#include "libslic3r.h" #include "Exception.hpp" #include "Geometry.hpp" #include "ClipperUtils.hpp" #include "ExPolygon.hpp" #include "Line.hpp" #include "clipper.hpp" #include <algorithm> #include <cassert> #include <cmath> #include <list> #include <map> #include <numeric> #include <set> #include <utility> #include <stack> #include <vector> #include <boost/algorithm/string/classification.hpp> #include <boost/algorithm/string/split.hpp> #include <boost/log/trivial.hpp> #if defined(_MSC_VER) && defined(__clang__) #define BOOST_NO_CXX17_HDR_STRING_VIEW #endif namespace Slic3r { namespace Geometry { bool directions_parallel(double angle1, double angle2, double max_diff) { double diff = fabs(angle1 - angle2); max_diff += EPSILON; return diff < max_diff || fabs(diff - PI) < max_diff; } bool directions_perpendicular(double angle1, double angle2, double max_diff) { double diff = fabs(angle1 - angle2); max_diff += EPSILON; return fabs(diff - 0.5 * PI) < max_diff || fabs(diff - 1.5 * PI) < max_diff; } template<class T> bool contains(const std::vector<T> &vector, const Point &point) { for (typename std::vector<T>::const_iterator it = vector.begin(); it != vector.end(); ++it) { if (it->contains(point)) return true; } return false; } template bool contains(const ExPolygons &vector, const Point &point); double rad2deg_dir(double angle) { angle = (angle < PI) ? (-angle + PI/2.0) : (angle + PI/2.0); if (angle < 0) angle += PI; return rad2deg(angle); } void simplify_polygons(const Polygons &polygons, double tolerance, Polygons* retval) { Polygons pp; for (Polygons::const_iterator it = polygons.begin(); it != polygons.end(); ++it) { Polygon p = *it; p.points.push_back(p.points.front()); p.points = MultiPoint::_douglas_peucker(p.points, tolerance); p.points.pop_back(); pp.push_back(p); } *retval = Slic3r::simplify_polygons(pp); } double linint(double value, double oldmin, double oldmax, double newmin, double newmax) { return (value - oldmin) * (newmax - newmin) / (oldmax - oldmin) + newmin; } #if 0 // Point with a weight, by which the points are sorted. // If the points have the same weight, sort them lexicographically by their positions. struct ArrangeItem { ArrangeItem() {} Vec2d pos; coordf_t weight; bool operator<(const ArrangeItem &other) const { return weight < other.weight || ((weight == other.weight) && (pos(1) < other.pos(1) || (pos(1) == other.pos(1) && pos(0) < other.pos(0)))); } }; Pointfs arrange(size_t num_parts, const Vec2d &part_size, coordf_t gap, const BoundingBoxf* bed_bounding_box) { // Use actual part size (the largest) plus separation distance (half on each side) in spacing algorithm. const Vec2d cell_size(part_size(0) + gap, part_size(1) + gap); const BoundingBoxf bed_bbox = (bed_bounding_box != NULL && bed_bounding_box->defined) ? *bed_bounding_box : // Bogus bed size, large enough not to trigger the unsufficient bed size error. BoundingBoxf( Vec2d(0, 0), Vec2d(cell_size(0) * num_parts, cell_size(1) * num_parts)); // This is how many cells we have available into which to put parts. size_t cellw = size_t(floor((bed_bbox.size()(0) + gap) / cell_size(0))); size_t cellh = size_t(floor((bed_bbox.size()(1) + gap) / cell_size(1))); if (num_parts > cellw * cellh) throw Slic3r::InvalidArgument("%zu parts won't fit in your print area!