#include "WipeTowerPrusaMM.hpp" #include #include #include #include #include #if defined(__linux) || defined(__GNUC__ ) #include #endif /* __linux */ #ifdef _MSC_VER #define strcasecmp _stricmp #endif namespace Slic3r { namespace PrusaMultiMaterial { class Writer { public: Writer() : m_current_pos(std::numeric_limits::max(), std::numeric_limits::max()), m_current_z(0.f), m_current_feedrate(0.f), m_extrusion_flow(0.f), m_layer_height(0.f), m_preview_suppressed(false), m_elapsed_time(0.f) {} Writer& set_initial_position(const WipeTower::xy &pos) { m_start_pos = pos; m_current_pos = pos; return *this; } Writer& set_initial_tool(const unsigned int tool) { m_current_tool = tool; return *this; } Writer& set_z(float z) { m_current_z = z; return *this; } Writer& set_layer_height(float layer_height) { m_layer_height = layer_height; return *this; } Writer& set_extrusion_flow(float flow) { m_extrusion_flow = flow; return *this; } // Suppress / resume G-code preview in Slic3r. Slic3r will have difficulty to differentiate the various // filament loading and cooling moves from normal extrusion moves. Therefore the writer // is asked to suppres output of some lines, which look like extrusions. Writer& suppress_preview() { m_preview_suppressed = true; return *this; } Writer& resume_preview() { m_preview_suppressed = false; return *this; } Writer& feedrate(float f) { if (f != m_current_feedrate) m_gcode += "G1" + set_format_F(f) + "\n"; return *this; } const std::string& gcode() const { return m_gcode; } const std::vector& extrusions() const { return m_extrusions; } float x() const { return m_current_pos.x; } float y() const { return m_current_pos.y; } const WipeTower::xy& start_pos() const { return m_start_pos; } const WipeTower::xy& pos() const { return m_current_pos; } float elapsed_time() const { return m_elapsed_time; } // Extrude with an explicitely provided amount of extrusion. Writer& extrude_explicit(float x, float y, float e, float f = 0.f) { if (x == m_current_pos.x && y == m_current_pos.y && e == 0.f && (f == 0.f || f == m_current_feedrate)) // Neither extrusion nor a travel move. return *this; float dx = x - m_current_pos.x; float dy = y - m_current_pos.y; double len = sqrt(dx*dx+dy*dy); if (! m_preview_suppressed && e > 0.f && len > 0.) { // Width of a squished extrusion, corrected for the roundings of the squished extrusions. // This is left zero if it is a travel move. float width = float(double(e) * m_filament_area / (len * m_layer_height)); // Correct for the roundings of a squished extrusion. width += float(m_layer_height * (1. - M_PI / 4.)); if (m_extrusions.empty() || m_extrusions.back().pos != m_current_pos) m_extrusions.emplace_back(WipeTower::Extrusion(m_current_pos, 0, m_current_tool)); m_extrusions.emplace_back(WipeTower::Extrusion(WipeTower::xy(x, y), width, m_current_tool)); } m_gcode += "G1"; if (x != m_current_pos.x) m_gcode += set_format_X(x); if (y != m_current_pos.y) m_gcode += set_format_Y(y); if (e != 0.f) m_gcode += set_format_E(e); if (f != 0.f && f != m_current_feedrate) m_gcode += set_format_F(f); // Update the elapsed time with a rough estimate. m_elapsed_time += ((len == 0) ? std::abs(e) : len) / m_current_feedrate * 60.f; m_gcode += "\n"; return *this; } Writer& extrude_explicit(const WipeTower::xy &dest, float e, float f = 0.f) { return extrude_explicit(dest.x, dest.y, e, f); } // Travel to a new XY position. f=0 means use the current value. Writer& travel(float x, float y, float f = 0.f) { return extrude_explicit(x, y, 0.f, f); } Writer& travel(const WipeTower::xy &dest, float f = 0.f) { return extrude_explicit(dest.x, dest.y, 0.f, f); } // Extrude a line from current position to x, y with the extrusion amount given by m_extrusion_flow. Writer& extrude(float x, float y, float f = 0.f) { float dx = x - m_current_pos.x; float dy = y - m_current_pos.y; return extrude_explicit(x, y, sqrt(dx*dx+dy*dy) * m_extrusion_flow, f); } Writer& extrude(const WipeTower::xy &dest, const float f = 0.f) { return extrude(dest.x, dest.y, f); } Writer& load(float e, float f = 0.f) { if (e == 0.f && (f == 0.f || f == m_current_feedrate)) return *this; m_gcode += "G1"; if (e != 0.f) m_gcode += set_format_E(e); if (f != 0.f && f != m_current_feedrate) m_gcode += set_format_F(f); m_gcode += "\n"; return *this; } // Derectract while moving in the X