package Slic3r::Print; use Moo; use File::Basename qw(basename fileparse); use File::Spec; use List::Util qw(max first); use Math::ConvexHull::MonotoneChain qw(convex_hull); use Slic3r::ExtrusionPath ':roles'; use Slic3r::Geometry qw(X Y Z X1 Y1 X2 Y2 MIN MAX PI scale unscale move_points nearest_point chained_path); use Slic3r::Geometry::Clipper qw(diff_ex union_ex union_pt intersection_ex offset offset2 traverse_pt JT_ROUND JT_SQUARE PFT_EVENODD); use Time::HiRes qw(gettimeofday tv_interval); has 'config' => (is => 'rw', default => sub { Slic3r::Config->new_from_defaults }, trigger => 1); has 'extra_variables' => (is => 'rw', default => sub {{}}); has 'objects' => (is => 'rw', default => sub {[]}); has 'total_extrusion_length' => (is => 'rw'); has 'processing_time' => (is => 'rw'); has 'extruders' => (is => 'rw', default => sub {[]}); has 'regions' => (is => 'rw', default => sub {[]}); has 'support_material_flow' => (is => 'rw'); has 'first_layer_support_material_flow' => (is => 'rw'); has 'has_support_material' => (is => 'lazy'); # ordered collection of extrusion paths to build skirt loops has 'skirt' => ( is => 'rw', #isa => 'ArrayRef[Slic3r::ExtrusionLoop]', default => sub { [] }, ); # ordered collection of extrusion paths to build a brim has 'brim' => ( is => 'rw', #isa => 'ArrayRef[Slic3r::ExtrusionLoop]', default => sub { [] }, ); sub BUILD { my $self = shift; # call this manually because the 'default' coderef doesn't trigger the trigger $self->_trigger_config; } sub _trigger_config { my $self = shift; # store config in a handy place $Slic3r::Config = $self->config; # legacy with existing config files $self->config->set('first_layer_height', $self->config->layer_height) if !$self->config->first_layer_height; $self->config->set_ifndef('small_perimeter_speed', $self->config->perimeter_speed); $self->config->set_ifndef('bridge_speed', $self->config->infill_speed); $self->config->set_ifndef('solid_infill_speed', $self->config->infill_speed); $self->config->set_ifndef('top_solid_infill_speed', $self->config->solid_infill_speed); $self->config->set_ifndef('top_solid_layers', $self->config->solid_layers); $self->config->set_ifndef('bottom_solid_layers', $self->config->solid_layers); # G-code flavors $self->config->set('extrusion_axis', 'A') if $self->config->gcode_flavor eq 'mach3'; $self->config->set('extrusion_axis', '') if $self->config->gcode_flavor eq 'no-extrusion'; # enforce some settings when spiral_vase is set if ($self->config->spiral_vase) { $self->config->set('perimeters', 1); $self->config->set('fill_density', 0); $self->config->set('top_solid_layers', 0); $self->config->set('support_material', 0); $self->config->set('support_material_enforce_layers', 0); $self->config->set('retract_layer_change', [0]); # TODO: only apply this to the spiral layers } } sub _build_has_support_material { my $self = shift; return $self->config->support_material || $self->config->raft_layers > 0 || $self->config->support_material_enforce_layers > 0; } # caller is responsible for supplying models whose objects don't collide # and have explicit instance positions sub add_model { my $self = shift; my ($model) = @_; # append/merge materials and preserve a mapping between the original material ID # and our numeric material index my %materials = (); { my @material_ids = sort keys %{$model->materials}; @material_ids = (0) if !@material_ids; for (my $i = $self->regions_count; $i < @material_ids; $i++) { push @{$self->regions}, Slic3r::Print::Region->new; $materials{$material_ids[$i]} = $#{$self->regions}; } } # optimization: if avoid_crossing_perimeters is enabled, split # this mesh into distinct objects so that we reduce the complexity # of the graphs # -- Disabling this one because there are too many legit objects having nested shells ###$model->split_meshes if $Slic3r::Config->avoid_crossing_perimeters && !