\n", num_parts); // Get a bounding box of cellw x cellh cells, centered at the center of the bed. Vec2d cells_size(cellw * cell_size(0) - gap, cellh * cell_size(1) - gap); Vec2d cells_offset(bed_bbox.center() - 0.5 * cells_size); BoundingBoxf cells_bb(cells_offset, cells_size + cells_offset); // List of cells, sorted by distance from center. std::vector<ArrangeItem> cellsorder(cellw * cellh, ArrangeItem()); for (size_t j = 0; j < cellh; ++ j) { // Center of the jth row on the bed. coordf_t cy = linint(j + 0.5, 0., double(cellh), cells_bb.min(1), cells_bb.max(1)); // Offset from the bed center. coordf_t yd = cells_bb.center()(1) - cy; for (size_t i = 0; i < cellw; ++ i) { // Center of the ith column on the bed. coordf_t cx = linint(i + 0.5, 0., double(cellw), cells_bb.min(0), cells_bb.max(0)); // Offset from the bed center. coordf_t xd = cells_bb.center()(0) - cx; // Cell with a distance from the bed center. ArrangeItem &ci = cellsorder[j * cellw + i]; // Cell center ci.pos(0) = cx; ci.pos(1) = cy; // Square distance of the cell center to the bed center. ci.weight = xd * xd + yd * yd; } } // Sort the cells lexicographically by their distances to the bed center and left to right / bttom to top. std::sort(cellsorder.begin(), cellsorder.end()); cellsorder.erase(cellsorder.begin() + num_parts, cellsorder.end()); // Return the (left,top) corners of the cells. Pointfs positions; positions.reserve(num_parts); for (std::vector<ArrangeItem>::const_iterator it = cellsorder.begin(); it != cellsorder.end(); ++ it) positions.push_back(Vec2d(it->pos(0) - 0.5 * part_size(0), it->pos(1) - 0.5 * part_size(1))); return positions; } #else class ArrangeItem { public: Vec2d pos = Vec2d::Zero(); size_t index_x, index_y; coordf_t dist; }; class ArrangeItemIndex { public: coordf_t index; ArrangeItem item; ArrangeItemIndex(coordf_t _index, ArrangeItem _item) : index(_index), item(_item) {}; }; bool arrange(size_t total_parts, const Vec2d &part_size, coordf_t dist, const BoundingBoxf* bb, Pointfs &positions) { positions.clear(); Vec2d part = part_size; // use actual part size (the largest) plus separation distance (half on each side) in spacing algorithm part(0) += dist; part(1) += dist; Vec2d area(Vec2d::Zero()); if (bb != NULL && bb->defined) { area = bb->size(); } else { // bogus area size, large enough not to trigger the error below area(0) = part(0) * total_parts; area(1) = part(1) * total_parts; } // this is how many cells we have available into which to put parts size_t cellw = floor((area(0) + dist) / part(0)); size_t cellh = floor((area(1) + dist) / part(1)); if (total_parts > (cellw * cellh)) return false; // total space used by cells Vec2d cells(cellw * part(0), cellh * part(1)); // bounding box of total space used by cells BoundingBoxf cells_bb; cells_bb.merge(Vec2d(0,0)); // min cells_bb.merge(cells); // max // center bounding box to area cells_bb.translate( (area(0) - cells(0)) / 2, (area(1) - cells(1)) / 2 ); // list of cells, sorted by distance from center std::vector<ArrangeItemIndex> cellsorder; // work out distance for all cells, sort into list for (size_t i = 0; i <= cellw-1; ++i) { for (size_t j = 0; j <= cellh-1; ++j) { coordf_t cx = linint(i + 0.5, 0, cellw, cells_bb.min(0), cells_bb.max(0)); coordf_t cy = linint(j + 0.5, 0, cellh, cells_bb.min(1), cells_bb.max(1)); coordf_t xd = fabs((area(0) / 2) - cx); coordf_t yd = fabs((area(1) / 2) - cy); ArrangeItem c; c.pos(0) = cx; c.pos(1) = cy; c.index_x = i; c.index_y = j; c.dist = xd * xd + yd * yd - fabs((cellw / 2) - (i + 0.5)); // binary insertion sort { coordf_t