direction. // If |x| > 0, the feed rate relates to the x distance, // otherwise the feed rate relates to the e distance. Writer& load_move_x(float x, float e, float f = 0.f) { return extrude_explicit(x, m_current_pos.y, e, f); } Writer& retract(float e, float f = 0.f) { return load(-e, f); } // Elevate the extruder head above the current print_z position. Writer& z_hop(float hop, float f = 0.f) { m_gcode += std::string("G1") + set_format_Z(m_current_z + hop); if (f != 0 && f != m_current_feedrate) m_gcode += set_format_F(f); m_gcode += "\n"; return *this; } // Lower the extruder head back to the current print_z position. Writer& z_hop_reset(float f = 0.f) { return z_hop(0, f); } // Move to x1, +y_increment, // extrude quickly amount e to x2 with feed f. Writer& ram(float x1, float x2, float dy, float e0, float e, float f) { extrude_explicit(x1, m_current_pos.y + dy, e0, f); extrude_explicit(x2, m_current_pos.y, e); return *this; } // Let the end of the pulled out filament cool down in the cooling tube // by moving up and down and moving the print head left / right // at the current Y position to spread the leaking material. Writer& cool(float x1, float x2, float e1, float e2, float f) { extrude_explicit(x1, m_current_pos.y, e1, f); extrude_explicit(x2, m_current_pos.y, e2); return *this; } Writer& set_tool(int tool) { char buf[64]; sprintf(buf, "T%d\n", tool); m_gcode += buf; m_current_tool = tool; return *this; } // Set extruder temperature, don't wait by default. Writer& set_extruder_temp(int temperature, bool wait = false) { char buf[128]; sprintf(buf, "M%d S%d\n", wait ? 109 : 104, temperature); m_gcode += buf; return *this; }; // Set speed factor override percentage. Writer& speed_override(int speed) { char buf[128]; sprintf(buf, "M220 S%d\n", speed); m_gcode += buf; return *this; }; // Set digital trimpot motor Writer& set_extruder_trimpot(int current) { char buf[128]; sprintf(buf, "M907 E%d\n", current); m_gcode += buf; return *this; }; Writer& flush_planner_queue() { m_gcode += "G4 S0\n"; return *this; } // Reset internal extruder counter. Writer& reset_extruder() { m_gcode += "G92 E0\n"; return *this; } Writer& comment_with_value(const char *comment, int value) { char strvalue[64]; sprintf(strvalue, "%d", value); m_gcode += std::string(";") + comment + strvalue + "\n"; return *this; }; Writer& comment_material(WipeTowerPrusaMM::material_type material) { m_gcode += "; material : "; switch (material) { case WipeTowerPrusaMM::PVA: m_gcode += "#8 (PVA)"; break; case WipeTowerPrusaMM::SCAFF: m_gcode += "#5 (Scaffold)"; break; case WipeTowerPrusaMM::FLEX: m_gcode += "#4 (Flex)"; break; default: m_gcode += "DEFAULT (PLA)"; break; } m_gcode += "\n"; return *this; }; Writer& append(const char *text) { m_gcode += text; return *this; } private: WipeTower::xy m_start_pos; WipeTower::xy m_current_pos; float m_current_z; float m_current_feedrate; unsigned int m_current_tool; float m_layer_height; float m_extrusion_flow; bool m_preview_suppressed; std::string m_gcode; std::vector m_extrusions; float m_elapsed_time; const double m_filament_area = 0.25*M_PI*1.75*1.75; std::string set_format_X(float x) { char buf[64]; sprintf(buf, " X%.3f", x); m_current_pos.x = x; return buf; } std::string set_format_Y(float y) { char buf[64]; sprintf(buf, " Y%.3f", y); m_current_pos.y = y; return buf; } std::string set_format_Z(float z) { char buf[64]; sprintf(buf, " Z%.3f", z); return buf; } std::string set_format_E(float e) { char buf[64]; sprintf(buf, " E%.4f", e); return buf; } std::string set_format_F(float f) { char buf[64]; sprintf(buf, " F%d", int(floor(f + 0.5f))); m_current_feedrate = f; return buf; } Writer& operator=(const Writer &rhs); }; /* class Material { public: std::string name; std::string type; struct RammingStep { // float length; float extrusion_multiplier; // sirka linky float extrusion; float speed; }; std::vector ramming_sequence; // Number and speed of the cooling moves. std::vector cooling_moves; // Percentage of the speed overide, in pairs of std::vector> speed_override; }; */ } // namespace PrusaMultiMaterial WipeTowerPrusaMM::material_type WipeTowerPrusaMM::parse_material(const char *name) { if (strcasecmp(name, "PLA") == 0) return PLA; if (strcasecmp(name, "ABS") == 0) return ABS; if (strcasecmp(name, "PET") == 0) return PET; if (strcasecmp(name, "HIPS") == 