$Slic3r::Config->complete_objects; foreach my $object (@{ $model->objects }) { # we align object to origin before applying transformations my @align = $object->align_to_origin; # extract meshes by material my @meshes = (); # by region_id foreach my $volume (@{$object->volumes}) { my $region_id = defined $volume->material_id ? $materials{$volume->material_id} : 0; my $mesh = $volume->mesh->clone; # should the object contain multiple volumes of the same material, merge them $meshes[$region_id] = $meshes[$region_id] ? Slic3r::TriangleMesh->merge($meshes[$region_id], $mesh) : $mesh; } foreach my $mesh (grep $_, @meshes) { $mesh->check_manifoldness; # the order of these transformations must be the same as the one used in plater # to make the object positioning consistent with the visual preview # we ignore the per-instance transformations currently and only # consider the first one if ($object->instances && @{$object->instances}) { $mesh->rotate($object->instances->[0]->rotation, $object->center); $mesh->scale($object->instances->[0]->scaling_factor); } $mesh->scale(1 / &Slic3r::SCALING_FACTOR); } # we also align object after transformations so that we only work with positive coordinates # and the assumption that bounding_box === size works my $bb = Slic3r::Geometry::BoundingBox->new_from_points_3D([ map @{$_->used_vertices}, grep $_, @meshes ]); my @align2 = map -$bb->extents->[$_][MIN], (X,Y,Z); $_->move(@align2) for grep $_, @meshes; # initialize print object push @{$self->objects}, Slic3r::Print::Object->new( print => $self, meshes => [ @meshes ], copies => [ $object->instances ? (map [ scale($_->offset->[X] - $align[X]) - $align2[X], scale($_->offset->[Y] - $align[Y]) - $align2[Y] ], @{$object->instances}) : [0,0], ], size => $bb->size, # transformed size input_file => $object->input_file, layer_height_ranges => $object->layer_height_ranges, ); } } sub validate { my $self = shift; if ($Slic3r::Config->complete_objects) { # check horizontal clearance { my @a = (); for my $obj_idx (0 .. $#{$self->objects}) { my $clearance; { my @points = map [ @$_[X,Y] ], map @{$_->vertices}, @{$self->objects->[$obj_idx]->meshes}; my $convex_hull = Slic3r::Polygon->new(@{convex_hull(\@points)}); ($clearance) = map Slic3r::Polygon->new(@$_), Slic3r::Geometry::Clipper::offset( [$convex_hull], scale $Slic3r::Config->extruder_clearance_radius / 2, 1, JT_ROUND); } for my $copy (@{$self->objects->[$obj_idx]->copies}) { my $copy_clearance = $clearance->clone; $copy_clearance->translate(@$copy); if (@{ intersection_ex(\@a, [$copy_clearance]) }) { die "Some objects are too close; your extruder will collide with them.\n"; } @a = map @$_, @{union_ex([ @a, $copy_clearance ])}; } } } # check vertical clearance { my @object_height = (); foreach my $object (@{$self->objects}) { my $height = $object->size->[Z]; push @object_height, $height for @{$object->copies}; } @object_height = sort { $a <=> $b } @object_height; # ignore the tallest *copy* (this is why we repeat height for all of them): # it will be printed as last one so its height doesn't matter pop @object_height; if (@object_height && max(@object_height) > scale $Slic3r::Config->extruder_clearance_height) { die "Some objects are too tall and cannot be printed without extruder collisions.\n"; } } } if ($Slic3r::Config->spiral_vase) { if ((map @{$_->copies}, @{$self->objects}) > 1) { die "The Spiral Vase option can only be used when printing a single object.\n"; } if (@{$self->regions} > 1) { die "The Spiral Vase option can only be used when printing single material objects.\n"; } } } sub init_extruders { my $self = shift; # map regions to extruders (ghetto mapping for now) my %extruder_mapping = map { $_ => $_ } 0..