#ifndef slic3r_TriangleMesh_hpp_ #define slic3r_TriangleMesh_hpp_ #include "libslic3r.h" #include #include #include #include "BoundingBox.hpp" #include "Line.hpp" #include "Point.hpp" #include "Polygon.hpp" #include "ExPolygon.hpp" namespace Slic3r { class TriangleMesh; class TriangleMeshSlicer; struct RepairedMeshErrors { // How many edges were united by merging their end points with some other end points in epsilon neighborhood? int edges_fixed = 0; // How many degenerate faces were removed? int degenerate_facets = 0; // How many faces were removed during fixing? Includes degenerate_faces and disconnected faces. int facets_removed = 0; // New faces could only be created with stl_fill_holes() and we ditched stl_fill_holes(), because mostly it does more harm than good. //int facets_added = 0; // How many facets were revesed? Faces are reversed by admesh while it connects patches of triangles togeter and a flipped triangle is encountered. // Also the facets are reversed when a negative volume is corrected by flipping all facets. int facets_reversed = 0; // Edges shared by two triangles, oriented incorrectly. int backwards_edges = 0; void clear() { *this = RepairedMeshErrors(); } void merge(const RepairedMeshErrors& rhs) { this->edges_fixed += rhs.edges_fixed; this->degenerate_facets += rhs.degenerate_facets; this->facets_removed += rhs.facets_removed; this->facets_reversed += rhs.facets_reversed; this->backwards_edges += rhs.backwards_edges; } bool repaired() const { return degenerate_facets > 0 || edges_fixed > 0 || facets_removed > 0 || facets_reversed > 0 || backwards_edges > 0; } }; struct TriangleMeshStats { // Mesh metrics. uint32_t number_of_facets = 0; stl_vertex max = stl_vertex::Zero(); stl_vertex min = stl_vertex::Zero(); stl_vertex size = stl_vertex::Zero(); float volume = -1.f; int number_of_parts = 0; // Mesh errors, remaining. int open_edges = 0; // Mesh errors, fixed. RepairedMeshErrors repaired_errors; void clear() { *this = TriangleMeshStats(); } TriangleMeshStats merge(const TriangleMeshStats &rhs) const { if (this->number_of_facets == 0) return rhs; else if (rhs.number_of_facets == 0) return *this; else { TriangleMeshStats out; out.number_of_facets = this->number_of_facets + rhs.number_of_facets; out.min = this->min.cwiseMin(rhs.min); out.max = this->max.cwiseMax(rhs.max); out.size = out.max - out.min; out.number_of_parts = this->number_of_parts + rhs.number_of_parts; out.open_edges = this->open_edges + rhs.open_edges; out.volume = this->volume + rhs.volume; out.repaired_errors.merge(rhs.repaired_errors); return out; } } bool manifold() const { return open_edges == 0; } bool repaired() const { return repaired_errors.repaired(); } }; class TriangleMesh { public: TriangleMesh() = default; TriangleMesh(const std::vector &vertices, const std::vector &faces); TriangleMesh(std::vector &&vertices, const std::vector &&faces); explicit TriangleMesh(const indexed_triangle_set &M); explicit TriangleMesh(indexed_triangle_set &&M, const RepairedMeshErrors& repaired_errors = RepairedMeshErrors()); void clear() { this->its.clear(); this->m_stats.clear(); } bool ReadSTLFile(const char* input_file, bool repair = true); bool write_ascii(const char* output_file); bool write_binary(const char* output_file); float volume(); void WriteOBJFile(const char* output_file) const; void scale(float factor); void scale(const Vec3f &versor); void translate(float x, float y, float z); void translate(const Vec3f &displacement); void rotate(float angle, const Axis &axis); void rotate(float angle, const Vec3d& axis); void rotate_x(float angle) { this->rotate(angle, X); } void rotate_y(float angle) { this->rotate(angle, Y); } void rotate_z(float angle) { this->rotate(angle, Z); } void mirror(const Axis axis); void mirror_x() { this->mirror(X); } void mirror_y() { this->mirror(Y); } void mirror_z() { this->mirror(Z); } void transform(const Transform3d& t, bool fix_left_handed = false); void transform(const Matrix3d& t, bool fix_left_handed = false); // Flip