0) return HIPS; if (strcasecmp(name, "FLEX") == 0) return FLEX; if (strcasecmp(name, "SCAFF") == 0) return SCAFF; if (strcasecmp(name, "EDGE") == 0) return EDGE; if (strcasecmp(name, "NGEN") == 0) return NGEN; if (strcasecmp(name, "PVA") == 0) return PVA; return INVALID; } // Returns gcode to prime the nozzles at the front edge of the print bed. WipeTower::ToolChangeResult WipeTowerPrusaMM::prime( // print_z of the first layer. float first_layer_height, // Extruder indices, in the order to be primed. The last extruder will later print the wipe tower brim, print brim and the object. std::vector tools, // If true, the last priming are will be the same as the other priming areas, and the rest of the wipe will be performed inside the wipe tower. // If false, the last priming are will be large enough to wipe the last extruder sufficiently. bool last_wipe_inside_wipe_tower, // May be used by a stand alone post processor. Purpose purpose) { this->set_layer(first_layer_height, first_layer_height, tools.size(), true, false); float wipe_area = m_wipe_area; // Calculate the amount of wipe over the wipe tower brim following the prime, decrease wipe_area // with the amount of material extruded over the brim. { // Simulate the brim extrusions, summ the length of the extrusion. float e_length = this->tool_change(0, false, PURPOSE_EXTRUDE).total_extrusion_length_in_plane(); // Shrink wipe_area by the amount of extrusion extruded by the finish_layer(). // Y stepping of the wipe extrusions. float dy = m_perimeter_width * 0.8f; // Number of whole wipe lines, that would be extruded to wipe as much material as the finish_layer(). // Minimum wipe area is 5mm wide. //FIXME calculate the purge_lines_width precisely. float purge_lines_width = 1.3f; wipe_area = std::max(5.f, m_wipe_area - float(floor(e_length / m_wipe_tower_width)) * dy - purge_lines_width); } this->set_layer(first_layer_height, first_layer_height, tools.size(), true, false); this->m_num_layer_changes = 0; this->m_current_tool = tools.front(); // The Prusa i3 MK2 has a working space of [0, -2.2] to [250, 210]. // Due to the XYZ calibration, this working space may shrink slightly from all directions, // therefore the homing position is shifted inside the bed by 0.2 in the firmware to [0.2, -2.0]. // box_coordinates cleaning_box(xy(0.5f, - 1.5f), m_wipe_tower_width, wipe_area); box_coordinates cleaning_box(xy(5.f, 0.f), m_wipe_tower_width, wipe_area); PrusaMultiMaterial::Writer writer; writer.set_extrusion_flow(m_extrusion_flow) .set_z(m_z_pos) .set_layer_height(m_layer_height) .set_initial_tool(m_current_tool) .append(";--------------------\n" "; CP PRIMING START\n") .append(";--------------------\n") .speed_override(100); // Always move to the starting position. writer.set_initial_position(xy(0.f, 0.f)) .travel(cleaning_box.ld, 7200) // Increase the extruder driver current to allow fast ramming. .set_extruder_trimpot(750); if (purpose == PURPOSE_EXTRUDE || purpose == PURPOSE_MOVE_TO_TOWER_AND_EXTRUDE) { float y_end = 0.f; for (size_t idx_tool = 0; idx_tool < tools.size(); ++ idx_tool) { unsigned int tool = tools[idx_tool]; // Select the tool, set a speed override for soluble and flex materials. toolchange_Change(writer, tool, m_material[tool]); // Prime the tool. toolchange_Load(writer, cleaning_box); if (idx_tool + 1 == tools.size()) { // Last tool should not be unloaded, but it should be wiped enough to become of a pure color. if (last_wipe_inside_wipe_tower) { // Shrink the last wipe area to the area of the other purge areas, // remember the last initial wipe width to be purged into the 1st layer of the wipe tower. this->m_initial_extra_wipe = std::max(0.f, wipe_area - (y_end + 0.5f * 0.85f * m_perimeter_width - cleaning_box.ld.y)); cleaning_box.lu.y -= this->m_initial_extra_wipe; cleaning_box.ru.y -= this->m_initial_extra_wipe; } toolchange_Wipe(writer, cleaning_box, false); } else { // Ram the hot material out of the melt zone, retract the filament into the cooling tubes and let it cool. writer.travel(writer.x(), writer.y() + m_perimeter_width, 7200); toolchange_Unload(writer, cleaning_box, m_material[m_current_tool], m_first_layer_temperature[tool]); // Save the y end of the non-last priming area. y_end = writer.y(); cleaning_box.translate(m_wipe_tower_width, 0.f); writer.travel(cleaning_box.ld, 