$#{$self->regions}; # initialize all extruder(s) we need my @used_extruders = ( 0, (map $self->config->get("${_}_extruder")-1, qw(perimeter infill support_material)), (values %extruder_mapping), ); for my $extruder_id (keys %{{ map {$_ => 1} @used_extruders }}) { $self->extruders->[$extruder_id] = Slic3r::Extruder->new( id => $extruder_id, map { $_ => $self->config->get($_)->[$extruder_id] // $self->config->get($_)->[0] } #/ @{&Slic3r::Extruder::OPTIONS} ); } # calculate regions' flows for my $region_id (0 .. $#{$self->regions}) { my $region = $self->regions->[$region_id]; # per-role extruders and flows for (qw(perimeter infill solid_infill top_infill)) { my $extruder_name = $_; $extruder_name =~ s/^(?:solid|top)_//; $region->extruders->{$_} = ($self->regions_count > 1) ? $self->extruders->[$extruder_mapping{$region_id}] : $self->extruders->[$self->config->get("${extruder_name}_extruder")-1]; $region->flows->{$_} = $region->extruders->{$_}->make_flow( width => $self->config->get("${_}_extrusion_width") || $self->config->extrusion_width, role => $_, ); $region->first_layer_flows->{$_} = $region->extruders->{$_}->make_flow( layer_height => $self->config->get_value('first_layer_height'), width => $self->config->first_layer_extrusion_width, role => $_, ) if $self->config->first_layer_extrusion_width; } } # calculate support material flow if ($self->has_support_material) { my $extruder = $self->extruders->[$self->config->support_material_extruder-1]; $self->support_material_flow($extruder->make_flow( width => $self->config->support_material_extrusion_width || $self->config->extrusion_width, role => 'support_material', )); $self->first_layer_support_material_flow($extruder->make_flow( layer_height => $self->config->get_value('first_layer_height'), width => $self->config->first_layer_extrusion_width, role => 'support_material', )); } } sub layer_count { my $self = shift; return max(map { scalar @{$_->layers} } @{$self->objects}); } sub regions_count { my $self = shift; return scalar @{$self->regions}; } sub bounding_box { my $self = shift; my @points = (); foreach my $object (@{$self->objects}) { foreach my $copy (@{$object->copies}) { push @points, [ $copy->[X], $copy->[Y] ], [ $copy->[X] + $object->size->[X], $copy->[Y] + $object->size->[Y] ]; } } return Slic3r::Geometry::BoundingBox->new_from_points(\@points); } sub size { my $self = shift; return $self->bounding_box->size; } sub _simplify_slices { my $self = shift; my ($distance) = @_; foreach my $layer (map @{$_->layers}, @{$self->objects}) { @$_ = map $_->simplify($distance), @$_ for $layer->slices, (map $_->slices, @{$layer->regions}); } } sub export_gcode { my $self = shift; my %params = @_; $self->init_extruders; my $status_cb = $params{status_cb} || sub {}; my $t0 = [gettimeofday]; # skein the STL into layers # each layer has surfaces with holes $status_cb->(10, "Processing triangulated mesh"); $_->slice for @{$self->objects}; # remove empty layers and abort if there are no more # as some algorithms assume all objects have at least one layer # note: this will change object indexes @{$self->objects} = grep @{$_->layers}, @{$self->objects}; die "No layers were detected. You might want to repair your STL file(s) or check their size and retry.\n" if !@{$self->objects}; if ($Slic3r::Config->resolution) { $status_cb->(15, "Simplifying input"); $self->_simplify_slices(scale $Slic3r::Config->resolution); } # make perimeters # this will add a set of extrusion loops to each layer # as well as generate infill boundaries $status_cb->(20, "Generating perimeters"); $_->make_perimeters for @{$self->objects}; # simplify slices (both layer and region slices), # we only need the max resolution for perimeters $self->_simplify_slices(&Slic3r::SCALED_RESOLUTION); # this will assign a type (top/bottom/internal) to $layerm->slices # and transform $layerm->fill_surfaces from expolygon # to typed top/bottom/internal surfaces; $status_cb->(30, "Detecting solid surfaces"); $_->detect_surfaces_type for @{$self->objects}; # decide what surfaces are to be filled $status_cb->(35, "Preparing infill surfaces"); $_->prepare_fill_surfaces for map @{$_->regions}, map @{$_->layers}, @{$self->objects}; # this will detect bridges and reverse bridges # and rearrange top/bottom/internal surfaces $status_cb->(45, "Detect bridges"); $_->process_external_surfaces for map @{$_->regions}, map @{$_->layers}, @{$self->objects}; # detect which fill surfaces are near external layers # they will be split in internal and internal-solid surfaces $status_cb->(60, "Generating horizontal shells"); $_->discover_horizontal_shells for @{$self->objects}; $_->clip_fill_surfaces for @{$self->objects}; # the following step needs to be done before combination because it may need # to remove only half of the combined infill $_->bridge_over_infill for @{$self->objects}; # combine fill surfaces to honor the "infill every N layers" option $status_cb->(70, "Combining infill"); $_->combine_infill for @{$self->objects}; # this will generate extrusion paths for each layer $status_cb->(80, "Infilling layers"); { Slic3r::parallelize( items => sub { my @items = (); # [obj_idx, layer_id] for my $obj_idx (0 .. $#{$self->objects}) { for my $region_id (0 .. ($self->regions_count-1)) { push @items, map [$obj_idx, $_, $region_id], 0..($self->objects->[$obj_idx]->layer_count-1); } } @items; }, thread_cb => sub { my $q = shift; $Slic3r::Geometry::Clipper::clipper = Math::Clipper->new; my $fills = {}; while (defined (my $obj_layer = $q->dequeue)) { my ($obj_idx, $layer_id, $region_id) = @$obj_layer; my $object = $self->objects->[$obj_idx]; $fills->{$obj_idx} ||= {}; $fills->{$obj_idx}{$layer_id} ||= {}; $fills->{$obj_idx}{$layer_id}{$region_id} = [ $object->fill_maker->make_fill($object->layers->[$layer_id]->regions->[$region_id]), ]; } return $fills; }, collect_cb => sub { my $fills = shift; foreach my $obj_idx (keys %$fills) { my $object = $self->objects->[$obj_idx]; foreach my $layer_id (keys %{$fills->{$obj_idx}}) { my $layer = $object->layers->[$layer_id]; foreach my $region_id (keys %{$fills->{$obj_idx}{$layer_id}}) { $layer->regions->[$region_id]->fills($fills->{$obj_idx}{$layer_id}{$region_id}); } } } }, no_threads_cb => sub { foreach my $layerm (map @{$_->regions}, map @{$_->layers}, @{$self->objects}) { $layerm->fills([ $layerm->layer->object->fill_maker->make_fill($layerm) ]); } }, ); } # generate support material if ($self->has_support_material) { $status_cb->(85, "Generating support material"); $_->generate_support_material for @{$self->objects}; } # free memory (note that support material needs fill_surfaces) $_->fill_surfaces(undef) for map @{$_->regions}, map @{$_->layers}, @{$self->objects}; # make skirt $status_cb->(88, "Generating skirt"); $self->make_skirt; $self->make_brim; # must come after make_skirt # time to make some statistics if (0) { eval "use Devel::Size"; print "MEMORY USAGE:\n"; printf " meshes = %.1fMb\n", List::Util::sum(map Devel::Size::total_size($_->meshes), @{$self->objects})/1024/1024; printf " layer slices = %.1fMb\n", List::Util::sum(map Devel::Size::total_size($_->slices), map @{$_->layers}, @{$self->objects})/1024/1024; printf " region slices = %.1fMb\n", List::Util::sum(map Devel::Size::total_size($_->slices), map @{$_->regions}, map @{$_->layers}, @{$self->objects})/1024/1024; printf " perimeters = %.1fMb\n", List::Util::sum(map Devel::Size::total_size($_->perimeters), map @{$_->regions}, map @{$_->layers}, @{$self->objects})/1024/1024; printf " fills = %.1fMb\n", List::Util::sum(map Devel::Size::total_size($_->fills), map @{$_->regions}, map @{$_->layers}, @{$self->objects})/1024/1024; printf " print object = %.1fMb\n", Devel::Size::total_size($self)/1024/1024; } if (0) { eval "use Slic3r::Test::SectionCut"; Slic3r::Test::SectionCut->new(print => $self)->export_svg("section_cut.svg"); } # output everything to a G-code file my $output_file = $self->expanded_output_filepath($params{output_file}); $status_cb->(90, "Exporting G-code" . ($output_file ? " to $output_file" : "")); $self->write_gcode($params{output_fh} || $output_file); # run post-processing scripts if (@{$Slic3r::Config->post_process}) { $status_cb->(95, "Running post-processing scripts"); $Slic3r::Config->setenv; for (@{$Slic3r::Config->post_process}) { Slic3r::debugf " '%s' '%s'\n", $_, $output_file; system($_, $output_file); } } # output some statistics unless ($params{quiet}) { $self->processing_time(tv_interval($t0)); printf "Done. Process