index = c.dist; size_t low = 0; size_t high = cellsorder.size(); while (low < high) { size_t mid = (low + ((high - low) / 2)) | 0; coordf_t midval = cellsorder[mid].index; if (midval < index) { low = mid + 1; } else if (midval > index) { high = mid; } else { cellsorder.insert(cellsorder.begin() + mid, ArrangeItemIndex(index, c)); goto ENDSORT; } } cellsorder.insert(cellsorder.begin() + low, ArrangeItemIndex(index, c)); } ENDSORT: ; } } // the extents of cells actually used by objects coordf_t lx = 0; coordf_t ty = 0; coordf_t rx = 0; coordf_t by = 0; // now find cells actually used by objects, map out the extents so we can position correctly for (size_t i = 1; i <= total_parts; ++i) { ArrangeItemIndex c = cellsorder[i - 1]; coordf_t cx = c.item.index_x; coordf_t cy = c.item.index_y; if (i == 1) { lx = rx = cx; ty = by = cy; } else { if (cx > rx) rx = cx; if (cx < lx) lx = cx; if (cy > by) by = cy; if (cy < ty) ty = cy; } } // now we actually place objects into cells, positioned such that the left and bottom borders are at 0 for (size_t i = 1; i <= total_parts; ++i) { ArrangeItemIndex c = cellsorder.front(); cellsorder.erase(cellsorder.begin()); coordf_t cx = c.item.index_x - lx; coordf_t cy = c.item.index_y - ty; positions.push_back(Vec2d(cx * part(0), cy * part(1))); } if (bb != NULL && bb->defined) { for (Pointfs::iterator p = positions.begin(); p != positions.end(); ++p) { p->x() += bb->min(0); p->y() += bb->min(1); } } return true; } #endif // Euclidian distance of two boost::polygon points. template<typename T> T dist(const boost::polygon::point_data<T> &p1,const boost::polygon::point_data<T> &p2) { T dx = p2(0) - p1(0); T dy = p2(1) - p1(1); return sqrt(dx*dx+dy*dy); } // Find a foot point of "px" on a segment "seg". template<typename segment_type, typename point_type> inline point_type project_point_to_segment(segment_type &seg, point_type &px) { typedef typename point_type::coordinate_type T; const point_type &p0 = low(seg); const point_type &p1 = high(seg); const point_type dir(p1(0)-p0(0), p1(1)-p0(1)); const point_type dproj(px(0)-p0(0), px(1)-p0(1)); const T t = (dir(0)*dproj(0) + dir(1)*dproj(1)) / (dir(0)*dir(0) + dir(1)*dir(1)); assert(t >= T(-1e-6) && t <= T(1. + 1e-6)); return point_type(p0(0) + t*dir(0), p0(1) + t*dir(1)); } void assemble_transform(Transform3d& transform, const Vec3d& translation, const Vec3d& rotation, const Vec3d& scale, const Vec3d& mirror) { transform = Transform3d::Identity(); transform.translate(translation); transform.rotate(Eigen::AngleAxisd(rotation(2), Vec3d::UnitZ()) * Eigen::AngleAxisd(rotation(1), Vec3d::UnitY()) * Eigen::AngleAxisd(rotation(0), Vec3d::UnitX())); transform.scale(scale.cwiseProduct(mirror)); } Transform3d assemble_transform(const Vec3d& translation, const Vec3d& rotation, const Vec3d& scale, const Vec3d& mirror) { Transform3d transform; assemble_transform(transform, translation, rotation, scale, mirror); return transform; } Vec3d extract_euler_angles(const Eigen::Matrix<double, 3, 3, Eigen::DontAlign>& rotation_matrix) { // reference: http://www.gregslabaugh.net/publications/euler.pdf Vec3d angles1 = Vec3d::Zero(); Vec3d angles2 = Vec3d::Zero(); if (std::abs(std::abs(rotation_matrix(2, 0)) - 1.0) < 1e-5) { angles1(2) = 0.0; if (rotation_matrix(2, 0) < 0.0) // == -1.0 { angles1(1) = 0.5 * (double)PI; angles1(0) = angles1(2) + ::atan2(rotation_matrix(0, 1), rotation_matrix(0, 2)); } else // == 1.0 { angles1(1) = - 