $layer_gcode = $extruder->change_layer($layer); $extruder->elapsed_time(0); # extrude skirts $extruder->shift_x($shift[X]); $extruder->shift_y($shift[Y]); $layer_gcode .= $extruder->set_acceleration($Slic3r::perimeter_acceleration); $layer_gcode .= $extruder->extrude_loop($_, 'skirt') for @{ $layer->skirts }; for (my $i = 0; $i <= $#{$self->copies}; $i++) { my $copy = $self->copies->[$i]; # retract explicitely because changing the shift_[xy] properties below # won't always trigger the automatic retraction $layer_gcode .= $extruder->retract; $extruder->shift_x($shift[X] + unscale $copy->[X]); $extruder->shift_y($shift[Y] + unscale $copy->[Y]); # extrude perimeters $layer_gcode .= $extruder->extrude($_, 'perimeter') for @{ $layer->perimeters }; # extrude fills $layer_gcode .= $extruder->set_acceleration($Slic3r::infill_acceleration); for my $fill (@{ $layer->fills }) { $layer_gcode .= $extruder->extrude_path($_, 'fill') for $fill->shortest_path($extruder->last_pos); } # extrude support material if ($layer->support_fills) { $layer_gcode .= $extruder->set_tool($Slic3r::support_material_tool) if $Slic3r::support_material_tool > 0; $layer_gcode .= $extruder->extrude_path($_, 'support material') for $layer->support_fills->shortest_path($extruder->last_pos); $layer_gcode .= $extruder->set_tool(0) if $Slic3r::support_material_tool > 0; } } last if !$layer_gcode; my $fan_speed = $Slic3r::fan_always_on ? $Slic3r::min_fan_speed : 0; my $speed_factor = 1; if ($Slic3r::cooling) { my $layer_time = $extruder->elapsed_time; Slic3r::debugf "Layer %d estimated printing time: %d seconds\n", $layer->id, $layer_time; if ($layer_time < $Slic3r::slowdown_below_layer_time) { $fan_speed = $Slic3r::max_fan_speed; $speed_factor = $layer_time / $Slic3r::slowdown_below_layer_time; } elsif ($layer_time < $Slic3r::fan_below_layer_time) { $fan_speed = $Slic3r::max_fan_speed - ($Slic3r::max_fan_speed - $Slic3r::min_fan_speed) * ($layer_time - $Slic3r::slowdown_below_layer_time) / ($Slic3r::fan_below_layer_time - $Slic3r::slowdown_below_layer_time); #/ } Slic3r::debugf " fan = %d%%, speed = %d%%\n", $fan_speed, $speed_factor * 100; if ($speed_factor < 1) { $layer_gcode =~ s/^(?=.*? [XY])(?=.*? E)(G1 .*?F)(\d+(?:\.\d+)?)/ my $new_speed = $2 * $speed_factor; $1 . sprintf("%.${dec}f", $new_speed < $min_print_speed ? $min_print_speed : $new_speed) /gexm; } $fan_speed = 0 if $layer->id < $Slic3r::disable_fan_first_layers; } $layer_gcode = $extruder->set_fan($fan_speed) . $layer_gcode; # bridge fan speed if (!$Slic3r::cooling || $Slic3r::bridge_fan_speed == 0 || $layer->id < $Slic3r::disable_fan_first_layers) { $layer_gcode =~ s/^;_BRIDGE_FAN_(?:START|END)\n//gm; } else { $layer_gcode =~ s/^;_BRIDGE_FAN_START\n/ $extruder->set_fan($Slic3r::bridge_fan_speed, 1) /gmex; $layer_gcode =~ s/^;_BRIDGE_FAN_END\n/ $extruder->set_fan($fan_speed, 1) /gmex; } print $fh $layer_gcode; } # save statistic data $self->total_extrusion_length($extruder->total_extrusion_length); # write end commands to file print $fh $extruder->retract; print $fh $extruder->set_fan(0); print $fh "M501 ; reset acceleration\n" if $Slic3r::acceleration; printf $fh "%s\n", Slic3r::Config->replace_options($Slic3r::end_gcode); printf $fh "; filament used = %.1fmm (%.1fcm3)\n", $self->total_extrusion_length, $self->total_extrusion_volume; # close our gcode file close $fh; } sub total_extrusion_volume { my $self = shift; return $self->total_extrusion_length * ($Slic3r::filament_diameter**2) * PI/4 / 1000; } 1;