triangles, negate volume. void flip_triangles(); void align_to_origin(); void rotate(double angle, Point* center); std::vector split() const; void merge(const TriangleMesh &mesh); ExPolygons horizontal_projection() const; // 2D convex hull of a 3D mesh projected into the Z=0 plane. Polygon convex_hull(); BoundingBoxf3 bounding_box() const; // Returns the bbox of this TriangleMesh transformed by the given transformation BoundingBoxf3 transformed_bounding_box(const Transform3d &trafo) const; // Variant returning the bbox of the part of this TriangleMesh above the given world_min_z BoundingBoxf3 transformed_bounding_box(const Transform3d& trafo, double world_min_z) const; // Return the size of the mesh in coordinates. Vec3d size() const { return m_stats.size.cast(); } /// Return the center of the related bounding box. Vec3d center() const { return this->bounding_box().center(); } // Returns the convex hull of this TriangleMesh TriangleMesh convex_hull_3d() const; // Slice this mesh at the provided Z levels and return the vector std::vector slice(const std::vector& z) const; size_t facets_count() const { assert(m_stats.number_of_facets == this->its.indices.size()); return m_stats.number_of_facets; } bool empty() const { return this->facets_count() == 0; } bool repaired() const; bool is_splittable() const; // Estimate of the memory occupied by this structure, important for keeping an eye on the Undo / Redo stack allocation. size_t memsize() const; // Used by the Undo / Redo stack, legacy interface. As of now there is nothing cached at TriangleMesh, // but we may decide to cache some data in the future (for example normals), thus we keep the interface in place. // Release optional data from the mesh if the object is on the Undo / Redo stack only. Returns the amount of memory released. size_t release_optional() { return 0; } // Restore optional data possibly released by release_optional(). void restore_optional() {} const TriangleMeshStats& stats() const { return m_stats; } indexed_triangle_set its; private: TriangleMeshStats m_stats; }; // Index of face indices incident with a vertex index. struct VertexFaceIndex { public: using iterator = std::vector::const_iterator; VertexFaceIndex(const indexed_triangle_set &its) { this->create(its); } VertexFaceIndex() {} void create(const indexed_triangle_set &its); void clear() { m_vertex_to_face_start.clear(); m_vertex_faces_all.clear(); } // Iterators of face indices incident with the input vertex_id. iterator begin(size_t vertex_id) const throw() { return m_vertex_faces_all.begin() + m_vertex_to_face_start[vertex_id]; } iterator end (size_t vertex_id) const throw() { return m_vertex_faces_all.begin() + m_vertex_to_face_start[vertex_id + 1]; } // Vertex incidence. size_t count(size_t vertex_id) const throw() { return m_vertex_to_face_start[vertex_id + 1] - m_vertex_to_face_start[vertex_id]; } const Range operator[](size_t vertex_id) const { return {begin(vertex_id), end(vertex_id)}; } private: std::vector m_vertex_to_face_start; std::vector m_vertex_faces_all; }; // Map from a face edge to a unique edge identifier or -1 if no neighbor exists. // Two neighbor faces share a unique edge identifier even if they are flipped. // Used for chaining slice lines into polygons. std::vector its_face_edge_ids(const indexed_triangle_set &its); std::vector its_face_edge_ids(const indexed_triangle_set &its, std::function throw_on_cancel_callback); std::vector its_face_edge_ids(const indexed_triangle_set &its, const std::vector &face_mask); // Having the face neighbors available, assign unique edge IDs to face edges for chaining of polygons over slices. std::vector its_face_edge_ids(const indexed_triangle_set &its, std::vector &face_neighbors, bool assign_unbound_edges = false, int *num_edges = nullptr); // Create index that gives neighbor faces for each face. Ignores face orientations. std::vector its_face_neighbors(const indexed_triangle_set &its); std::vector its_face_neighbors_par(const indexed_triangle_set &its); // After