7200); } ++ m_num_tool_changes; } } // Reset the extruder current to a normal value. writer.set_extruder_trimpot(550) .feedrate(6000) .flush_planner_queue() .reset_extruder() .append("; CP PRIMING END\n" ";------------------\n" "\n\n"); // Force m_idx_tool_change_in_layer to -1, so that tool_change() will know to extrude the wipe tower brim. m_idx_tool_change_in_layer = (unsigned int)(-1); ToolChangeResult result; result.print_z = this->m_z_pos; result.layer_height = this->m_layer_height; result.gcode = writer.gcode(); result.elapsed_time = writer.elapsed_time(); result.extrusions = writer.extrusions(); result.start_pos = writer.start_pos(); result.end_pos = writer.pos(); return result; } WipeTower::ToolChangeResult WipeTowerPrusaMM::tool_change(unsigned int tool, bool last_in_layer, Purpose purpose) { // Either it is the last tool unload, // or there must be a nonzero wipe tower partitions available. // assert(tool < 0 || it_layer_tools->wipe_tower_partitions > 0); if (m_idx_tool_change_in_layer == (unsigned int)(-1)) { // First layer, prime the extruder. return toolchange_Brim(purpose); } float wipe_area = m_wipe_area; if (++ m_idx_tool_change_in_layer < (unsigned int)m_max_color_changes && last_in_layer) { // This tool_change() call will be followed by a finish_layer() call. // Try to shrink the wipe_area to save material, as less than usual wipe is required // if this step is foolowed by finish_layer() extrusions wiping the same extruder. for (size_t iter = 0; iter < 3; ++ iter) { // Simulate the finish_layer() extrusions, summ the length of the extrusion. float e_length = 0.f; { unsigned int old_idx_tool_change = m_idx_tool_change_in_layer; float old_wipe_start_y = m_current_wipe_start_y; m_current_wipe_start_y += wipe_area; e_length = this->finish_layer(PURPOSE_EXTRUDE).total_extrusion_length_in_plane(); m_idx_tool_change_in_layer = old_idx_tool_change; m_current_wipe_start_y = old_wipe_start_y; } // Shrink wipe_area by the amount of extrusion extruded by the finish_layer(). // Y stepping of the wipe extrusions. float dy = m_perimeter_width * 0.8f; // Number of whole wipe lines, that would be extruded to wipe as much material as the finish_layer(). float num_lines_extruded = floor(e_length / m_wipe_tower_width); // Minimum wipe area is 5mm wide. wipe_area = m_wipe_area - num_lines_extruded * dy; if (wipe_area < 5.) { wipe_area = 5.; break; } } } box_coordinates cleaning_box( m_wipe_tower_pos + xy(0.f, m_current_wipe_start_y + 0.5f * m_perimeter_width), m_wipe_tower_width, wipe_area - m_perimeter_width); PrusaMultiMaterial::Writer writer; writer.set_extrusion_flow(m_extrusion_flow) .set_z(m_z_pos) .set_layer_height(m_layer_height) .set_initial_tool(m_current_tool) .append(";--------------------\n" "; CP TOOLCHANGE START\n") .comment_with_value(" toolchange #", m_num_tool_changes) .comment_material(m_material[m_current_tool]) .append(";--------------------\n") .speed_override(100); xy initial_position = ((m_current_shape == SHAPE_NORMAL) ? cleaning_box.ld : cleaning_box.lu) + xy(m_perimeter_width, ((m_current_shape == SHAPE_NORMAL) ? 1.f : -1.f) * m_perimeter_width); if (purpose == PURPOSE_MOVE_TO_TOWER || purpose == PURPOSE_MOVE_TO_TOWER_AND_EXTRUDE) { // Scaffold leaks terribly, reduce leaking by a full retract when going to the wipe tower. float initial_retract = ((m_material[m_current_tool] == SCAFF) ? 1.f : 0.5f) * m_retract; writer // Lift for a Z hop. .z_hop(m_zhop, 7200) // Additional retract on move to tower. .retract(initial_retract, 3600) // Move to a starting position, one perimeter width inside the cleaning box. .travel(initial_position, 7200) // Unlift for a Z hop. .z_hop_reset(7200) // Additional retract on move to tower. .load(initial_retract, 3600) .load(m_retract, 1500); } else { // Already at the initial position. writer.set_initial_position(initial_position); } if (purpose == PURPOSE_EXTRUDE || purpose == PURPOSE_MOVE_TO_TOWER_AND_EXTRUDE) { // Increase the extruder driver current to allow fast ramming. writer.set_extruder_trimpot(750); // Ram the hot material out of the melt zone, retract the filament into the cooling tubes and let it cool. if (tool != (unsigned int)-1) { toolchange_Unload(writer, cleaning_box, m_material[m_current_tool], m_is_first_layer ? m_first_layer_temperature[tool] : m_temperature[tool]); // This is