took %d minutes and %.3f seconds\n", int($self->processing_time/60), $self->processing_time - int($self->processing_time/60)*60; # TODO: more statistics! printf "Filament required: %.1fmm (%.1fcm3)\n", $self->total_extrusion_length, $self->total_extrusion_volume; } } sub export_svg { my $self = shift; my %params = @_; # this shouldn't be needed, but we're currently relying on ->make_surfaces() which # calls ->perimeter_flow $self->init_extruders; $_->slice for @{$self->objects}; my $fh = $params{output_fh}; if ($params{output_file}) { my $output_file = $self->expanded_output_filepath($params{output_file}); $output_file =~ s/\.gcode$/.svg/i; Slic3r::open(\$fh, ">", $output_file) or die "Failed to open $output_file for writing\n"; print "Exporting to $output_file..." unless $params{quiet}; } my $print_size = $self->size; print $fh sprintf <<"EOF", unscale($print_size->[X]), unscale($print_size->[Y]); EOF my $print_polygon = sub { my ($polygon, $type) = @_; printf $fh qq{ \n}, $type, (join ' ', map { join ',', map unscale $_, @$_ } @$polygon), ($type eq 'contour' ? 'white' : 'black'); }; my @previous_layer_slices = (); for my $layer_id (0..$self->layer_count-1) { my @layers = map $_->layers->[$layer_id], @{$self->objects}; printf $fh qq{ \n}, $layer_id, unscale +(grep defined $_, @layers)[0]->slice_z; my @current_layer_slices = (); for my $obj_idx (0 .. $#{$self->objects}) { my $layer = $self->objects->[$obj_idx]->layers->[$layer_id] or next; # sort slices so that the outermost ones come first my @slices = sort { $a->contour->encloses_point($b->contour->[0]) ? 0 : 1 } @{$layer->slices}; foreach my $copy (@{$self->objects->[$obj_idx]->copies}) { foreach my $slice (@slices) { my $expolygon = $slice->clone; $expolygon->translate(@$copy); $print_polygon->($expolygon->contour, 'contour'); $print_polygon->($_, 'hole') for $expolygon->holes; push @current_layer_slices, $expolygon; } } } # generate support material if ($self->has_support_material && $layer_id > 0) { my (@supported_slices, @unsupported_slices) = (); foreach my $expolygon (@current_layer_slices) { my $intersection = intersection_ex( [ map @$_, @previous_layer_slices ], $expolygon, ); @$intersection ? push @supported_slices, $expolygon : push @unsupported_slices, $expolygon; } my @supported_points = map @$_, @$_, @supported_slices; foreach my $expolygon (@unsupported_slices) { # look for the nearest point to this island among all # supported points my $support_point = nearest_point($expolygon->contour->[0], \@supported_points) or next; my $anchor_point = nearest_point($support_point, $expolygon->contour); printf $fh qq{ \n}, map @$_, $support_point, $anchor_point; } } print $fh qq{ \n}; @previous_layer_slices = @current_layer_slices; } print $fh "\n"; close $fh; print "Done.\n" unless $params{quiet}; } sub make_skirt { my $self = shift; return unless $Slic3r::Config->skirts > 0; # collect points from all layers contained in skirt height my @points = (); foreach my $obj_idx (0 .. $#{$self->objects}) { my $skirt_height = $Slic3r::Config->skirt_height; $skirt_height = $self->objects->[$obj_idx]->layer_count if $skirt_height > $self->objects->[$obj_idx]->layer_count; my @layers = map $self->objects->[$obj_idx]->layers->[$_], 0..($skirt_height-1); my @layer_points = ( (map @$_, map @$_, map @{$_->slices}, @layers), (map @$_, map @{$_->thin_walls}, map @{$_->regions}, @layers), (map @{$_->unpack->polyline}, map @{$_->support_fills->paths}, grep $_->support_fills, @layers), ); push @points, map move_points($_, @layer_points), @{$self->objects->[$obj_idx]->copies}; } return if @points < 3; # at least three points required for a convex hull # find out convex hull my $convex_hull = convex_hull(\@points); my @extruded_length = (); # for each extruder # TODO: use each extruder's own flow my $spacing = $self->objects->[0]->layers->[0]->regions->[0]->perimeter_flow->spacing; my $first_layer_height = $Slic3r::Config->get_value('first_layer_height'); my @extruders_e_per_mm = (); my $extruder_idx = 0; # draw