0.5 * (double)PI; angles1(0) = - angles1(2) + ::atan2(- rotation_matrix(0, 1), - rotation_matrix(0, 2)); } angles2 = angles1; } else { angles1(1) = -::asin(rotation_matrix(2, 0)); double inv_cos1 = 1.0 / ::cos(angles1(1)); angles1(0) = ::atan2(rotation_matrix(2, 1) * inv_cos1, rotation_matrix(2, 2) * inv_cos1); angles1(2) = ::atan2(rotation_matrix(1, 0) * inv_cos1, rotation_matrix(0, 0) * inv_cos1); angles2(1) = (double)PI - angles1(1); double inv_cos2 = 1.0 / ::cos(angles2(1)); angles2(0) = ::atan2(rotation_matrix(2, 1) * inv_cos2, rotation_matrix(2, 2) * inv_cos2); angles2(2) = ::atan2(rotation_matrix(1, 0) * inv_cos2, rotation_matrix(0, 0) * inv_cos2); } // The following euristic is the best found up to now (in the sense that it works fine with the greatest number of edge use-cases) // but there are other use-cases were it does not // We need to improve it double min_1 = angles1.cwiseAbs().minCoeff(); double min_2 = angles2.cwiseAbs().minCoeff(); bool use_1 = (min_1 < min_2) || (is_approx(min_1, min_2) && (angles1.norm() <= angles2.norm())); return use_1 ? angles1 : angles2; } Vec3d extract_euler_angles(const Transform3d& transform) { // use only the non-translational part of the transform Eigen::Matrix<double, 3, 3, Eigen::DontAlign> m = transform.matrix().block(0, 0, 3, 3); // remove scale m.col(0).normalize(); m.col(1).normalize(); m.col(2).normalize(); return extract_euler_angles(m); } Transformation::Flags::Flags() : dont_translate(true) , dont_rotate(true) , dont_scale(true) , dont_mirror(true) { } bool Transformation::Flags::needs_update(bool dont_translate, bool dont_rotate, bool dont_scale, bool dont_mirror) const { return (this->dont_translate != dont_translate) || (this->dont_rotate != dont_rotate) || (this->dont_scale != dont_scale) || (this->dont_mirror != dont_mirror); } void Transformation::Flags::set(bool dont_translate, bool dont_rotate, bool dont_scale, bool dont_mirror) { this->dont_translate = dont_translate; this->dont_rotate = dont_rotate; this->dont_scale = dont_scale; this->dont_mirror = dont_mirror; } Transformation::Transformation() { reset(); } Transformation::Transformation(const Transform3d& transform) { set_from_transform(transform); } void Transformation::set_offset(const Vec3d& offset) { set_offset(X, offset(0)); set_offset(Y, offset(1)); set_offset(Z, offset(2)); } void Transformation::set_offset(Axis axis, double offset) { if (m_offset(axis) != offset) { m_offset(axis) = offset; m_dirty = true; } } void Transformation::set_rotation(const Vec3d& rotation) { set_rotation(X, rotation(0)); set_rotation(Y, rotation(1)); set_rotation(Z, rotation(2)); } void Transformation::set_rotation(Axis axis, double rotation) { rotation = angle_to_0_2PI(rotation); if (is_approx(std::abs(rotation), 2.0 * (double)PI)) rotation = 0.0; if (m_rotation(axis) != rotation) { m_rotation(axis) = rotation; m_dirty = true; } } void Transformation::set_scaling_factor(const Vec3d& scaling_factor) { set_scaling_factor(X, scaling_factor(0)); set_scaling_factor(Y, scaling_factor(1)); set_scaling_factor(Z, scaling_factor(2)); } void Transformation::set_scaling_factor(Axis axis, double scaling_factor) { if (m_scaling_factor(axis) != std::abs(scaling_factor)) { m_scaling_factor(axis) = std::abs(scaling_factor); m_dirty = true; } } void Transformation::set_mirror(const Vec3d& mirror) { set_mirror(X, mirror(0)); set_mirror(Y, mirror(1)); set_mirror(Z, mirror(2)); } void