not the last change. // Change the tool, set a speed override for soluble and flex materials. toolchange_Change(writer, tool, m_material[tool]); toolchange_Load(writer, cleaning_box); // Wipe the newly loaded filament until the end of the assigned wipe area. toolchange_Wipe(writer, cleaning_box, false); // Draw a perimeter around cleaning_box and wipe. box_coordinates box = cleaning_box; if (m_current_shape == SHAPE_REVERSED) { std::swap(box.lu, box.ld); std::swap(box.ru, box.rd); } // Draw a perimeter around cleaning_box. writer.travel(box.lu, 7000) .extrude(box.ld, 3200).extrude(box.rd) .extrude(box.ru).extrude(box.lu); // Wipe the nozzle. if (purpose == PURPOSE_MOVE_TO_TOWER_AND_EXTRUDE) writer.travel(box.ru, 7200) .travel(box.lu); } else toolchange_Unload(writer, cleaning_box, m_material[m_current_tool], m_temperature[m_current_tool]); // Reset the extruder current to a normal value. writer.set_extruder_trimpot(550) .feedrate(6000) .flush_planner_queue() .reset_extruder() .append("; CP TOOLCHANGE END\n" ";------------------\n" "\n\n"); ++ m_num_tool_changes; m_current_wipe_start_y += wipe_area; } ToolChangeResult result; result.print_z = this->m_z_pos; result.layer_height = this->m_layer_height; result.gcode = writer.gcode(); result.elapsed_time = writer.elapsed_time(); result.extrusions = writer.extrusions(); result.start_pos = writer.start_pos(); result.end_pos = writer.pos(); return result; } WipeTower::ToolChangeResult WipeTowerPrusaMM::toolchange_Brim(Purpose purpose, bool sideOnly, float y_offset) { const box_coordinates wipeTower_box( m_wipe_tower_pos, m_wipe_tower_width, m_wipe_area * float(m_max_color_changes) - m_perimeter_width / 2); PrusaMultiMaterial::Writer writer; writer.set_extrusion_flow(m_extrusion_flow * 1.1f) // Let the writer know the current Z position as a base for Z-hop. .set_z(m_z_pos) .set_layer_height(m_layer_height) .set_initial_tool(m_current_tool) .append( ";-------------------------------------\n" "; CP WIPE TOWER FIRST LAYER BRIM START\n"); xy initial_position = wipeTower_box.lu - xy(m_perimeter_width * 6.f, 0); if (purpose == PURPOSE_MOVE_TO_TOWER || purpose == PURPOSE_MOVE_TO_TOWER_AND_EXTRUDE) // Move with Z hop. writer.z_hop(m_zhop, 7200) .travel(initial_position, 6000) .z_hop_reset(7200); else writer.set_initial_position(initial_position); if (purpose == PURPOSE_EXTRUDE || purpose == PURPOSE_MOVE_TO_TOWER_AND_EXTRUDE) { // Prime the extruder 10*m_perimeter_width left along the vertical edge of the wipe tower. writer.extrude_explicit(wipeTower_box.ld - xy(m_perimeter_width * 6.f, 0), 1.5f * m_extrusion_flow * (wipeTower_box.lu.y - wipeTower_box.ld.y), 2400); // The tool is supposed to be active and primed at the time when the wipe tower brim is extruded. // toolchange_Change(writer, int(tool), m_material[tool]); if (sideOnly) { float x_offset = m_perimeter_width; for (size_t i = 0; i < 4; ++ i, x_offset += m_perimeter_width) writer.travel (wipeTower_box.ld + xy(- x_offset, y_offset), 7000) .extrude(wipeTower_box.lu + xy(- x_offset, - y_offset), 2100); writer.travel(wipeTower_box.rd + xy(x_offset, y_offset), 7000); x_offset = m_perimeter_width; for (size_t i = 0; i < 4; ++ i, x_offset += m_perimeter_width) writer.travel (wipeTower_box.rd + xy(x_offset, y_offset), 7000) .extrude(wipeTower_box.ru + xy(x_offset, - y_offset), 2100); } else { // Extrude 4 rounds of a brim around the future wipe tower. box_coordinates box(wipeTower_box); //FIXME why is the box shifted in +Y by 0.5f * m_perimeter_width? box.translate(0.f, 0.5f * m_perimeter_width); box.expand(0.5f * m_perimeter_width); for (size_t i = 0; i < 4; ++ i) { writer.travel (box.ld, 7000) .extrude(box.lu, 2100).extrude(box.ru) .extrude(box.rd ).extrude(box.ld); box.expand(m_perimeter_width); } } if (m_initial_extra_wipe > m_perimeter_width * 1.9f) { box_coordinates cleaning_box( m_wipe_tower_pos + xy(0.f, 0.5f * m_perimeter_width), m_wipe_tower_width, m_initial_extra_wipe - m_perimeter_width); writer.travel(cleaning_box.ld + xy(m_perimeter_width, 0.5f * m_perimeter_width), 6000); // Wipe the newly loaded filament until the end of the assigned wipe area. toolchange_Wipe(writer, cleaning_box, true); // Draw a perimeter around cleaning_box. writer.travel(cleaning_box.lu, 7000) .extrude(cleaning_box.ld, 3200).extrude(cleaning_box.rd) .extrude(cleaning_box.ru).extrude(cleaning_box.lu); m_current_wipe_start_y = m_initial_extra_wipe; } // Move to the front left corner. writer.travel(wipeTower_box.ld, 7000); if (purpose == PURPOSE_MOVE_TO_TOWER_AND_EXTRUDE) // Wipe along the front edge. writer.travel(wipeTower_box.rd) .travel(wipeTower_box.ld); writer.append("; CP WIPE TOWER FIRST LAYER BRIM END\n" ";-----------------------------------\n"); // Mark the brim as extruded. m_idx_tool_change_in_layer = 0; } ToolChangeResult result; result.print_z = this->m_z_pos; result.layer_height = this->m_layer_height; result.gcode = writer.gcode(); result.elapsed_time = writer.elapsed_time(); result.extrusions = writer.extrusions(); result.start_pos = writer.start_pos(); result.end_pos = writer.pos(); return result; } // Ram the hot material out of the melt zone, retract the filament into the cooling tubes and let it cool. void WipeTowerPrusaMM::toolchange_Unload( PrusaMultiMaterial::Writer &writer, const box_coordinates &cleaning_box, const material_type current_material, const int new_temperature) { float xl = cleaning_box.ld.x + 0.5f * m_perimeter_width; float xr = cleaning_box.rd.x - 0.5f * m_perimeter_width; float y_step = ((m_current_shape == SHAPE_NORMAL) ? 1.f : -1.f) * m_perimeter_width; writer.append("; CP TOOLCHANGE UNLOAD\n"); // Ram the hot material out of the extruder melt zone. // Current extruder position is on the left, one perimeter inside the cleaning box in both X and Y. float e0 = m_perimeter_width * m_extrusion_flow; float e = (xr - xl) * m_extrusion_flow; switch (current_material) { case ABS: // ramming start end y increment amount feedrate writer.ram(xl + m_perimeter_width * 2, xr - m_perimeter_width, y_step * 0.2f, 0, 1.2f * e, 4000) .ram(xr - m_perimeter_width, xl + m_perimeter_width, y_step * 1.2f, e0, 1.6f * e, 4600) .ram(xl + m_perimeter_width * 2, xr - m_perimeter_width * 2, y_step * 1.2f, e0, 1.8f * e, 5000) .ram(xr - m_perimeter_width * 2, xl + m_perimeter_width * 2, y_step * 1.2f, e0, 1.8f * e, 5000); break; case PVA: // Used for the PrimaSelect PVA writer.ram(xl + m_perimeter_width * 2, xr - m_perimeter_width, y_step * 0.2f, 0, 1.75f * e, 4000) .ram(xr - m_perimeter_width, xl + m_perimeter_width, y_step * 1.5f, 0, 1.75f * e, 4500) .ram(xl + m_perimeter_width * 2, xr - m_perimeter_width * 2, y_step * 1.5f, 0, 1.75f * e, 4800) .ram(xr - m_perimeter_width, xl + m_perimeter_width, y_step * 1.5f, 0, 1.75f * e, 5000); break; case SCAFF: writer.ram(xl + m_perimeter_width * 2, xr - m_perimeter_width, y_step * 2.f, 0, 1.75f * e, 4000) .ram(xr - m_perimeter_width, xl + m_perimeter_width, y_step * 3.f, 0, 2.34f * e, 4600) .ram(xl + m_perimeter_width * 2, xr - m_perimeter_width * 2, y_step * 3.f, 0, 2.63f * e, 5200); break; default: // PLA, PLA/PHA and others // Used for the Verbatim BVOH, PET, NGEN, co-polyesters writer.ram(xl + m_perimeter_width * 2, xr - m_perimeter_width, y_step * 0.2f, 0, 1.60f * e, 4000) .ram(xr - m_perimeter_width, xl + m_perimeter_width, y_step * 1.2f, e0, 1.65f * e, 4600) .ram(xl + m_perimeter_width * 2, xr - m_perimeter_width * 2, y_step * 1.2f, e0, 1.74f * e, 5200); } // Pull the filament end into a cooling tube. writer.retract(15, 5000).retract(50, 5400).retract(15, 3000).retract(12, 2000); if (new_temperature != 0) // Set the extruder temperature, but don't wait. writer.set_extruder_temp(new_temperature, false); // In case the current print head position is closer to the left edge, reverse the direction. if (std::abs(writer.x() - xl) < std::abs(writer.x() - xr)) std::swap(xl, xr); // Horizontal cooling moves will be performed at the following Y coordinate: writer.travel(xr, writer.y() + y_step * 0.8f, 7200) .suppress_preview(); switch (current_material) { case PVA: writer.cool(xl, xr, 3, -5, 1600) .cool(xl, xr, 5, -5, 2000) .cool(xl, xr, 5, -5, 2200) .cool(xl, xr, 5, -5, 2400) .cool(xl, xr, 5, -5, 2400) .cool(xl, xr, 5, -3, 2400); break; case SCAFF: writer.cool(xl, xr, 3, -5, 1600) .cool(xl, xr, 5, -5, 2000) .cool(xl, xr, 5, -5, 2200) .cool(xl, xr, 5, -5, 2200) .cool(xl, xr, 5, -3, 2400); break; default: writer.cool(xl, xr, 3, -5, 1600) .cool(xl, xr, 5, -5, 2000) .cool(xl, xr, 5, -5, 2400) .cool(xl, xr, 5, -3, 2400); } writer.resume_preview() .flush_planner_queue(); } // Change the tool, set a speed override for solube and flex materials. void WipeTowerPrusaMM::toolchange_Change( PrusaMultiMaterial::Writer &writer, const unsigned int new_tool, material_type new_material) { // Speed override for the material. Go slow for flex and soluble materials. int speed_override; switch (new_material) { case PVA: speed_override = (m_z_pos < 0.80f) ? 