outlines from outside to inside # loop while we have less skirts than required or any extruder hasn't reached the min length if any my $distance = scale $Slic3r::Config->skirt_distance; for (my $i = $Slic3r::Config->skirts; $i > 0; $i--) { $distance += scale $spacing; my ($loop) = Slic3r::Geometry::Clipper::offset([$convex_hull], $distance, 0.0001, JT_ROUND); push @{$self->skirt}, Slic3r::ExtrusionLoop->pack( polygon => Slic3r::Polygon->new(@$loop), role => EXTR_ROLE_SKIRT, flow_spacing => $spacing, ); if ($Slic3r::Config->min_skirt_length > 0) { bless $loop, 'Slic3r::Polygon'; $extruded_length[$extruder_idx] ||= 0; $extruders_e_per_mm[$extruder_idx] ||= $self->extruders->[$extruder_idx]->e_per_mm($spacing, $first_layer_height); $extruded_length[$extruder_idx] += unscale $loop->length * $extruders_e_per_mm[$extruder_idx]; $i++ if defined first { ($extruded_length[$_] // 0) < $Slic3r::Config->min_skirt_length } 0 .. $#{$self->extruders}; if ($extruded_length[$extruder_idx] >= $Slic3r::Config->min_skirt_length) { if ($extruder_idx < $#{$self->extruders}) { $extruder_idx++; next; } } } } @{$self->skirt} = reverse @{$self->skirt}; } sub make_brim { my $self = shift; return unless $Slic3r::Config->brim_width > 0; my $flow = $self->objects->[0]->layers->[0]->regions->[0]->perimeter_flow; my $grow_distance = $flow->scaled_width / 2; my @islands = (); # array of polygons foreach my $obj_idx (0 .. $#{$self->objects}) { my $layer0 = $self->objects->[$obj_idx]->layers->[0]; my @object_islands = ( (map $_->contour, @{$layer0->slices}), (map { $_->isa('Slic3r::Polygon') ? $_ : $_->grow($grow_distance) } map @{$_->thin_walls}, @{$layer0->regions}), (map $_->unpack->polyline->grow($grow_distance), map @{$_->support_fills->paths}, grep $_->support_fills, $layer0), ); foreach my $copy (@{$self->objects->[$obj_idx]->copies}) { push @islands, map $_->clone->translate(@$copy), @object_islands; } } # if brim touches skirt, make it around skirt too # TODO: calculate actual skirt width (using each extruder's flow in multi-extruder setups) if ($Slic3r::Config->skirt_distance + (($Slic3r::Config->skirts - 1) * $flow->spacing) <= $Slic3r::Config->brim_width) { push @islands, map $_->unpack->split_at_first_point->polyline->grow($grow_distance), @{$self->skirt}; } my @loops = (); my $num_loops = sprintf "%.0f", $Slic3r::Config->brim_width / $flow->width; for my $i (reverse 1 .. $num_loops) { # JT_SQUARE ensures no vertex is outside the given offset distance # -0.5 because islands are not represented by their centerlines # TODO: we need the offset inwards/offset outwards logic to avoid overlapping extrusions push @loops, offset2(\@islands, ($i - 1.5) * $flow->scaled_spacing, +1.0 * $flow->scaled_spacing, undef, JT_SQUARE); } @{$self->brim} = map Slic3r::ExtrusionLoop->pack( polygon => Slic3r::Polygon->new(@$_), role => EXTR_ROLE_SKIRT, flow_spacing => $flow->spacing, ), reverse traverse_pt( union_pt(\@loops, PFT_EVENODD) ); } sub write_gcode { my $self = shift; my ($file) = @_; # open output gcode file if we weren't supplied a file-handle my $fh; if (ref $file eq 'IO::Scalar') { $fh = $file; } else { Slic3r::open(\$fh, ">", $file) or die "Failed to open $file for writing\n"; } # write some information my @lt = localtime; printf $fh "; generated by Slic3r $Slic3r::VERSION on %04d-%02d-%02d at %02d:%02d:%02d\n\n", $lt[5] + 1900, $lt[4]+1, $lt[3], $lt[2], $lt[1], $lt[0]; print $fh "; $_\n" foreach split /\R/, $Slic3r::Config->notes; print $fh "\n" if $Slic3r::Config->notes; for (qw(layer_height perimeters top_solid_layers bottom_solid_layers fill_density perimeter_speed infill_speed travel_speed)) { printf $fh "; %s = %s\n", $_, $Slic3r::Config->$_; } for (qw(nozzle_diameter filament_diameter extrusion_multiplier)) { printf $fh "; %s = %s\n", $_, $Slic3r::Config->$_->[0]; } printf $fh "; perimeters extrusion width = %.2fmm\n", $self->regions->[0]->flows->{perimeter}->width; printf $fh "; infill extrusion width = %.2fmm\n", $self->regions->[0]->flows->{infill}->width; printf $fh "; solid infill extrusion width = %.2fmm\n", $self->regions->[0]->flows->{solid_infill}->width; printf $fh "; top infill extrusion width = %.2fmm\n", $self->regions->[0]->flows->{top_infill}->width; printf $fh "; support material extrusion width = %.2fmm\n", $self->support_material_flow->width if $self->support_material_flow; printf $fh "; first layer extrusion width = %.2fmm\n", $self->regions->[0]->first_layer_flows->{perimeter}->width if $self->regions->[0]->first_layer_flows->{perimeter}; print $fh "\n"; # set up our extruder object my $gcodegen = Slic3r::GCode->new( config => $self->config, extruders => $self->extruders, layer_count => $self->layer_count, ); print $fh "G21 ; set units to millimeters\n" if $Slic3r::Config->gcode_flavor ne 'makerware'; print $fh $gcodegen->set_fan(0, 1) if $Slic3r::Config->cooling && $Slic3r::Config->disable_fan_first_layers; # write start commands to file printf $fh $gcodegen->set_bed_temperature($Slic3r::Config->first_layer_bed_temperature, 1), if $Slic3r::Config->first_layer_bed_temperature && $Slic3r::Config->start_gcode !~ /M(?:190|140)/i; my $print_first_layer_temperature = sub { for my $t (grep $self->extruders->[$_], 0 .. $#{$Slic3r::Config->first_layer_temperature}) { printf $fh $gcodegen->set_temperature($self->extruders->[$t]->first_layer_temperature, 0, $t) if $self->extruders->[$t]->first_layer_temperature; } }; $print_first_layer_temperature->() if $Slic3r::Config->start_gcode !~ /M(?:109|104)/i; printf $fh "%s\n", $Slic3r::Config->replace_options($Slic3r::Config->start_gcode); for my $t (grep $self->extruders->[$_], 0 .. $#{$Slic3r::Config->first_layer_temperature}) { printf $fh $gcodegen->set_temperature($self->extruders->[$t]->first_layer_temperature, 1, $t) if $self->extruders->[$t]->first_layer_temperature && $Slic3r::Config->start_gcode !~ /M(?:109|104)/i; } print $fh "G90 ; use absolute coordinates\n" if $Slic3r::Config->gcode_flavor ne 'makerware'; if ($Slic3r::Config->gcode_flavor =~ /^(?:reprap|teacup)$/) { printf $fh $gcodegen->reset_e; if ($Slic3r::Config->use_relative_e_distances) { print $fh "M83 ; use relative distances for extrusion\n"; } else { print $fh "M82 ; use absolute distances for extrusion\n"; } } # calculate X,Y shift to center print around specified origin my $print_bb = $self->bounding_box; my $print_size = $print_bb->size; my @shift = ( $Slic3r::Config->print_center->[X] - unscale($print_size->[X]/2 + $print_bb->x_min), $Slic3r::Config->print_center->[Y] - unscale($print_size->[Y]/2 + $print_bb->y_min), ); # initialize a motion planner for object-to-object travel moves if ($Slic3r::Config->avoid_crossing_perimeters) { my $distance_from_objects = 1; # compute the offsetted convex hull for each object and repeat it for each copy. my @islands = (); foreach my $obj_idx (0 .. $#{$self->objects}) { my $convex_hull = convex_hull([ map @{$_->contour}, map @{$_->slices}, @{$self->objects->[$obj_idx]->layers}, ]); # discard layers only containing thin walls (offset would fail on an empty polygon) if (@$convex_hull) { my @island = Slic3r::ExPolygon->new($convex_hull) ->translate(scale $shift[X], scale $shift[Y]) ->offset_ex(scale $distance_from_objects, 1, JT_SQUARE); foreach my $copy (@{ $self->objects->[$obj_idx]->copies }) { push @islands, map $_->clone->translate(@$copy), @island; } } } $gcodegen->external_mp(Slic3r::GCode::MotionPlanner->new( islands => union_ex([ map @$_, @islands ]), no_internal => 1, )); } # prepare the layer processor my $layer_gcode = Slic3r::GCode::Layer->new( print => $self, gcodegen => $gcodegen, shift => \@shift, ); # do all objects for each layer if ($Slic3r::Config->complete_objects) { # print objects from the smallest to the tallest to avoid collisions # when moving onto next object starting point my @obj_idx = sort { $self->objects->[$a]->size->[Z] <=> $self->objects->[$b]->size->[Z] } 0..