Transformation::set_mirror(Axis axis, double mirror) { double abs_mirror = std::abs(mirror); if (abs_mirror == 0.0) mirror = 1.0; else if (abs_mirror != 1.0) mirror /= abs_mirror; if (m_mirror(axis) != mirror) { m_mirror(axis) = mirror; m_dirty = true; } } void Transformation::set_from_transform(const Transform3d& transform) { // offset set_offset(transform.matrix().block(0, 3, 3, 1)); Eigen::Matrix<double, 3, 3, Eigen::DontAlign> m3x3 = transform.matrix().block(0, 0, 3, 3); // mirror // it is impossible to reconstruct the original mirroring factors from a matrix, // we can only detect if the matrix contains a left handed reference system // in which case we reorient it back to right handed by mirroring the x axis Vec3d mirror = Vec3d::Ones(); if (m3x3.col(0).dot(m3x3.col(1).cross(m3x3.col(2))) < 0.0) { mirror(0) = -1.0; // remove mirror m3x3.col(0) *= -1.0; } set_mirror(mirror); // scale set_scaling_factor(Vec3d(m3x3.col(0).norm(), m3x3.col(1).norm(), m3x3.col(2).norm())); // remove scale m3x3.col(0).normalize(); m3x3.col(1).normalize(); m3x3.col(2).normalize(); // rotation set_rotation(extract_euler_angles(m3x3)); // forces matrix recalculation matrix m_matrix = get_matrix(); // // debug check // if (!m_matrix.isApprox(transform)) // std::cout << "something went wrong in extracting data from matrix" << std::endl; } void Transformation::reset() { m_offset = Vec3d::Zero(); m_rotation = Vec3d::Zero(); m_scaling_factor = Vec3d::Ones(); m_mirror = Vec3d::Ones(); m_matrix = Transform3d::Identity(); m_dirty = false; } const Transform3d& Transformation::get_matrix(bool dont_translate, bool dont_rotate, bool dont_scale, bool dont_mirror) const { if (m_dirty || m_flags.needs_update(dont_translate, dont_rotate, dont_scale, dont_mirror)) { m_matrix = Geometry::assemble_transform( dont_translate ? Vec3d::Zero() : m_offset, dont_rotate ? Vec3d::Zero() : m_rotation, dont_scale ? Vec3d::Ones() : m_scaling_factor, dont_mirror ? Vec3d::Ones() : m_mirror ); m_flags.set(dont_translate, dont_rotate, dont_scale, dont_mirror); m_dirty = false; } return m_matrix; } Transformation Transformation::operator * (const Transformation& other) const { return Transformation(get_matrix() * other.get_matrix()); } Transformation Transformation::volume_to_bed_transformation(const Transformation& instance_transformation, const BoundingBoxf3& bbox) { Transformation out; if (instance_transformation.is_scaling_uniform()) { // No need to run the non-linear least squares fitting for uniform scaling. // Just set the inverse. out.set_from_transform(instance_transformation.get_matrix(true).inverse()); } else if (is_rotation_ninety_degrees(instance_transformation.get_rotation())) { // Anisotropic scaling, rotation by multiples of ninety degrees. Eigen::Matrix3d instance_rotation_trafo = (Eigen::AngleAxisd(instance_transformation.get_rotation().z(), Vec3d::UnitZ()) * Eigen::AngleAxisd(instance_transformation.get_rotation().y(), Vec3d::UnitY()) * Eigen::AngleAxisd(instance_transformation.get_rotation().x(), Vec3d::UnitX())).toRotationMatrix(); Eigen::Matrix3d volume_rotation_trafo = (Eigen::AngleAxisd(-instance_transformation.get_rotation().x(), Vec3d::UnitX()) * Eigen::AngleAxisd(-instance_transformation.get_rotation().y(), Vec3d::UnitY()) * Eigen::AngleAxisd(-instance_transformation.get_rotation().z(), Vec3d::UnitZ())).toRotationMatrix(); // 8 corners of the bounding box. auto pts = Eigen::MatrixXd(8, 3); pts(0, 