60 : 80; break; case SCAFF: speed_override = 35; break; case FLEX: speed_override = 35; break; default: speed_override = 100; } writer.set_tool(new_tool) .speed_override(speed_override) .flush_planner_queue(); m_current_tool = new_tool; } void WipeTowerPrusaMM::toolchange_Load( PrusaMultiMaterial::Writer &writer, const box_coordinates &cleaning_box) { float xl = cleaning_box.ld.x + m_perimeter_width; float xr = cleaning_box.rd.x - m_perimeter_width; //FIXME flipping left / right side, so that the following toolchange_Wipe will start // where toolchange_Load ends. std::swap(xl, xr); writer.append("; CP TOOLCHANGE LOAD\n") // Load the filament while moving left / right, // so the excess material will not create a blob at a single position. .suppress_preview() // Accelerate the filament loading .load_move_x(xr, 20, 1400) // Fast loading phase .load_move_x(xl, 40, 3000) // Slowing down .load_move_x(xr, 20, 1600) .load_move_x(xl, 10, 1000) .resume_preview(); // Extrude first five lines (just three lines if colorInit is set). writer.extrude(xr, writer.y(), 1600); bool colorInit = false; size_t pass = colorInit ? 1 : 2; float dy = ((m_current_shape == SHAPE_NORMAL) ? 1.f : -1.f) * m_perimeter_width * 0.85f; for (int i = 0; i < pass; ++ i) { writer.travel (xr, writer.y() + dy, 7200); writer.extrude(xl, writer.y(), 2200); writer.travel (xl, writer.y() + dy, 7200); writer.extrude(xr, writer.y(), 2200); } // Reset the extruder current to the normal value. writer.set_extruder_trimpot(550); } // Wipe the newly loaded filament until the end of the assigned wipe area. void WipeTowerPrusaMM::toolchange_Wipe( PrusaMultiMaterial::Writer &writer, const box_coordinates &cleaning_box, bool skip_initial_y_move) { // Increase flow on first layer, slow down print. writer.set_extrusion_flow(m_extrusion_flow * (m_is_first_layer ? 1.18f : 1.f)) .append("; CP TOOLCHANGE WIPE\n"); float wipe_coeff = m_is_first_layer ? 0.5f : 1.f; float xl = cleaning_box.ld.x + 2.f * m_perimeter_width; float xr = cleaning_box.rd.x - 2.f * m_perimeter_width; // Wipe speed will increase up to 4800. float wipe_speed = 4200.f; float wipe_speed_inc = 50.f; float wipe_speed_max = 4800.f; // Y increment per wipe line. float dy = ((m_current_shape == SHAPE_NORMAL) ? 1.f : -1.f) * m_perimeter_width * 0.8f; for (bool p = true; // Next wipe line fits the cleaning box. ((m_current_shape == SHAPE_NORMAL) ? (writer.y() <= cleaning_box.lu.y - m_perimeter_width) : (writer.y() >= cleaning_box.ld.y + m_perimeter_width)); p = ! p) { wipe_speed = std::min(wipe_speed_max, wipe_speed + wipe_speed_inc); if (skip_initial_y_move) skip_initial_y_move = false; else writer.extrude(xl - (p ? m_perimeter_width / 2 : m_perimeter_width), writer.y() + dy, wipe_speed * wipe_coeff); writer.extrude(xr + (p ? m_perimeter_width : m_perimeter_width * 2), writer.y(), wipe_speed * wipe_coeff); // Next wipe line fits the cleaning box. if ((m_current_shape == SHAPE_NORMAL) ? (writer.y() > cleaning_box.lu.y - m_perimeter_width) : (writer.y() < cleaning_box.ld.y + m_perimeter_width)) break; wipe_speed = std::min(wipe_speed_max, wipe_speed + wipe_speed_inc); writer.extrude(xr + m_perimeter_width, writer.y() + dy, wipe_speed * wipe_coeff); writer.extrude(xl - m_perimeter_width, writer.y()); } // Reset the extrusion flow. writer.set_extrusion_flow(m_extrusion_flow); } WipeTower::ToolChangeResult WipeTowerPrusaMM::finish_layer(Purpose purpose) { // This should only be called if the layer is not finished yet. // Otherwise the caller would likely travel to the wipe tower in vain. assert(! this->layer_finished()); PrusaMultiMaterial::Writer writer; writer.set_extrusion_flow(m_extrusion_flow) .set_z(m_z_pos) .set_layer_height(m_layer_height) .set_initial_tool(m_current_tool) .append(";--------------------\n" "; CP EMPTY GRID START\n") // m_num_layer_changes is incremented by set_z, so it is 1 based. .comment_with_value(" layer #", m_num_layer_changes - 1); // Slow down on the 1st layer. float speed_factor = m_is_first_layer ? 