applying a transformation with negative determinant, flip the faces to keep the transformed mesh volume positive. void its_flip_triangles(indexed_triangle_set &its); // Merge duplicate vertices, return number of vertices removed. // This function will happily create non-manifolds if more than two faces share the same vertex position // or more than two faces share the same edge position! int its_merge_vertices(indexed_triangle_set &its, bool shrink_to_fit = true); // Remove degenerate faces, return number of faces removed. int its_remove_degenerate_faces(indexed_triangle_set &its, bool shrink_to_fit = true); // Remove vertices, which none of the faces references. Return number of freed vertices. int its_compactify_vertices(indexed_triangle_set &its, bool shrink_to_fit = true); // store part of index triangle set bool its_store_triangle(const indexed_triangle_set &its, const char *obj_filename, size_t triangle_index); bool its_store_triangles(const indexed_triangle_set &its, const char *obj_filename, const std::vector& triangles); std::vector its_split(const indexed_triangle_set &its); std::vector its_split(const indexed_triangle_set &its, std::vector &face_neighbors); // Number of disconnected patches (faces are connected if they share an edge, shared edge defined with 2 shared vertex indices). size_t its_number_of_patches(const indexed_triangle_set &its); size_t its_number_of_patches(const indexed_triangle_set &its, const std::vector &face_neighbors); // Same as its_number_of_patches(its) > 1, but faster. bool its_is_splittable(const indexed_triangle_set &its); bool its_is_splittable(const indexed_triangle_set &its, const std::vector &face_neighbors); // Calculate number of unconnected face edges. There should be no unconnected edge in a manifold mesh. size_t its_num_open_edges(const indexed_triangle_set &its); size_t its_num_open_edges(const std::vector &face_neighbors); // Shrink the vectors of its.vertices and its.faces to a minimum size by reallocating the two vectors. void its_shrink_to_fit(indexed_triangle_set &its); // For convex hull calculation: Transform mesh, trim it by the Z plane and collect all vertices. Duplicate vertices will be produced. void its_collect_mesh_projection_points_above(const indexed_triangle_set &its, const Matrix3f &m, const float z, Points &all_pts); void its_collect_mesh_projection_points_above(const indexed_triangle_set &its, const Transform3f &t, const float z, Points &all_pts); // Calculate 2D convex hull of a transformed and clipped mesh. Uses the function above. Polygon its_convex_hull_2d_above(const indexed_triangle_set &its, const Matrix3f &m, const float z); Polygon its_convex_hull_2d_above(const indexed_triangle_set &its, const Transform3f &t, const float z); // Index of a vertex inside triangle_indices. inline int its_triangle_vertex_index(const stl_triangle_vertex_indices &triangle_indices, int vertex_idx) { return vertex_idx == triangle_indices[0] ? 0 : vertex_idx == triangle_indices[1] ? 1 : vertex_idx == triangle_indices[2] ? 2 : -1; } inline Vec2i its_triangle_edge(const stl_triangle_vertex_indices &triangle_indices, int edge_idx) { int next_edge_idx = (edge_idx == 2) ? 0 : edge_idx + 1; return { triangle_indices[edge_idx], triangle_indices[next_edge_idx] }; } // Index of an edge inside triangle. inline int its_triangle_edge_index(const stl_triangle_vertex_indices &triangle_indices, const Vec2i &triangle_edge) { return triangle_edge(0) == triangle_indices[0] && triangle_edge(1) == triangle_indices[1] ? 0 : triangle_edge(0) == triangle_indices[1] && triangle_edge(1) == triangle_indices[2] ? 1 : triangle_edge(0) == triangle_indices[2] && triangle_edge(1) == triangle_indices[0] ? 