#include "Geometry.hpp" #include "Line.hpp" #include "PolylineCollection.hpp" #include "clipper.hpp" #include #include #include #include #include "voronoi_visual_utils.hpp" using namespace boost::polygon; // provides also high() and low() namespace Slic3r { namespace Geometry { static bool sort_points (Point a, Point b) { return (a.x < b.x) || (a.x == b.x && a.y < b.y); } /* This implementation is based on Andrew's monotone chain 2D convex hull algorithm */ void convex_hull(Points &points, Polygon* hull) { assert(points.size() >= 3); // sort input points std::sort(points.begin(), points.end(), sort_points); int n = points.size(), k = 0; hull->points.resize(2*n); // Build lower hull for (int i = 0; i < n; i++) { while (k >= 2 && points[i].ccw(hull->points[k-2], hull->points[k-1]) <= 0) k--; hull->points[k++] = points[i]; } // Build upper hull for (int i = n-2, t = k+1; i >= 0; i--) { while (k >= t && points[i].ccw(hull->points[k-2], hull->points[k-1]) <= 0) k--; hull->points[k++] = points[i]; } hull->points.resize(k); assert( hull->points.front().coincides_with(hull->points.back()) ); hull->points.pop_back(); } /* accepts an arrayref of points and returns a list of indices according to a nearest-neighbor walk */ void chained_path(Points &points, std::vector &retval, Point start_near) { PointPtrs my_points; std::map indices; my_points.reserve(points.size()); for (Points::iterator it = points.begin(); it != points.end(); ++it) { my_points.push_back(&*it); indices[&*it] = it - points.begin(); } retval.reserve(points.size()); while (!my_points.empty()) { Points::size_type idx = start_near.nearest_point_index(my_points); start_near = *my_points[idx]; retval.push_back(indices[ my_points[idx] ]); my_points.erase(my_points.begin() + idx); } } void chained_path(Points &points, std::vector &retval) { if (points.empty()) return; // can't call front() on empty vector chained_path(points, retval, points.front()); } /* retval and items must be different containers */ template void chained_path_items(Points &points, T &items, T &retval) { std::vector indices; chained_path(points, indices); for (std::vector::const_iterator it = indices.begin(); it != indices.end(); ++it) retval.push_back(items[*it]); } template void chained_path_items(Points &points, ClipperLib::PolyNodes &items, ClipperLib::PolyNodes &retval); void MedialAxis::build(Polylines* polylines) { // build bounding box (we use it for clipping infinite segments) this->bb = BoundingBox(this->lines); construct_voronoi(this->lines.begin(), this->lines.end(), &this->vd); // iterate through the diagram by starting from a random edge this->edge_cache.clear(); for (VD::const_edge_iterator edge = this->vd.edges().begin(); edge != this->vd.edges().end(); ++edge) this->process_edge(*edge, polylines); } void MedialAxis::process_edge(const VD::edge_type& edge, Polylines* polylines) { // if we already visited this edge or its twin skip it if (this->edge_cache.count(&edge) > 0) return; // mark this as already visited (void)this->edge_cache.insert(&edge); (void)this->edge_cache.insert(edge.twin()); if (this->is_valid_edge(edge)) { Line line = Line( Point( edge.vertex0()->x(), edge.vertex0()->y() ), Point( edge.vertex1()->x(), edge.vertex1()->y() ) ); bool appended = false; if (!polylines->empty()) { Polyline &last_p = polylines->back(); if (line.a == last_p.points.back()) { // if this line starts where last polyline ends, just append the other point last_p.points.push_back(line.b); appended = true; } else if (line.b == last_p.points.back()) { // if this line ends where last polyline ends, just append the other point last_p.points.push_back(line.a); appended = true; } } if (polylines->empty() || !appended) { // start a new polyline polylines->push_back(Polyline()); Polyline &p = polylines->back(); p.points.push_back(line.a); p.points.push_back(line.b); } } // look for connected edges (on both sides) this->process_edge_neighbors(edge, polylines); this->process_edge_neighbors(*edge.twin(), polylines); } void MedialAxis::process_edge_neighbors(const VD::edge_type& edge, Polylines* polylines) { std::vector neighbors; for (const VD::edge_type* neighbor = edge.rot_next(); neighbor != &edge; neighbor = neighbor->rot_next()) { // skip already seen edges if (this->edge_cache.count(neighbor) > 0) continue; // skip edges that we wouldn't include in the MAT anyway if (!this->is_valid_edge(*neighbor)) continue; neighbors.push_back(neighbor); } // process neighbors recursively if (neighbors.size() == 1) { this->process_edge(*neighbors.front(), polylines); } else if (neighbors.size() > 1) { // close current polyline and start a new one for each branch for (std::vector::const_iterator neighbor = neighbors.begin(); neighbor != neighbors.end(); ++neighbor) { Polylines pp; this->process_edge(**neighbor, &pp); polylines->insert(polylines->end(), pp.begin(), pp.end()); } } } bool MedialAxis::is_valid_edge(const VD::edge_type& edge) const { // if we only process segments representing closed loops, none if the // infinite edges (if any) would be part of our MAT anyway if (edge.is_secondary() || edge.is_infinite()) return false; /* If the cells sharing this edge have a common vertex, we're not interested in this edge. Why? Because it means that the edge lies on the bisector of two contiguous input lines and it was included in the Voronoi graph because it's the locus of centers of circles tangent to both vertices. Due to the "thin" nature of our input, these edges will be very short and not part of our wanted output. The best way would be to just filter out the edges that are not the locus of the maximally inscribed disks (requirement of MAT) but I don't know how to do it. Maybe we could check the relative angle of the two segments (we are only interested in facing segments). */ const voronoi_diagram::cell_type &cell1 = *edge.cell(); const voronoi_diagram::cell_type &cell2 = *edge.twin()->cell(); if (cell1.contains_segment() && cell2.contains_segment()) { Line segment1 = this->retrieve_segment(cell1); Line segment2 = this->retrieve_segment(cell2); if (segment1.a == segment2.b || segment1.b == segment2.a) return false; } return true; } void MedialAxis::clip_infinite_edge(const voronoi_diagram::edge_type& edge, Points* clipped_edge) { const voronoi_diagram::cell_type& cell1 = *edge.cell(); const voronoi_diagram::cell_type& cell2 = *edge.twin()->cell(); Point origin, direction; // Infinite edges could not be created by two segment sites. if (cell1.contains_point() && cell2.contains_point()) { Point p1 = retrieve_point(cell1); Point p2 = retrieve_point(cell2); origin.x = (p1.x + p2.x) * 0.5; origin.y = (p1.y + p2.y) * 0.5; direction.x = p1.y - p2.y; direction.y = p2.x - p1.x; } else { origin = cell1.contains_segment() ? retrieve_point(cell2) : retrieve_point(cell1); Line segment = cell1.contains_segment() ? retrieve_segment(cell1) : retrieve_segment(cell2); coord_t dx = high(segment).x - low(segment).x; coord_t dy = high(segment).y - low(segment).y; if ((low(segment) == origin) ^ cell1.contains_point()) { direction.x = dy; direction.y = -dx; } else { direction.x = -dy; direction.y = dx; } } coord_t side = this->bb.size().x; coord_t koef = side / (std::max)(fabs(direction.x), fabs(direction.y)); if (edge.vertex0() == NULL) { clipped_edge->push_back(Point( origin.x - direction.x * koef, origin.y - direction.y * koef )); } else { clipped_edge->push_back( Point(edge.vertex0()->x(), edge.vertex0()->y())); } if (edge.vertex1() == NULL) { clipped_edge->push_back(Point( origin.x + direction.x * koef, origin.y + direction.y * koef )); } else { clipped_edge->push_back( Point(edge.vertex1()->x(), edge.vertex1()->y())); } } void MedialAxis::sample_curved_edge(const voronoi_diagram::edge_type& edge, Points* sampled_edge) { Point point = edge.cell()->contains_point() ? retrieve_point(*edge.cell()) : retrieve_point(*edge.twin()->cell()); Line segment = edge.cell()->contains_point() ? retrieve_segment(*edge.twin()->cell()) : retrieve_segment(*edge.cell()); double max_dist = 1E-3 * this->bb.size().x; voronoi_visual_utils::discretize(point, segment, max_dist, sampled_edge); } Point MedialAxis::retrieve_point(const voronoi_diagram::cell_type& cell) { voronoi_diagram::cell_type::source_index_type index = cell.source_index(); voronoi_diagram::cell_type::source_category_type category = cell.source_category(); if (category == SOURCE_CATEGORY_SINGLE_POINT) { return this->points[index]; } index -= this->points.size(); if (category == SOURCE_CATEGORY_SEGMENT_START_POINT) { return low(this->lines[index]); } else { return high(this->lines[index]); } } Line MedialAxis::retrieve_segment(const voronoi_diagram::cell_type& cell) const { voronoi_diagram::cell_type::source_index_type index = cell.source_index() - this->points.size(); return this->lines[index]; } } }