0.5f : 1.f; box_coordinates fill_box(m_wipe_tower_pos + xy(0.f, m_current_wipe_start_y), m_wipe_tower_width, float(m_max_color_changes) * m_wipe_area - m_current_wipe_start_y); fill_box.expand(0.f, - 0.5f * m_perimeter_width); { float firstLayerOffset = 0.f; fill_box.ld.y += firstLayerOffset; fill_box.rd.y += firstLayerOffset; } if (purpose == PURPOSE_MOVE_TO_TOWER || purpose == PURPOSE_MOVE_TO_TOWER_AND_EXTRUDE) { if (m_idx_tool_change_in_layer == 0) { // There were no tool changes at all in this layer. writer.retract(m_retract * 1.5f, 3600) // Jump with retract to fill_box.ld + a random shift in +x. .z_hop(m_zhop, 7200) .travel(fill_box.ld + xy(5.f + 15.f * float(rand()) / RAND_MAX, 0.f), 7000) .z_hop_reset(7200) // Prime the extruder. .load_move_x(fill_box.ld.x, m_retract * 1.5f, 3600); } else { // Otherwise the extruder is already over the wipe tower. } } else { // The print head is inside the wipe tower. Rather move to the start of the following extrusion. // writer.set_initial_position(fill_box.ld); writer.set_initial_position(fill_box.ld); } if (purpose == PURPOSE_EXTRUDE || purpose == PURPOSE_MOVE_TO_TOWER_AND_EXTRUDE) { // Extrude the first perimeter. box_coordinates box = fill_box; writer.extrude(box.lu, 2400 * speed_factor) .extrude(box.ru) .extrude(box.rd) .extrude(box.ld + xy(m_perimeter_width / 2, 0)); // Extrude second perimeter. box.expand(- m_perimeter_width / 2); writer.extrude(box.lu, 3200 * speed_factor) .extrude(box.ru) .extrude(box.rd) .extrude(box.ld + xy(m_perimeter_width / 2, 0)); if (m_is_first_layer) { // Extrude a dense infill at the 1st layer to improve 1st layer adhesion of the wipe tower. box.expand(- m_perimeter_width / 2); box.ld.y -= 0.5f * m_perimeter_width; box.rd.y = box.ld.y; int nsteps = int(floor((box.lu.y - box.ld.y) / (2. * (1.0 * m_perimeter_width)))); float step = (box.lu.y - box.ld.y) / nsteps; for (size_t i = 0; i < nsteps; ++ i) { writer.extrude(box.ld.x, writer.y() + 0.5f * step); writer.extrude(box.rd.x, writer.y()); writer.extrude(box.rd.x, writer.y() + 0.5f * step); writer.extrude(box.ld.x, writer.y()); } } else { // Extrude a sparse infill to support the material to be printed above. // Extrude an inverse U at the left of the region. writer.extrude(box.ld + xy(m_perimeter_width / 2, m_perimeter_width / 2)) .extrude(fill_box.ld + xy(m_perimeter_width * 3, m_perimeter_width), 2900 * speed_factor) .extrude(fill_box.lu + xy(m_perimeter_width * 3, - m_perimeter_width)) .extrude(fill_box.lu + xy(m_perimeter_width * 6, - m_perimeter_width)) .extrude(fill_box.ld + xy(m_perimeter_width * 6, m_perimeter_width)); if (fill_box.lu.y - fill_box.ld.y > 4.f) { // Extrude three zig-zags. float step = (m_wipe_tower_width - m_perimeter_width * 12.f) / 12.f; for (size_t i = 0; i < 3; ++ i) { writer.extrude(writer.x() + step, fill_box.ld.y + m_perimeter_width * 8, 3200 * speed_factor); writer.extrude(writer.x() , fill_box.lu.y - m_perimeter_width * 8); writer.extrude(writer.x() + step, fill_box.lu.y - m_perimeter_width ); writer.extrude(writer.x() + step, fill_box.lu.y - m_perimeter_width * 8); writer.extrude(writer.x() , fill_box.ld.y + m_perimeter_width * 8); writer.extrude(writer.x() + step, fill_box.ld.y + m_perimeter_width ); } } // Extrude an inverse U at the left of the region. writer.extrude(fill_box.ru + xy(- m_perimeter_width * 6, - m_perimeter_width), 2900 * speed_factor) .extrude(fill_box.ru + xy(- m_perimeter_width * 3, - m_perimeter_width)) .extrude(fill_box.rd + xy(- m_perimeter_width * 3, m_perimeter_width)) .extrude(fill_box.rd + xy(- m_perimeter_width, m_perimeter_width)); } if (purpose == PURPOSE_MOVE_TO_TOWER_AND_EXTRUDE) // Wipe along the front side of the current wiping box. writer.travel(fill_box.ld + xy( m_perimeter_width, m_perimeter_width / 2), 7200) .travel(fill_box.rd + xy(- m_perimeter_width, m_perimeter_width / 2)); else writer.feedrate(7200); writer.append("; CP EMPTY GRID END\n" ";------------------\n\n\n\n\n\n\n"); // Indicate that this wipe tower layer is fully covered. m_idx_tool_change_in_layer = (unsigned int)m_max_color_changes; } ToolChangeResult result; result.print_z = this->m_z_pos; result.layer_height = this->m_layer_height; result.gcode = writer.gcode(); result.elapsed_time = writer.elapsed_time(); result.extrusions = writer.extrusions(); result.start_pos = writer.start_pos(); result.end_pos = writer.pos(); return result; } }; // namespace Slic3r