2 : -1; } using its_triangle = std::array; inline its_triangle its_triangle_vertices(const indexed_triangle_set &its, size_t face_id) { return {its.vertices[its.indices[face_id](0)], its.vertices[its.indices[face_id](1)], its.vertices[its.indices[face_id](2)]}; } inline stl_normal its_unnormalized_normal(const indexed_triangle_set &its, size_t face_id) { its_triangle tri = its_triangle_vertices(its, face_id); return (tri[1] - tri[0]).cross(tri[2] - tri[0]); } float its_volume(const indexed_triangle_set &its); float its_average_edge_length(const indexed_triangle_set &its); void its_merge(indexed_triangle_set &A, const indexed_triangle_set &B); void its_merge(indexed_triangle_set &A, const std::vector &triangles); void its_merge(indexed_triangle_set &A, const Pointf3s &triangles); std::vector its_face_normals(const indexed_triangle_set &its); inline Vec3f face_normal(const stl_vertex vertex[3]) { return (vertex[1] - vertex[0]).cross(vertex[2] - vertex[1]).normalized(); } inline Vec3f face_normal_normalized(const stl_vertex vertex[3]) { return face_normal(vertex).normalized(); } inline Vec3f its_face_normal(const indexed_triangle_set &its, const stl_triangle_vertex_indices face) { const stl_vertex vertices[3] { its.vertices[face[0]], its.vertices[face[1]], its.vertices[face[2]] }; return face_normal_normalized(vertices); } inline Vec3f its_face_normal(const indexed_triangle_set &its, const int face_idx) { return its_face_normal(its, its.indices[face_idx]); } indexed_triangle_set its_make_cube(double x, double y, double z); indexed_triangle_set its_make_prism(float width, float length, float height); indexed_triangle_set its_make_cylinder(double r, double h, double fa=(2*PI/360)); indexed_triangle_set its_make_cone(double r, double h, double fa=(2*PI/360)); indexed_triangle_set its_make_pyramid(float base, float height); indexed_triangle_set its_make_sphere(double radius, double fa); indexed_triangle_set its_convex_hull(const std::vector &pts); inline indexed_triangle_set its_convex_hull(const indexed_triangle_set &its) { return its_convex_hull(its.vertices); } inline TriangleMesh make_cube(double x, double y, double z) { return TriangleMesh(its_make_cube(x, y, z)); } inline TriangleMesh make_prism(float width, float length, float height) { return TriangleMesh(its_make_prism(width, length, height)); } inline TriangleMesh make_cylinder(double r, double h, double fa=(2*PI/360)) { return TriangleMesh{its_make_cylinder(r, h, fa)}; } inline TriangleMesh make_cone(double r, double h, double fa=(2*PI/360)) { return TriangleMesh(its_make_cone(r, h, fa)); } inline TriangleMesh make_pyramid(float base, float height) { return TriangleMesh(its_make_pyramid(base, height)); } inline TriangleMesh make_sphere(double rho, double fa=(2*PI/360)) { return TriangleMesh(its_make_sphere(rho, fa)); } bool its_write_stl_ascii(const char *file, const char *label, const std::vector &indices, const std::vector &vertices); inline bool its_write_stl_ascii(const char *file, const char *label, const indexed_triangle_set &its) { return its_write_stl_ascii(file, label, its.indices, its.vertices); } bool its_write_stl_binary(const char *file, const char *label, const std::vector &indices, const std::vector &vertices); inline bool its_write_stl_binary(const char *file, const char *label, const indexed_triangle_set &its) { return its_write_stl_binary(file, label, its.indices, its.vertices); } inline BoundingBoxf3 bounding_box(const TriangleMesh &m) { return m.bounding_box(); } inline BoundingBoxf3 bounding_box(const indexed_triangle_set& its) { if (its.vertices.empty()) return {}; Vec3f bmin = its.vertices.front(), bmax = its.vertices.front(); for (const Vec3f &p : its.vertices) { bmin = p.cwiseMin(bmin); bmax = p.cwiseMax(bmax); } return {bmin.cast(), bmax.cast()}; } } // Serialization through the Cereal library #include namespace cereal { template struct specialize {}; template void load(Archive &archive, Slic3r::TriangleMesh &mesh) { archive.loadBinary(reinterpret_cast(const_cast(&mesh.stats())), sizeof(Slic3r::TriangleMeshStats)); archive(mesh.its.indices, mesh.its.vertices); } template void save(Archive &archive, const Slic3r::TriangleMesh &mesh) { archive.saveBinary(reinterpret_cast(&mesh.stats()), sizeof(Slic3r::TriangleMeshStats)); archive(mesh.its.indices, mesh.its.vertices); } } #endif