$#{$self->objects}; my $finished_objects = 0; for my $obj_idx (@obj_idx) { for my $copy (@{ $self->objects->[$obj_idx]->copies }) { # move to the origin position for the copy we're going to print. # this happens before Z goes down to layer 0 again, so that # no collision happens hopefully. if ($finished_objects > 0) { $gcodegen->set_shift(map $shift[$_] + unscale $copy->[$_], X,Y); print $fh $gcodegen->retract; print $fh $gcodegen->G0(Slic3r::Point->new(0,0), undef, 0, 'move to origin position for next object'); } my $buffer = Slic3r::GCode::CoolingBuffer->new( config => $Slic3r::Config, gcodegen => $gcodegen, ); for my $layer (@{$self->objects->[$obj_idx]->layers}) { # if we are printing the bottom layer of an object, and we have already finished # another one, set first layer temperatures. this happens before the Z move # is triggered, so machine has more time to reach such temperatures if ($layer->id == 0 && $finished_objects > 0) { printf $fh $gcodegen->set_bed_temperature($Slic3r::Config->first_layer_bed_temperature), if $Slic3r::Config->first_layer_bed_temperature; $print_first_layer_temperature->(); } print $fh $buffer->append( $layer_gcode->process_layer($layer, [$copy]), $layer->object."", $layer->id, $layer->print_z, ); } print $fh $buffer->flush; $finished_objects++; } } } else { # order objects using a nearest neighbor search my @obj_idx = chained_path([ map $_->copies->[0], @{$self->objects} ]); # sort layers by Z my %layers = (); # print_z => [ layer, layer, layer ] by obj_idx foreach my $obj_idx (0 .. $#{$self->objects}) { foreach my $layer (@{$self->objects->[$obj_idx]->layers}) { $layers{ $layer->print_z } ||= []; $layers{ $layer->print_z }[$obj_idx] = $layer; # turn this into [$layer] when merging support layers } } my $buffer = Slic3r::GCode::CoolingBuffer->new( config => $Slic3r::Config, gcodegen => $gcodegen, ); foreach my $print_z (sort { $a <=> $b } keys %layers) { foreach my $obj_idx (@obj_idx) { next unless my $layer = $layers{$print_z}[$obj_idx]; print $fh $buffer->append( $layer_gcode->process_layer($layer, $layer->object->copies), $layer->object."", $layer->id, $layer->print_z, ); } } print $fh $buffer->flush; } # save statistic data $self->total_extrusion_length($gcodegen->total_extrusion_length); # write end commands to file print $fh $gcodegen->retract if $gcodegen->extruder; # empty prints don't even set an extruder print $fh $gcodegen->set_fan(0); printf $fh "%s\n", $Slic3r::Config->replace_options($Slic3r::Config->end_gcode); printf $fh "; filament used = %.1fmm (%.1fcm3)\n", $self->total_extrusion_length, $self->total_extrusion_volume; if ($Slic3r::Config->gcode_comments) { # append full config print $fh "\n"; foreach my $opt_key (sort keys %{$Slic3r::Config}) { next if $Slic3r::Config::Options->{$opt_key}{shortcut}; next if $Slic3r::Config::Options->{$opt_key}{gui_only}; printf $fh "; %s = %s\n", $opt_key, $Slic3r::Config->serialize($opt_key); } } # close our gcode file close $fh; } sub total_extrusion_volume { my $self = shift; return $self->total_extrusion_length * ($self->extruders->[0]->filament_diameter**2) * PI/4 / 1000; } # this method will return the supplied input file path after expanding its # format variables with their values sub expanded_output_filepath { my $self = shift; my ($path, $input_file) = @_; # if no input file was supplied, take the first one from our objects $input_file ||= $self->objects->[0]->input_file; return undef if !defined $input_file; # if output path is an existing directory, we take that and append # the specified filename format $path = File::Spec->join($path, $Slic3r::Config->output_filename_format) if ($path && -d $path); # if no explicit output file was defined, we take the input # file directory and append the specified filename format $path ||= (fileparse($input_file))[1] . $Slic3r::Config->output_filename_format; my $input_filename = my $input_filename_base = basename($input_file); $input_filename_base =~ s/\.(?:stl|amf(?:\.xml)?)$//i; return $Slic3r::Config->replace_options($path, { input_filename => $input_filename, input_filename_base => $input_filename_base, %{ $self->extra_variables }, }); } 1;