0) = bbox.min.x(); pts(0, 1) = bbox.min.y(); pts(0, 2) = bbox.min.z(); pts(1, 0) = bbox.min.x(); pts(1, 1) = bbox.min.y(); pts(1, 2) = bbox.max.z(); pts(2, 0) = bbox.min.x(); pts(2, 1) = bbox.max.y(); pts(2, 2) = bbox.min.z(); pts(3, 0) = bbox.min.x(); pts(3, 1) = bbox.max.y(); pts(3, 2) = bbox.max.z(); pts(4, 0) = bbox.max.x(); pts(4, 1) = bbox.min.y(); pts(4, 2) = bbox.min.z(); pts(5, 0) = bbox.max.x(); pts(5, 1) = bbox.min.y(); pts(5, 2) = bbox.max.z(); pts(6, 0) = bbox.max.x(); pts(6, 1) = bbox.max.y(); pts(6, 2) = bbox.min.z(); pts(7, 0) = bbox.max.x(); pts(7, 1) = bbox.max.y(); pts(7, 2) = bbox.max.z(); // Corners of the bounding box transformed into the modifier mesh coordinate space, with inverse rotation applied to the modifier. auto qs = pts * (instance_rotation_trafo * Eigen::Scaling(instance_transformation.get_scaling_factor().cwiseProduct(instance_transformation.get_mirror())) * volume_rotation_trafo).inverse().transpose(); // Fill in scaling based on least squares fitting of the bounding box corners. Vec3d scale; for (int i = 0; i < 3; ++i) scale(i) = pts.col(i).dot(qs.col(i)) / pts.col(i).dot(pts.col(i)); out.set_rotation(Geometry::extract_euler_angles(volume_rotation_trafo)); out.set_scaling_factor(Vec3d(std::abs(scale(0)), std::abs(scale(1)), std::abs(scale(2)))); out.set_mirror(Vec3d(scale(0) > 0 ? 1. : -1, scale(1) > 0 ? 1. : -1, scale(2) > 0 ? 1. : -1)); } else { // General anisotropic scaling, general rotation. // Keep the modifier mesh in the instance coordinate system, so the modifier mesh will not be aligned with the world. // Scale it to get the required size. out.set_scaling_factor(instance_transformation.get_scaling_factor().cwiseInverse()); } return out; } // For parsing a transformation matrix from 3MF / AMF. Transform3d transform3d_from_string(const std::string& transform_str) { assert(is_decimal_separator_point()); // for atof Transform3d transform = Transform3d::Identity(); if (!transform_str.empty()) { std::vector<std::string> mat_elements_str; boost::split(mat_elements_str, transform_str, boost::is_any_of(" "), boost::token_compress_on); unsigned int size = (unsigned int)mat_elements_str.size(); if (size == 16) { unsigned int i = 0; for (unsigned int r = 0; r < 4; ++r) { for (unsigned int c = 0; c < 4; ++c) { transform(r, c) = ::atof(mat_elements_str[i++].c_str()); } } } } return transform; } Eigen::Quaterniond rotation_xyz_diff(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to) { return // From the current coordinate system to world. Eigen::AngleAxisd(rot_xyz_to(2), Vec3d::UnitZ()) * Eigen::AngleAxisd(rot_xyz_to(1), Vec3d::UnitY()) * Eigen::AngleAxisd(rot_xyz_to(0), Vec3d::UnitX()) * // From world to the initial coordinate system. Eigen::AngleAxisd(-rot_xyz_from(0), Vec3d::UnitX()) * Eigen::AngleAxisd(-rot_xyz_from(1), Vec3d::UnitY()) * Eigen::AngleAxisd(-rot_xyz_from(2), Vec3d::UnitZ()); } // This should only be called if it is known, that the two rotations only differ in rotation around the Z axis. double rotation_diff_z(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to) { Eigen::AngleAxisd angle_axis(rotation_xyz_diff(rot_xyz_from, rot_xyz_to)); Vec3d axis = angle_axis.axis(); double angle = angle_axis.angle(); #ifndef NDEBUG if (std::abs(angle) > 1e-8) { assert(std::abs(axis.x()) < 1e-8); assert(std::abs(axis.y()) < 1e-8); } #endif /* NDEBUG */ return (axis.z() < 0) ? -angle : angle; } }} // namespace Slic3r::Geometry